簡易檢索 / 詳目顯示

研究生: 田雅汶
Ya-wen Tien
論文名稱: 製備明膠/聚(氮-異丙基丙烯醯胺)溫感型可控有序多孔性結構薄膜與其藥物釋放之研究
Fabrication of Thermo-Responsive Ordered Porous Film of Gelatin/PNIPAAm and Drug Release Properties
指導教授: 陳建光
Jem-Kun Chen
口試委員: 邱顯堂
Hsien-Tang Chiu
李俊毅
none
楊銘乾
Ming-Chien Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 91
中文關鍵詞: 明膠聚N-異丙基丙烯醯胺聚苯乙烯微球孔洞結構藥物釋放抗菌測試
外文關鍵詞: Gelatin, Ploy(N-isopropylacrylamide), Polystyrene microspheres, Porous structure, Drug release, Antibacterial test
相關次數: 點閱:263下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗利用具有溫度敏感性聚(氮-異丙基丙烯醯胺)(Ploy(N-isopropylacrylamide),PNIPAAm)以及具有生物相容性的明膠(gelatin)藉由不同粒徑大小的聚苯乙烯微球(polystyrene , PS)製備出各尺寸的有序多孔性結構薄膜。首先利用N,N'-Methylene bisacrylamide (MBA)將gelatin與PNIPAAm進行交聯後,再使用無乳化劑乳化聚合法聚合出四種粒徑的PS球,接著將四種粒徑大小的PS球加入其溶液中,再將此溶液乾燥成膜並浸泡於甲苯中去除PS球,最後可得四種不同尺寸的gelatin-PNIPAAM多孔性結構薄膜。
利用SEM以及DLS證實本實驗成功製備出不同粒徑大小的PS球,並由FTIR證實gelatin與PNIPAAm交聯,再經由SEM確定gelatin-PNIPAAm多孔性結構薄膜的製備完成,接著使用SEM和CA探討溫度變化對有序多孔性結構薄膜的影響,並在藥物釋放及抗菌測試實驗,證明多孔性結構薄膜在高於LCST的水溶液環境所造成的大孔洞能夠擁有較好的藥物裝載及釋放量,並對於細菌的生長有更好的抑制效果。


In this study, we developed to prepare thermosensitive Ploy(N-isopropylacrylamide)(PNIPAAm) with an biocompatible gelatin and various particle sizes of polystyrene microspheres for the purpose of synthesizing ordered porous film. N,N'-Methylene bisacrylamide (MBA) was used to crosslink gelatin and PNIPAAm. We also used emulsifier-free emulsion polymerization to prepare various particle sizes of monodisperse polystyrene microspheres. The polystyrene microspheres acted as a template to create various size ordered porous film.
Scanning electron microscope(SEM) and dynamic light scattering (DLS) demonstrated various diameters monodisperse polystyrene microspheres were synthesized successfully. The cross-linking reaction of gelatin-PNIAPAAm was confirmed by fourier transform infrared spectroscope(FTIR). And then SEM also revealed the structure of gelatin-PNIPAAm ordered porous film. The thermo-responsive properties of gelatin-PNIPAAm ordered porous film was investigated by SEM and contact angle(CA). Due to the thermo-responsive property of PNIPAAm, the drug release and antibacterial test can confirmed the large pore sizes of the film could have better amounts of drug release and load.

摘要 I Abstract II 致謝 III 目錄 III 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1生物可分解性高分子 3 2.1.1生物可分解性高分子特性 4 2.1.2 天然生物可分解性高分子 5 2.2 明膠(gelatin) 5 2.3 藥物釋放 8 2.3.1擴散釋放(Diffusion-controlled release system) 9 2.3.2膨脹釋放(Swelling-controlled release system) 10 2.3.3溶蝕釋放(Erosion-controlled release system) 11 2.4聚(氮-異丙基丙烯醯胺) 12 2.5 聚苯乙烯微球 14 2.5.1乳化劑乳化聚合法 14 2.5.2無乳化劑乳化聚合 18 2.5.3分散聚合法 21 2.5.4懸浮聚合法 22 2.6 阿莫西林(Amoxicillin) 23 2.6.1 阿莫西林的效果 23 2.6.2 阿莫西林的特性 23 第三章 儀器原理 24 3.1紫外光/可見光光譜儀(UV-Vis) 24 3.2高解析度場發射掃描式電子顯微鏡(FE-SEM) 25 3.3動態光散射粒徑分析儀(DLS) 27 3.4接觸角量測(CA) 28 第四章 實驗流程與方法 30 4.1 實驗流程圖 30 4.2 實驗藥品 31 4.3 實驗儀器 33 4.4 實驗步驟 34 4.4.1 PS微球合成 34 4.4.2 gelatin-PNIPAAm多孔性結構薄膜製備 35 4.4.3 多孔性結構薄膜LCST測試 36 4.4.4 膨潤係數測試 36 4.4.5 藥物釋放測試 37 4.4.6 抗菌測試 39 第五章 結果與討論 40 5.1 聚苯乙烯微球合成分析 40 5.1.1 SEM表面型態分析 40 5.1.2 粒徑分析 44 5.2 明膠-聚(氮-異丙基丙烯醯胺)薄膜分析 49 5.2.1 FTIR分析 49 5.2.2 SEM表面型態分析 51 5.3明膠-聚(氮-異丙基丙烯醯胺)-聚苯乙烯薄膜分析 52 5.3.1 SEM分析 52 5.4 多孔性結構薄膜分析 53 5.4.1 SEM表面型態分析 54 5.5 多孔性結構薄膜LCST測定 60 5.5.1 SEM表面型態分析 60 5.5.2 CA接觸角量測分析 64 5.6 膨潤比例測試分析 66 5.7 藥物釋放測試 69 5.7.1 亞甲基藍回歸曲線分析 69 5.7.2 亞甲基藍藥物裝載量分析 70 5.7.3 亞甲基藍藥物釋放分析 72 5.7.4 抗生素回歸曲線分析 74 5.7.5 抗生素藥物裝載量分析 76 5.7.6 抗生素藥物釋放分析 78 5.8 抗菌測試 81 第六章 結論 85 文獻回顧 86

[1] S. Ghosh, "Recent Research and Development in Synthetic Polymer-based Drug Delivery Systems," Journal of Chemical Research, pp. 241-246, 2004.
[2] R. Chandra and R. Rustgi, "Biodegrable Polymers," Progress in Polymer Science 23, pp. 1273-1335, 1998.
[3] A. A. and H. RL., "Chemical, Biochemical, Functional, and Nutritional Characteristics of Collagen in Food Systems," Adv Food Res, vol. 28, pp. 231-372, 1982.
[4] D. Baziwane and Q. He, "Gelatin: The Paramount Food Additive," FOOD REVIEWS INTERNATIONAL, vol. 19, pp. 423-435, 2003.
[5] S. Ohya, H. Sonoda, Y. Nakayama, and T. Matsuda, "The Potential of Poly(N-isopropylacrylamide) (PNIPAM)-grafted Hyaluronan and PNIPAM-grafted Gelatin in the Control of Post-surgical Tissue Adhesions," Biomaterials, vol. 26, pp. 655-659, 2005.
[6] I. Chimenti, G. Rizzitelli, R. Gaetani, and F. Angelini, "Human Cardiosphere-seeded Gelatin and Collagen Scaffolds as Cardiogenic Engineered Bioconstructs," Biomaterials, vol. 32, pp. 9271-9281, 2011.
[7] O. D., Y. C., B. M., C. R., L. S., and B. J., "Recombinant Collagen and Gelatin for Drug Delivery," Advanced Drug Delivery Reviews, vol. 55, pp. 1547-1567, 2003.
[8] J.-Y. Lai and A.-C. Hsieh, "A Gelatin-g-poly(N-isopropylacrylamide) Biodegradable in Situ Gelling Delivery System for The Intracameral Administration of Pilocarpine," Biomaterials, vol. 33, pp. 2372-2387, 2012.
[9] C. H. Yao, B. S. Liu, C. J. Chang, and S. H. Hsub, "Preparation of Networks of Gelatin and Genipin as Degradable Biomaterials," Materials Chemistry and Physics, pp. 204-208, 2004.
[10] J. S. Mao, L. G. Zhao, Y. J. Yin, and K. D. Yao, "Structure and Properties of Bilayer Chitosan-gelatin Scaffolds," Biomaterials, vol. 24, pp. 1067-1074, 2003.
[11] Y. Huang, S. Onyeri, M. Siewe, A. Moshfeghian, and S. V. Madihally, "In vitro characterization of chitosan-gelatin Scaffolds for Tissue Engineering," Biomaterials, vol. 26, pp. 7616-7627, 2005.
[12] K. E. Uhrich, "Polymeric Systems for Controlled Drug Release," Chem. Rev., pp. 3181-3198, 1999.
[13] H. Simpson and I. Mckinlay, "Poisoning with Slow-release Fenfluramine," British Medical Journal, vol. 4, pp. 462-463, 1975.
[14] P. Salehi, P. Sarazin, and B. D. Favis, "Porous Devices Derived from Co-Continuous Polymer Blends as a Route for Controlled Drug Release," Biomacromolecules, vol. 9, pp. 1131-1138, 2008.
[15] P. H.-L. Tran, T. T.-D. Tran, J. B. Park, and B.-J. Lee, "Controlled Release Systems Containing Solid Dispersions : Strategies and Mechanisms," Pharm Res, vol. 28, pp. 2353-2378, 2011.
[16] N. C. Grant, A. I. Cooper, and H. Zhang, "Uploading and Temperature-Controlled Release of Polymeric Colloids via Hydrophilic Emulsion-Templated Porous Polymers," Applied Materials & Interfaces, vol. 2, pp. 1400-1406, 2010.
[17] S. J. Lue, J.-J. Hsu, and Ta-ChinWei, "Drug Permeation Modeling through the Thermo-sensitive Membranes of Poly(N-isopropylacrylamide) Brushes Grafted onto Micro-porous Films," Journal of Membrane Science, vol. 321, pp. 146-154, 2008.
[18] W. Wu, J. Liu, S. Cao, H. Tan, J. Li, F. Xu, et al., "Drug Release Behaviors of a pH Sensitive Semi-interpenetrating Polymer Network Hydrogel Composed of Poly(vinyl alcohol) and Star Poly[2-(dimethylamino)ethyl methacrylate]," International Journal of Pharmaceutics, vol. 216, pp. 104-109, 2011.
[19] E. Costa, M. L. Coelho, A. Aguiar-Ricardo, and T. P. Hammond, "Tannic Acid Mediated Suppression of PNIPAAm Microgels Thermoresponsive Behavior," Macromolecules, vol. 44, pp. 612-621, 2011.
[20] S. Chakraborty, W. S. Bishnoi, and H. V. Pe’rez-Luna, "Gold Nanoparticles with Poly(N-isopropylacrylamide) Formed via Surface Initiated Atom Transfer Free Radical Polymerization Exhibit Unusually Slow Aggregation Kinetics," The Journal of Physical Chemistry C, vol. 114, pp. 5947-5944, 2010.
[21] D. Dube, M. Francis, J.-C. Leroux, and F. M. Winnik, "Preparation and Tumor Cell Uptake of Poly(N-isopropylacrylamide)Folate Conjugates," BioconjugateChemistry, vol. 13, pp. 685-692, 2002.
[22] F. Eeckman, A. J. Moe‥s, and K. Amighi, "Synthesis and Characterization of Thermosensitive Copolymers for Oral Controlled Drug Delivery," European Polymer Journal, vol. 40, pp. 873-881, 2004.
[23] C. Ramkissoon-Ganorkar, F. Liu, M. Baudys, and W. S. Kim, "Modulating Insulin-release Profile from pH/ thermosensitive Polymeric Beads Through Polymer Molecular Weight," Journal of Controlled Release, vol. 59, pp. 287-298, 1999.
[24] R. C. Mundargi, N. B. Shelke, V. R. Babu, P. Patel, V. Rangaswamy, and T. M. Aminabhavi, "Novel Thermo-Responsive Semi-Interpenetrating Network Microspheres of Gellan Gum-Poly(N-isopropylacrylamide) for Controlled Release of Atenolol," Journal ofAppliedPolymer Science, vol. 116, pp. 1832-1841, 2010.
[25] I. Lokuge, X. Wang, and P. W. Bohn, "Temperature-Controlled Flow Switching in Nanocapillary Array Membranes Mediated by Poly(N-isopropylacrylamide) Polymer Brushes Grafted by Atom Transfer Radical Polymerization," Langmuir, vol. 23, pp. 305-311, 2007.
[26] N. Yamada, T. Okano, H. Sakai, F. Karikusaa, Y. Sawasakia, and Y. Sakurai, "Thermo-responsive Polymeric Surfaces; Control of Attachmentand Detachment of Cultured Cells," Die Makromolekulare Chemie Rapid Communications, vol. 11, pp. 571-576, 1990.
[27] T. Okano, N. Yamada, M. Okuhara, S. H., and Y. Sakurai, "Mechanism of Cell Detachment from Temperature-modulated, Hydrophilic-hydrophobic Polymer Surfaces," Biomaterials, vol. 16, pp. 297-303, 1995.
[28] L. Feng, T. Guoliang, and R. Z., "Synthesis of Thermal Phase Separating Reactive Polymers and Their Applications in Immobilized Enzymes," Polymer Journal, vol. 25, pp. 561-567, 1993.
[29] Y. Akiyama, A. Kikuchi, M. Yamato, and T. Okano, "Ultrathin Poly(N-isopropylacrylamide) Grafted Layer on Polystyrene Surfaces for Cell Adhesion/Detachment Control," Langmuir, vol. 20, pp. 5506-5511, 2004.
[30] X. Chen, X. Ding, Z. Zheng, and Y. Peng, "Thermosensitive Cross-linked Polymer Vesicles for Controlled Release System," New J. Chem., vol. 30, pp. 577-582, 2006.
[31] W. C. Preston, J. Phys. Chem., vol. 52, 1948.
[32] R. M. Fitch, M. B. Prenosil, and K. J. Sprick, J. polym. Sci, vol. 27, 1969.
[33] W. D. Harkins, J. Am. Chem. Soc., vol. 69, 1947.
[34] T. Matsumoto and A. Ochi, Kobunshi Kagaku, vol. 22, 1965.
[35] Y. Li, T. Kunitake, and S. Fujikawa, "Efficient Fabrication of Large, Robust Films of 3D-ordered Polystyrene Latex," Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 275, pp. 209-217, 2006.
[36] Y. Fu, Z. Jin, G. Liu, and Y. Yin, "Self-assembly of Polystyrene Sphere Colloidal Crystals by in Situ Solvent Evaporation Method," Synthetic Metals, vol. 159, pp. 1744-1750, 2009.
[37] M. Kumoda, Y. Takeoka, and M. Watanabe, "Template Synthesis of Poly(N-isopropylacrylamide) Minigels Using Interconnecting Macroporous Polystyrene," Langmuir, vol. 19, pp. 525-528, 2003.
[38] J. W. Goodwin, J. Hearn, C. C. Ho, and R. H. Ottewill, Colloid. Polym. Sci., 1974.
[39] A. R. Goodall, M. C. Wilkinson, and J. Hearn, J. Polym. Sci., Part A: Polym. Chem, vol. 15, 1977.
[40] R. A. Cox, M. C. Wilkinson, J. M. Creasey, A. R. Goodall, and J. Hearn, J. Polym. Sci.,Part A: Polym. Chem, 1977.
[41] H. Qi, W. Hao, and H. Xu, "Synthesis of Large-sized Monodisperse Polystyrene Microspheres by Dispersion Polymerization with Dropwise Monomer Feeding Procedure," Colloid. Polym. Sci., vol. 287, pp. 243-248, 2009.
[42] A. J. v. Winkelhoff, C. J. Tijhof, and J. d. Graaff, "Microbiological and Clinical Results of Metronidazole Plus Amoxicillin Therapy in Actinobacillus actinomycetemcomitans-Associated Periodontitis," Journal of Periodontology, vol. 63, pp. 52-57, 1992.
[43] P. Muth, R. Metz, H. Beck, W. W. Bloten, and H. Vergin, "Improved High Performance Liquid Chromatography Determination of Amoxicillin in Human Plasm by Means of Column Switching," J. Chromatogr. A., vol. 729, pp. 259-266, 1996.
[44] E. Rosellini, C. Cristallini, N. Barbani, G. Vozzi, G. Ciardelli, and P. Giusti, "New Bioartificial Systems and Biodegradable Synthetic Polymers for Cardiac Tissue Engineering: A Preliminary Screening," Biomedical Engineering: Applications, Basis and Communications, vol. 22, pp. 497-507, 2010.

無法下載圖示 全文公開日期 2017/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE