簡易檢索 / 詳目顯示

研究生: 陳偉倫
Wei-Lun Chen
論文名稱: 不具外部零電流偵測電路之三角形電流模式圖騰柱無橋式功率因數修正器
Triangular Current Mode Totem-Pole Bridgeless PFC Converter without ZCD circuit
指導教授: 邱煌仁
Huang-Jen Chiu
黃仁宏
Peter Huang
口試委員: 林景源
Jing-Yuan Lin
劉宇晨
Yu-Chen Liu
謝耀慶
Yao-Ching Hsieh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 58
中文關鍵詞: 三角形電流模式零電壓切換圖騰柱無橋功率因數修正器平均電流控制法零電流偵測電路
外文關鍵詞: Triangular Current Mode, ZVS, Totem-pole PFC, average current control, zero current detection circuit
相關次數: 點閱:421下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文實現變頻三角形電流模式圖騰柱無橋式功率因數修正器。在一個輸入電壓週期內,皆可實現零電壓切換。本文提出一種不需外部零電流偵測電路的三角形電流模式控制。利用平均電流控制法中的平均電流命令、輸入電壓、輸出電壓及電感等參數,計算可達零電壓切換的切換頻率。利用PSIM電路模擬軟體,驗證本文所提出控制方法之可行性,最終實現變頻範圍60 kHz~180 kHz、輸入電壓230 Vrms、輸出電壓400 V、輸出功率800 W,最高效率可達98.02%的圖騰柱無橋式功率因數修正器。
關鍵字:三角形電流模式、零電壓切換、圖騰柱無橋功率因數修正器、平均電流控制法、零電流偵測電路


This thesis presents a triangular current mode totem-pole PFC rectifier with variable frequency. It can achievd ZVS over the full input voltage range. This thesis proposes a triangular current-mode control without an external zero current detection circuit. In this thesis, average current-mode control is used to achived high power factor. The period of the duty cycle is calculated using the average current reference, input voltage, and output voltage. PSIM simulation is utilized to verify the feasibility of the proposed control method. Finally, the 800-W bridgeless TPPFC with the proposed control is implemented with the switch frequency around 60 kHz-180kHz, an input voltage of 230 Vrms, and an output voltage of 400 V. The maximum experimental efficiency is 98.02%.
Keywords: Triangular Current Mode, ZVS, Totem-pole PFC, average current control, zero current detection circuit

摘要 i Abstract ii 誌謝 iii 目錄 v 圖索引 vii 表索引 ix 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文內容大綱 4 第二章 圖騰柱無橋式功率因數修正器分析 5 2.1 圖騰柱無橋式功率因數修正器電路架構與動作原理 5 2.2 臨界導通模式動作區間分析 7 2.2.1 第一區間(t0≦t<t1) 8 2.2.2 第二區間(t1≦t<t2) 9 2.2.3 第三區間(t2≦t<t3) 10 2.2.4 第四區間(t3≦t<t4) 12 2.2.5 第五區間(t4≦t<t5) 13 2.3 動作區間狀態軌跡圖(State-Space Trajectory)分析 15 2.4 三角形電流模式動作區間分析 18 2.3.1 第四區間(t3≦t<t4) 20 2.3.2 第五區間(t4≦t<t5) 21 2.5 三角形電流模式設計 22 2.6 三角形電流模式之平均電流控制法 24 2. 7數位系統延遲時間的影響及責任週期前饋控制 27 2.8 圖騰柱無橋式功率因數修正器控制上的問題 28 2.8.1 零交越電流突波問題 28 2.8.2 輸入電壓極性判斷問題 30 第三章 韌體規劃 32 3.1 程式流程規劃 32 3.1.1 系統初始化 32 3.1.2 CPU中斷副程式流程規劃 33 3.1.3 CLA中斷副程式流程規劃 35 3.2 程式執行時間 36 第四章 電路設計與實現 37 4.1 元件設計 37 4.1.1 電感設計 37 4.1.2 匝數及氣隙長度計算 39 4.1.3 輸出電容設計 39 4.1.4 功率開關選用 41 4.2 感測電路設計 41 4.2.1 輸入電壓回授電路設計 42 4.2.2 輸入電壓極性偵測電路 43 4.2.3 電感電流回授設計 43 4.2.4 輸出電壓回授電路設計 45 第五章 電路模擬及實測驗證 46 5.1 電路模擬 46 5.2 實測波形 47 5.3 實測數據 51 第六章 結論與未來展望 53 6.1 結論 53 6.2 未來展望 53 參考文獻 55

[1] F. C. Lee, Q. Li, Z. Liu, Y. Yang, C. Fei and M. Mu, “Application of GaN devices for 1 kW server power supply with integrated magnetics,” CPSS Transactions on Power Electronics and Applications, vol. 1, no. 1, pp. 3-12, Dec. 2016
[2] 80 PLUS Test Protocol, Generalized Test Protocol for Calculating the Energy Efficiency of Internal Ac-Dc and Dc-Dc Power Supplies [Online]. Available:https://plugloadsolutions.com/docs/collatrl/print/Generalized_Internal_Power_Supply_Efficiency_Test_Protocol_R6.7.pdf
[3] ENERGY STAR certified server [Online].Available:
https://www.energystar.gov/products/office_equipment/enterprise_servers/key_product_criteria
[4] Wikipedia IEC 61000-3-2 [Online].Available:
https://en.wikipedia.org/wiki/IEC_61000-3-2
[5] Electromagnetic Compatibility Part 3: Limits—Section 2: Limits for Harmonic Currents Emissions (equipment input current_16 A per phase), IEC 1000-3-2, 1995.
[6] H. S. Nair and N. Lakshminarasamma, "Challenges in achieving high performance in boost PFC converter," 2017 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Kollam, 2017, pp. 1-6.
[7] X. Lu, Y. Xie, L. Cheng, Z. Wang and C. Gui, "Semi-bridgeless boost PFC rectifier for wide voltage input range based on voltage feed-forward control," Proceedings of The 7th International Power Electronics and Motion Control Conference, Harbin, 2012, pp. 1894-1899.
[8] W. Hu, Y. Kang, X. Wang and X. Zhou, "Novel zero-voltage transition semi bridgeless boost PFC converter with soft switching auxiliary switch," 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 2707-2712.
[9] L. Sudheer, G. Kanimozhi and V. T. Sreedevi, "Integrator controlled semi-bridgelesss PFC boost converter," 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015], Nagercoil, 2015, pp. 1-6.
[10] L. Huber, Y. Jang and M. M. Jovanovic, “Performance Evaluation of Bridgeless PFC Boost Rectifiers,” IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381-1390, May 2008.
[11] L. Zhou, Y. Wu, J. Honea and Z. Wang, "High-efficiency True Bridgeless Totem Pole PFC based on GaN HEMT: Design Challenges and Cost-effective Solution," Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 2015, pp. 1-8.
[12] X. Gong, G. Wang and M. Bhardwaj, "6.6kW Three-Phase Interleaved Totem Pole PFC Design with 98.9% Peak Efficiency for HEV/EV Onboard Charger," 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019, pp. 2029-2034.
[13] K. Zhu, M. O'Grady, J. Dodge, J. Bendel and J. Hostetler, "1.5 kW single phase CCM totem-pole PFC using 650V SiC cascodes," 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Fayetteville, AR, 2016, pp. 90-94.
[14] Q. Huang, R. Yu, A. Q. Huang and W. Yu, "Adaptive zero-voltage-switching control and hybrid current control for high efficiency GaN-based MHz Totem-pole PFC rectifier," 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, 2017, pp. 1763-1770.
[15] F. Yang, X. Ruan, Y. Yang, and Z. Ye, “Interleaved critical current mode boost PFC converter with coupled inductor,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2404-2413, Sept. 2011.
[16] Z. Liu, X. Huang, M. Mu, Y. Yang, F. C. Lee, and Q. Li, “Design and evaluation of GaN-based dual-phase interleaved MHz critical mode PFC converter,” in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 611-616.
[17] C. Marxgut, J. Biela and J. W. Kolar, "Interleaved Triangular Current Mode (TCM) resonant transition, single phase PFC rectifier with high efficiency and high power density," The 2010 International Power Electronics Conference - ECCE ASIA -, Sapporo, 2010, pp. 1725-1732.
[18] Z. Liu, F. C. Lee, Q. Li, and Y. Yang, “Design of GaN MHz totem-pole PFC rectifier,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, Sept. 2016, pp. 799-807.
[19] D. M. Van de Sype, Koen De Gusseme, A. P. M. Van den Bossche and J. A. Melkebeek, "Duty-ratio feedforward for digitally controlled boost PFC converters," in IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 108-115, Feb. 2005.
[20] Z. Liu, Z. Huang, F. C. Lee, Q. Li and Y. Yang, "Operation analysis of digital control based MHz totem-pole PFC with GaN device," 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, VA, 2015, pp. 281-286.
[21] J. Kim, H. Youn and G. Moon, "A Digitally Controlled Critical Mode Boost Power Factor Corrector With Optimized Additional On Time and Reduced Circulating Losses," in IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3447-3456, June 2015.
[22] 陳明正,圖騰柱無橋式功率因數修正器之電流諧波與電磁干擾抑制策略,國立台灣科技大學電子工程系博士論文,2018 年。
[23] Texas Instruments, TMS320F2804x Piccolo™ Microcontrollers, Data Sheet, Dec. 2017.
[24] TDK, Ferrite Cores for Switching Power Supplies, 2014.
[25] GaN Systems, GS66516B, Data Sheet, 2019.

無法下載圖示 全文公開日期 2024/08/16 (校內網路)
全文公開日期 2024/08/16 (校外網路)
全文公開日期 2024/08/16 (國家圖書館:臺灣博碩士論文系統)
QR CODE