簡易檢索 / 詳目顯示

研究生: 林宏修
Hong-Siou Lin
論文名稱: 高壓發泡射出成型結合抽芯製程對聚苯乙烯發泡材料結構影響
Effect of High Pressure Foam Injection Molding with Core-back on the Structure of Polystyrene Foam
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 楊申語
Sen-Yeu Yang
楊銘乾
Ming-Chien Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 95
中文關鍵詞: 高壓發泡射出成型抽芯聚苯乙烯超臨界二氧化碳
外文關鍵詞: high pressure foam injection molding, core-back, polystyrene, supercritical carbon dioxide
相關次數: 點閱:318下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今環保意識高漲下,輕量化及綠能在高分子加工中備受重視,發泡射出成型(foam injection molding, FIM)相較於傳統射出成型,其具備省料、減少週期、輕量化等優點,因此在工業上被廣泛應用。然而,在發泡射出成型中,泡體的均勻度差是一大問題。為了解決這一缺失,目前常用的技術為模內氣體反壓 (gas counter pressure, GCP)或是抽芯(core-back),GCP 在製程上需要有額外的設備輸入氣體,且在模具設計上需有良好的絕氣性,這點和在傳統模具的設計上需有良好的逃氣性有很大的出入,反觀抽芯除了在較複雜形狀的模具較不適用,其製程相對較容易,只需在熔膠充填完成後將模仁向後退一小距離,即可透過瞬間且一致的壓力降,得到泡孔均勻的發泡材料。
    而在抽芯階段前,會結合高壓發泡射出成型(high pressure foam injection molding,HFIM)將通過澆口處成核的澆口泡溶回。因此本篇研究第一部分將會探討不同的保壓壓力、保壓時間等參數對於泡孔結構的影響,但在高壓發泡射出成型中,壓降太小導致成核率太低,泡孔密度太低不利於樣品分析。
    第二部分則會著重於抽芯製程對於泡體結構的改善以及發現不同的抽芯加工參數對於泡孔密度、泡孔尺寸以及表皮層各有不同的影響,並也成功利用抽芯改善了泡孔不均以及成核率低的缺陷,利用高壓發泡射出結合抽芯,能使泡孔密度從101 ~102 cells/cm3 上升到104 ~ 105 cells/cm3,並透過SEM 觀察到能有效改善泡孔均勻度的缺陷,雖然距離一般發泡材料產品應用還有許多進步空間,不過觀察到的趨勢現象是值得探討的。


    With the current high awareness of environmental protection, weight reduction is highly valued in polymer processing. Compared with traditional injection molding, foam injection molding (FIM) has the advantages of material saving and cycle time reduction. However, the homogeneity of FIM parts is usually a problem. In order to solve this problem, the commonly used technology is gas counter pressure (GCP) or core-back. The GCP process needs additional equipment and has good gas sealing in the mold design, which is quite different from the traditional mold design. On the other hand, the core-back process is relatively easy but it is not suitable for mold with complex geometry. After the mold filling is completed, the core is moved back a short distance, and the foam material with uniform cells can be obtained through the instantaneous and consistent pressure drop.
    Before the core-back stage, the high-pressure foam injection molding (HFIM) is combined to dissolve the gate-nucleated bubbles at the gate. Therefore, the first part of this study explored the influence of packing pressure, packing time, and other parameters on the cell structure.
    The second part focused on improving the foam structure by the core-back processing.
    Different core-back parameters have different effects on the cell density, cell size and surface skin layer thickness. For the defects of uneven foam structure and low nucleation rate, high-pressure foaming injection molding with core-back can increase the cell density from 101 ~ 102 cells/cm3 to 104 ~ 105 cells/cm3, and SEM observes through the defects that can effectively improve the uniformity of the cells. Although there is still a long way to go for foam material products, the observed trend phenomenon is worth exploring.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章、緒論 1 1.1前言 1 1.2研究動機 1 1.3研究目的 2 第二章 文獻回顧 3 2.1 高分子發泡材料 3 2.1.1 發泡劑 4 2.1.2 發泡機制 5 2.2 高分子發泡加工工藝 6 2.2.1 批次發泡 6 2.2.2 押出發泡 7 2.2.3 發泡射出成型 9 2.3 發泡射出成型技術回顧 10 2.3.1 MuCell®專利技術回顧 10 2.3.2其他發泡射出成型技術 14 2.4 發泡射出成型分類 22 2.4.1氣體反壓 (Gas-counter pressure, GCP) 24 2.4.2 抽芯(core-back) 26 第三章、實驗方法 31 3.1 實驗藥品 31 3.2 實驗儀器 32 3.3實驗步驟 33 3.3.1實驗流程圖 33 3.3.2 發泡射出成型 34 3.4 材料物性分析 37 3.4.1 高壓發泡射出成型樣品分析 37 3.4.2 掃描式電子顯微鏡 (SEM) 39 3.4.3 泡孔尺寸(cell size)計算 39 3.4.4 泡孔密度(cell density)計算 40 第四章 結果與討論 41 4.1 高壓發泡射出成型 41 4.1.1 保壓壓力對於高壓發泡射出成型之影響 42 4.1.2 保壓時間對於高壓發泡射出成型之影響 44 4.1.3 射出速度對於高壓發泡射出成型之影響 45 4.1.4 溶氣量對於高壓發泡射出成型之影響 47 4.1.5 加工溫度對於高壓發泡射出成型之影響 48 4.1.6 高壓發泡射出成型實驗總結 50 4.2 抽芯(core-back) 製程 51 4.2.1 抽芯速度對於抽芯製程的影響 52 4.2.2 抽芯延遲時間對於抽芯製程的影響 54 4.2.3 保壓時間對於抽芯製程的影響 56 4.2.4 抽芯距離對於抽芯製程的影響 58 4.2.5 抽芯製程實驗總結 60 4.2.6 抽芯製程泡體結構的改善 61 4.3 實驗總表 63 4.3.1 高壓發泡射出成型 63 4.3.2 抽芯製程 64 第五章、結論 65 參考文獻 66 附錄 70 附錄A 各家發泡射出成型技術主要專利 70 附錄B CT-120e全電式射出成型機詳細規格 74 附錄C 高壓發泡射出成型泡孔結構 76 附錄D 抽芯實驗相對密度以及膨脹倍率數據 80 附錄E 抽芯速度單位換算 82

    1. V. Shaayegan, G. Wang, and C. B. Park, 2016, Study of the bubble nucleation and
    growth mechanisms in high-pressure foam injection molding through in-situ
    visualization. European Polymer Journal, 76, p. 2-13, DOI: 10.1016/j.eurpolymj.2015.11.021.
    2. J. W. S. Lee, J. Wang, J. D. Yoon, and C. B. Park, 2008, Strategies to achieve a
    uniform cell structure with a high void fraction in advanced structural foam molding. Industrial and Engineering Chemistry Research, 47(23), p. 9457-9464, DOI:
    10.1021/ie0707016.
    3. M. Tromm, V. Shaayegan, C. Wang, H.-P. Heim, and C. B. Park, 2019, Investigation
    of the mold-filling phenomenon in high-pressure foam injection molding and its
    effects on the cellular structure in expanded foams. Polymer, 160, p. 43-52, DOI:
    https://doi.org/10.1016/j.polymer.2018.11.006.
    4. J. W. S. Lee, R. E. Lee, J. Wang, P. U. Jung, and C. B. Park, 2017, Study of the
    foaming mechanisms associated with gas counter pressure and mold opening using the
    pressure profiles. Chemical Engineering Science, 167, p. 105-119, DOI:
    10.1016/j.ces.2017.04.005.
    5. S. T. Lee and C. B. Park, 2014, in Foam extrusion: principles and practice. Second edition., Taylor & Francis Publishing, Boca Raton, Florida, United States.
    6. C. Okolieocha, D. Raps, K. Subramaniam, and V. Altstädt, 2015, Microcellular to
    nanocellular polymer foams: Progress (2004–2015) and future directions – A review.
    European Polymer Journal, 73, p. 500-519, DOI: 10.1016/j.eurpolymj.2015.11.001.
    7. P. C. Lee, J. Wang, and C. B. Park, 2006, Extruded open-cell foams using two
    semicrystalline polymers with different crystallization temperatures. Industrial and
    Engineering Chemistry Research, 45(1), p. 175-181, DOI: 10.1021/ie050498j.
    8. J. Pinto, A. Athanassiou, and D. Fragouli, 2016, Effect of the porous structure of polymer foams on the remediation of oil spills. Journal of Physics D: Applied Physics, 49, p.145601, DOI: 10.1088/0022-3727/49/14/145601.
    9. R. L. Heck, 1998, A review of commercially used chemical foaming agents for
    thermoplastic foams. Journal of Vinyl and Additive Technology, 4(2), p. 113-116,
    DOI: doi:10.1002/vnl.10027.
    10. A. Wong, L. H. Mark, M. M. Hasan, and C. B. Park, 2014, The synergy of
    supercritical CO2 and supercritical N2 in foaming of polystyrene for cell nucleation. Journal of Supercritical Fluids, 90, p. 35-43, DOI: 10.1016/j.supflu.2014.03.001.
    11. J. A. Darr and M. Poliakoff, 1999, New Directions in Inorganic and Metal-Organic
    Coordination Chemistry in Supercritical Fluids. Chemical Reviews, 99(2), p.495-542,
    DOI: 10.1021/cr970036i.
    12. J. Xu, 2010, in Microcellular injection molding. John Wiley & Sons, Inc. Publishing, Hoboken, New Jersey, United States.
    13. A. Wong, H. Guo, V. Kumar, C. B. Park, and N. P. Suh, 2016, Microcellular Plastics. Encyclopedia of Polymer Science and Technology, p. 1-57, DOI:
    10.1002/0471440264.pst468.pub2.
    14. A. Wong, R. K. M. Chu, S. N. Leung, C. B. Park, and J. H. Zong, 2011, A batch
    foaming visualization system with extensional stress-inducing ability. Chemical
    Engineering Science, 66(1), p. 55-63, DOI: 10.1016/j.ces.2010.09.038.
    15. X. M. Han, K. W. Koelling, D. L. Tomasko, and L. J. Lee, 2003, Effect of die
    temperature on the morphology of microcellular foams. Polymer Engineering and
    Science, 43(6), p. 1206-1220, DOI: 10.1002/pen.10102.
    16. J.E. Martini-Vvedensky, N. P. Suh, F. A. Waldman, Microcellular Closed Cell Foams and Their Method of Manufacture, US4473665
    17. G. Dong, G. Zhao, Y. Guan, G. Wang, and X. Wang, 2014, The cell forming process of microcellular injection-molded parts. Journal of Applied Polymer Science, 131(12), 40365, DOI: https://doi.org/10.1002/app.40365.
    18. H.-P. Heim, 2016, in Specialized Injection Molding Techniques, William Andrew
    Publishing, Norwich, NY, USA
    19. J. C. Cardona, K. J. Levesque, T. A. Burnham, A. F. Matthieu, R.Y. Kim, Blowing
    agent delivery system, US6926507B2
    20. T. A. Burnham, R.Y. Kim, Valve for injection molding, US6659757B2
    21. G. Anderson, J. Xu, Injection molding screw, US7172333B2
    22. S. Habibi-Naini, C. Schlummer, R. Schmid, and F. Virlogeux, 2006, Foamed liquid
    silicone opens new doors. Kunststoffe International, 96(4), p. 91-93.
    23. S. Habibi-Naini, 2004, No fear of foaming. Kunststoffe Plast Europe, 94(9), p.191-194.
    24. M. Buchmann, S. Busch, A. Jaeger, and R. Klenz, 2005, It's not the bubble size that counts. Kunststoffe Plast Europe, 95(10), p. 216-220.
    25. C. Doriat, 2008, Company of tradition back to life. Kunststoffe International, 98(8),p.32-34.
    26. U. Stieler, 2008, Foaming in the mold. Kunststoffe International, 98(9), p. 46-48.
    27. W. Michaeli, C. Hopmann, and D. Obeloer, 2011, Examinations on the influencing
    factors on the foamability using the Profoam® process in Society of Plastics
    Engineering Annual Technical Conference – SPE ANTEC, Boston, MA, USA,
    Conference Proceedings. Vol 2, p. 1551-1556.
    28. F. Pühringer, P. Lenzinger, F. Wilfing, Plasticizing screw for plasticizing plastic material, DE102016011944A1
    29. H. Gunther, U. Stieler, Method for producing mould parts by injection and plugged needle nozzle for an injection mold, US20060159798A1
    30. J. Gómez-Monterde, J. Hain, M. Sánchez-Soto, and M.L. Maspoch, 2019,
    Microcellular injection moulding: A comparison between MuCell process and the
    novel micro-foaming technology IQ Foam. Journal of Materials Processing
    Technology, 268, p. 162-170, DOI: https://doi.org/10.1016/j.jmatprotec.2019.01.015.
    31. PLASTINUM - micro cell foam injection solution from Linde Gas a.s., Available
    from: https://www.plasticportal.eu/en/plastinum-micro-cell-foam-injection-solutionfrom- linde-gas-as/c/6062/, Accessed date: 2021/06/09.
    32. 葉良輝、陳璟浩, 射出成型系統及射出成型方法, TW202102351A
    33. 陳璟浩, 流體混合機構, TWI700121B
    34. V. Shaayegan, G. Wang, and C. B. Park, 2016, Effect of foam processing parameters on bubble nucleation and growth dynamics in high-pressure foam injection molding. Chemical Engineering Science, 155, p. 27-37, DOI: 10.1016/j.ces.2016.07.040.
    35. V. Shaayegan, L. H. Mark, C. B. Park, and G. Wang, 2016, Identification of cellnucleation
    mechanism in foam injection molding with gas-counter pressure via mold
    visualization. AIChE Journal, 62(11), p. 4035-4046, DOI: 10.1002/aic.15433.
    36. V. Shaayegan, L. H. Mark, A. Tabatabaei, and C. B. Park, 2016, A new insight into foaming mechanisms in injection molding via a novel visualization mold. Express
    Polymer Letters, 10(6), p. 462-469, DOI: 10.3144/expresspolymlett.2016.44.
    37. V. Shaayegan, C. Wang, F. Costa, S. Han, and C.B. Park, 2017, Effect of the melt
    compressibility and the pressure drop rate on the cell-nucleation behavior in foam
    injection molding with mold opening. European Polymer Journal, 92, p. 314-325,
    DOI: 10.1016/j.eurpolymj.2017.05.003.
    38. S. C. Chen, P. S. Hsu, and S. S. Hwang, 2013, The effects of gas counter pressure and mold temperature variation on the surface quality and morphology of the microcellular polystyrene foams. 127(6), p.4769-4776, DOI: https://doi.org/10.1002/app.37994.
    39. A. K. Bledzki, H. Kirschling, G. Steinbichler, and P. Egger, 2004, Polycarbonate
    microfoams with a smooth surface and higher notched impact strength. Journal of
    Cellular Plastics, 40(6), p. 489-496, DOI: 10.1177/0021955X04048423.
    40. S. Li, G. Zhao, G. Wang, Y. Guan, and X. Wang, 2014, Influence of relative low gas counter pressure on melt foaming behavior and surface quality of molded parts in
    microcellular injection molding process. Journal of Cellular Plastics, 50(5), p. 415- 435, DOI: 10.1177/0021955X14525961.
    41. M. L. Wang, R. Y. Chang, and C. H. Hsu, 2018, in Molding simulation: theory and
    practice. First edition. ed, Hanser Publications: Cincinnati, OH, USA
    42. A. N. J. Spörrer and V. Altstädt, 2007, Controlling morphology of injection molded structural foams by mold design and processing parameters. Journal of Cellular Plastics, 43(4-5), p. 313-330, DOI: 10.1177/0021955X07079043.
    43. R. K. M. Chu, L. H. Mark, D. Jahani, and C. B. Park, 2016, Estimation of the foaming temperature of mold-opening foam injection molding process. Journal of Cellular Plastics, 52(6), p. 619-641, DOI: 10.1177/0021955X15592069.
    44. T. Ishikawa and M. Ohshima, 2011, Visual observation and numerical studies of
    polymer foaming behavior of polypropylene/carbon dioxide system in a core-back
    injection molding process. 51(8), p. 1617-1625, DOI:
    https://doi.org/10.1002/pen.21945.
    45. H. P. Heim and M. Tromm, 2015, General aspects of foam injection molding using
    local precision mold opening technology. Polymer, 56, p. 111-118, DOI:
    https://doi.org/10.1016/j.polymer.2014.10.070.
    46. A. K. Bledzki, J. Kuhn, H. Kirschling, and W. Pitscheneder, 2008, Microcellular
    injection molding of PP and PC/ABS with precision mold opening and gas
    counterpressure. Cellular Polymers, 27(2), p. 91-100.
    47. A. Ameli, M. Nofar, D. Jahani, G. Rizvi, and C.B. Park, 2015, Development of high void fraction polylactide composite foams using injection molding: crystallization and foaming behaviors. Chemical Engineering Journal, 262, p. 78-87, DOI: 10.1016/j.cej.2014.09.087.
    48. T. Ishikawa, K. Taki, and M. Ohshima, 2012, Visual observation and numerical studies of N2 vs. CO2 foaming behavior in core-back foam injection molding. Polymer
    Engineering & Science, 52(4), p. 875-883, DOI: https://doi.org/10.1002/pen.22154.
    49. R. Miyamoto, S. Yasuhara, H. Shikuma, and M. Ohshima, 2014, Preparation of
    micro/nanocellular polypropylene foam with crystal nucleating agents. 54(9), p. 2075- 2085, DOI: https://doi.org/10.1002/pen.23758.
    50. J. Reglero Ruiz, J. F. Agassant, and M. Vincent, 2015, Morphological analysis of
    microcellular PP produced in a core-back injection process using chemical blowing
    agents and gas counter pressure. Polymer Engineering and Science, 55(11), p. 2465 –
    2473, DOI: 10.1002/pen.24136.
    51. P. Xie, G. Wu, Z. Cao, Z. Han, Y. Zhang, Y. An, and W. Yang, 2018, Effect of mold opening process on microporous structure and properties of microcellular polylactidepolylactide nanocomposites. Polymers, 10(5), p. 554, DOI: 10.3390/polym10050554.
    52. M. J. Wingert, S. Shukla, K. W. Koelling, D. L. Tomasko, and L. J. Lee, 2009, Shear viscosity of CO2 - plasticized polystyrene under high static pressures. Industrial & Engineering Chemistry Research, 48(11), p. 5460-5471, DOI: 10.1021/ie800896r.
    53. V. Kumar and N. P. Suh, 1990, A process for making microcellular thermoplastic
    parts. Polymer Engineering and Science, 30(20), p. 1323-1329, DOI:
    10.1002/pen.760302010.
    54. J. S. Colton and N. P. Suh, 1987, Nucleation of microcellular foam: Theory and
    practice. Polymer Engineering and Science, 27(7), p. 500-503, DOI:
    10.1002/pen.760270704.
    55. S. N. Leung, A. Wong, L. C. Wang, and C. B. Park, 2012, Mechanism of extensional
    stress-induced cell formation in polymeric foaming processes with the presence of
    nucleating agents. Journal of Supercritical Fluids, 63, p. 187-198, DOI:
    10.1016/j.supflu.2011.12.018.
    56. A. Wong and C. B. Park, 2012, A visualization system for observing plastic foaming processes under shear stress. Polymer Testing, 31(3), p. 417-424, DOI:
    10.1016/j.polymertesting.2011.12.012.
    57. G. Wang, G. Zhao, G. Dong, L. Song, and C. B. Park, 2018, Lightweight, thermally
    insulating, and low dielectric microcellular high-impact polystyrene (HIPS) foams
    fabricated by high-pressure foam injection molding with mold opening. Journal of
    Materials Chemistry C, 6(45), p. 12294-12305, DOI: 10.1039/C8TC04248A.
    58. B. Notario, J. Pinto, E. Solorzano, J.A. de Saja, M. Dumon, and M.A. Rodríguez-
    Pérez, 2015, Experimental validation of the Knudsen effect in nanocellular polymeric
    foams. Polymer, 56, p. 57-67, DOI: 10.1016/j.polymer.2014.10.006.

    QR CODE