簡易檢索 / 詳目顯示

研究生: 韋宏達
Hung-Ta Wei
論文名稱: 應用最大功率追蹤電流於太陽能電廠之故障檢測研究
Research on Fault Detection of Solar Power Plant by Using MPPT Current
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 張宏展
Hong-Chan Chang
陳柏宏
Po-Hung Chen
李俊耀
Chun-Yao Lee
張建國
Chien-Kuo Chang
郭政謙
Cheng-Chien Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 90
中文關鍵詞: 太陽能維護與運轉太陽能故障診斷太陽能系統效能指標
外文關鍵詞: Solar energy maintenance and operation, Solar energy fault diagnosis, Solar energy system efficiency index
相關次數: 點閱:237下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著能源結構的改變,以及環保意識的抬升,各國逐漸轉而發展
    不同類型再生能源,以取代傳統發電方式如:太陽能發電系統、風力
    發電等。其中,因太陽光電製造成本的逐漸降低,以及各國綠色能源
    政策的財政補貼等因素,使得運行時無污染、無噪音,模組化且易於
    安裝的太陽能發電系統日益普及,且規模日趨龐大。因此,良好的維
    運及故障檢測成為太陽能案場高效營運的關鍵,使其能夠確保應有的
    發電效益之外,也能避免因故障而導致的設備及生命財產損失。

    目前市面上雖已有太陽能模組優化器,可作模組級的發電監測與
    故障定位,但其建置成本相當高昂,使其未必能有效推廣應用。有鑑
    於此,本研究使用現今逆變器已普遍內建之最大功率追蹤電流監測,
    以此應用於太陽能系統之串級故障檢測,並以一個最大功率追蹤器所
    連接的太陽能陣列為範圍,檢測包含:(1)開路故障、(2)短路故障、
    (3)輕微遮陰等故障類型,而不需另外加購模組優化器或串電流感測
    器等,以期達成建置成本與有效檢測故障之經濟平衡點。


    With the change of energy structure and the rising awareness of
    environmental protection, countries have gradually turned to develop
    different types of renewable energy to replace traditional power
    generation methods such as solar power generation systems and wind
    power generation. Among them, due to the gradual reduction of solar
    photovoltaic manufacturing costs and the financial subsidies of green
    energy policies in various countries, solar power generation systems that
    are pollution-free, noise-free, modular and easy to install during operation
    are becoming more popular and growing in scale. Therefore, good
    maintenance and fault detection become the key to the efficient operation
    of the solar field, so that it can not only ensure the expected power
    generation benefits, but also avoid the loss of equipment and life and
    property caused by the failure.

    Although there are solar module optimizers on the market that can
    be used for module-level power generation monitoring and fault location,
    their construction costs are quite high, which may not be effective for
    popularization and application. In view of this, this study uses the current
    monitoring of the maximum power tracking current that is commonly
    built in inverters to apply it to the cascade fault detection of solar systems,
    and uses the solar array connected to a maximum power tracker as the
    scope to detection includes: (1) open-circuit fault, (2) short-circuit fault,
    (3) slight shade fault type, without the need to purchase additional
    module optimizers or string current sensors, etc., in order to achieve the
    construction cost and effective detection the economic balance point of
    the failure.

    摘要.....................................................Ⅰ Abstract.................................................Ⅱ 誌謝.....................................................Ⅲ 目錄.....................................................Ⅳ 圖目錄...................................................Ⅶ 表目錄...................................................Ⅺ 第一章 緒論............................................... 1 1.1 研究背景及動機....................................1 1.2 研究方法..........................................3 1.3 章節概述..........................................5 第二章 太陽能監測系統簡介................................. 6 2.1 前言..............................................6 2.2 太陽能監測系統及國際標準..........................6 2.2.1 資料收集器..................................6 2.2.2 日照計......................................8 2.2.3 模組溫度計..................................9 2.2.4 逆變器.....................................10 2.2.5 串列測量...................................10 2.3 太陽能監測系統頁面介紹...........................11 2.3.1 登入頁面...................................11 2.3.2 案場總覽頁面...............................12 2.3.3 逆變器頁面.................................12 2.3.4 串電流頁面.................................14 2.3.5 環境感測器頁面.............................14 2.3.6 警報頁面...................................16 2.3.7 月報頁面...................................16 2.3.8 派工頁面...................................17 2.4 讀取監測數值.....................................18 第三章 太陽能故障診斷系統簡介............................ 19 3.1 前言.............................................19 3.2 太陽能故障類型...................................19 3.3 太陽能故障診斷方法回顧...........................21 3.3.1 人工檢測...................................21 3.3.2 影像辨識...................................22 3.3.3 數據分析...................................23 3.4 太陽能故障診斷方法設計...........................26 3.4.1 太陽能特性曲線.............................26 3.4.2 太陽能陣列標么值定義.......................33 3.4.3 太陽能陣列故障類型判別及串級故障定位.......37 3.4.4 太陽能陣列故障程度判別.....................49 3.5 本研究故障診斷流程圖.............................56 第四章 太陽能故障診斷系統驗證............................ 57 4.1 前言.............................................57 4.2 案場相關資訊規格.................................57 4.3 案場實際數據驗證.................................59 4.3.1 陣列正常...................................59 4.3.2 陣列遮陰...................................63 4.3.3 陣列短路...................................66 第五章 結論與未來展望.................................... 72 5.1 結論.............................................72 5.2 未來展望.........................................72 參考文獻.................................................73

    [1] GlobalData , “ Global solar photovoltaic capacity expected to exceed
    1,500GW by 2030 “ , Oct.17.2019 , https://www.globaldata.com/global-solar-photovoltaic-capacity-expe
    cted-to-exceed-1500gw-by-2030-says-globaldata/
    [2] National Renewable Energy Laboratory, Sandia National Laboratory, SunSpec Alliance, and the SunShot National Laboratory Multiyear
    Partnership (SunLaMP) PV O&M Best Practices Working Group2018
    Best Practices for Operation and Maintenance of Photovoltaic and
    Energy Storage Systems; 3
    rd Edition. Golden, CO :
    aNational Renewable Energy Laboratory. NREL/TP-7A40-73822. https://www.nrel.gov/docs/fy19osti/73822.pdf
    [3] Solar Power Europe, Inc. Operation & Maintenance Best Practice
    Guidelines / Version 4.0 Retrieved March 8, 2020, from
    https://www.solarpowereurope.org/om-best-practice-guidelines- version-4-0/
    [4] IEC61724-1ed1.0, Photovoltaic System Performance - Part1 : Monitoring, March 2017. [5] Ihsan Ullah Khalil,Azhar Ul-Haq,Yousef Mahmoud,(Senior Member, IEEE),Marium Jalal,Muhammad Aamir,Mati Ullah Ahsan,,Khalid
    Mehmood.“Comparative Analysis of Photovoltaic Faults and
    Performance Evaluation of Its Detection Techniques.”IEEE Access
    VOLUME 8 (2020):26676-26700.
    [6] Dhanup S. Pillai, N. Rajasekar.”A comprehensive review on protection
    challenges and fault diagnosis in PV systems.”, Renewable and
    Sustainable Energy Reviews 91, 2018 , 18-40
    [7] A. Mellit, G.M. Tina, S.A. Kalogirou,”Fault detection and diagnosis
    methods for photovoltaic systems: A review.”, Renewable and
    Sustainable Energy Reviews 91, 2018, 1-17.
    [8] Andreas Livera, Marios Theristis, George Makrides, George E. Georghiou, “Recent advances in failure diagnosis techniques based on
    performance data analysis for grid-connected photovoltaic systems.”, Renewable Energy 133, 2019, 126-143.
    [9] S. Kaplanis, E. Kaplani, “Energy performance and degradation over
    20 years performance of BP c-Si PV modules", Simulat. Model. Pract. Theor. 19 (4), 2011, 1201-1211.
    [10] W. Rezgui, H. Mouss, N. Mouss, D. Mouss, M. Benbouzid, Y. Amirat, “Photovoltaic module simultaneous open-and short-circuit
    faults modeling and detection using the I-V characteristic.”, IEEE
    Int. Symp. Ind. Electron, 2015 , 855-860.
    [11] A. Chouder, S. Silvestre, “Automatic supervision and fault detection
    of PV systems based on power losses analysis.”, Energy Convers. Manag. 51 (10), 2010, 1929-1937.
    [12] Jianbo Bai, Sheng Liu, Yuzhe Hao, Zhen Zhang, Meng Jiang, Yu
    Zhang,”Development of a new compound method to extract the five
    parameters of PV modules.”, Energy Conversion and Management
    79 , 2014, 294-303.
    [13] S. Silvestre, A. Chouder, E. Karatepe, “Automatic fault detection in
    grid connected PV systems.”, Sol. Energy 94 , Aug 2013, 119-127.
    [14] R. Platon, J. Martel, N. Woodruff, T.Y. Chau, “Online fault detection
    in PV systems.”, IEEE Trans. Sustain. Energy 6(4) , 2015, 200-1207
    [15] T. Takashima, J. Yamaguchi, M. Ishida, “Fault detection by signal
    response in PV module strings.”, 33rd IEEE Photovoltaic Specialists
    Conference, PVSC 2008, 2008
    [16] L. Schirone, F.P. Califano, M. Pastena, “Fault detection in a
    photovoltaic plant by time domain reflectometry.”, Prog. Photovoltaics Res. Appl. 2 (1) , Jan 1994, 35-44. [
    17] N. Gokmen, E. Karatepe, S. Silvestre, B. Celik, P. Ortega, “An
    efficient fault diagnosis method for PV systems based on operating
    voltage-window.”, Energy Convers. Manag. 73, Sep 2013, 350-360.
    [18] A. Triki-Lahiani, A. Bennani-Ben Abdelghani, I. Slama-Belkhodja, “Fault detection and monitoring systems for photovoltaic
    installations: a review.”,Renew. Sustain. Energy Rev. 82, 2018, 2680-2692.
    [19] S.R. Madeti, S.N. Singh, “A comprehensive study on different types
    of faults and detection techniques for solar photovoltaic system.”, Sol. Energy 158, 2017, 161-185.
    [20] Y. Zhao, R. Ball, J. Mosesian, J.-F. de Palma, B. Lehman, “Graph-based semisupervised learning for fault detection and
    classification in solar photovoltaic arrays.”, IEEE Trans. Power
    Electron. 30 (5) , 2015, 2848-2858.
    [21] Imad Eddine Kaid , Ahmed Hafaifa , Mouloud Guemana , Nadji
    Hadroug, Abdellah Kouzou , Lakhdar Mazouz,”Photovoltaic system
    failure diagnosis based on adaptive neuro fuzzy inference approach:
    South Algeria solar power plant.”, Journal of Cleaner Production
    204, 2018, 169-182.
    [22] C. Ventura, G.M. Tina, “Development of models for on-line
    diagnostic and energy assessment analysis of PV power plants: the
    study case of 1 MW Sicilian PV plant.”, Energy Proc. 83, 2015, 248-257.
    [23] Ooi Wen Yin, B. Chitti Babu, “Simple and easy approach for
    mathematical analysis of photovoltaic (PV) module under normal
    and partial shading.”, Optik , Volume 169, Sep 2018, Pages 48-61.
    [24] Maximum Power Point Tracking (MPPT) Charge Controller
    Working Principle, Electrical Academia, https://electricalacademia.com/renewable-energy/maximum-power- point-tracking-mppt-charge-controller-working-principle/
    [25] Maximum power point tracking MPPT, Programmer Sought, https://www.programmersought.com/article/49946551468/
    [26] R. Ahmad, Ali F. Murtaza, Hadeed Ahmed Sher, Umar Tabrez Shami, Saheed Olalekan,”An analytical approach to study partial shading
    effects on PV array supported by literature.”, Renewable and
    Sustainable Energy Reviews 74, 2017, 721-732.
    [27] Amina Azizi, Pierre-Olivier Logerais, Amar Omeiri, Adel Amiar, Abdérafi Charkid, Olivier Riou, Fabien Delaleux, Jean-Félix
    Durastanti, “Impact of the aging of a photovoltaic module on the
    performance of a gridconnected system.”, Solar Energy, Volume 174, 1 Nov 2018, 445-454. [28] G. Cipriani, V. Di Dio, A. Marcotulli, R. Miceli,”Manufacturing
    Tolerances Effects on PV Array Energy Production.”, 3rd
    International Conference on Renewable Energy Research and
    Applications, Milwakuee, USA, 19-22 Oct 2014.
    [29] S. Jamuna Devi, B. Umamaheswari, R. Parthiban, “Novel Parametric
    Tolerance based Fault Identification Technique for PV System.”, 2016 IEEE 25th ISIE, 8-10 June 2016.
    [30] Ahmed Al Mansur, Md. Ruhul Amin, Kazi Khairul Islam, “Performance Comparison of Mismatch Power Loss Minimization
    Techniques in Series-Parallel PV Array Configurations.”, Energies
    2019, 12, 874, 1-21.
    [31] Pierluigi Guerriero, Lorenzo Codecasa, Vincenzo d'Alessandro, Santolo Daliento, “Dynamic electro-thermal modeling of solar cells
    and modules.”, Solar Energy, Volume 179, 2019, 326-334

    無法下載圖示 全文公開日期 2024/08/04 (校內網路)
    全文公開日期 2026/08/04 (校外網路)
    全文公開日期 2024/08/04 (國家圖書館:臺灣博碩士論文系統)
    QR CODE