簡易檢索 / 詳目顯示

研究生: Aswandi Wibrianto
Aswandi Wibrianto
論文名稱: 活性氧響應性高性能異原子摻雜碳量子點之癌症協同治療
Reactive Oxygen Species Triggered Multimodal Synergistic Therapies of Heteroatom-doped Carbon Quantum Dots with Ultra Bright Photoluminescence toward Cancer Cells
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 曾文祺
Wen-Chi Tseng
黃志清
Chih-Ching Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 137
中文關鍵詞: 碳量子點化學動力學療法氣體療法葡萄糖飢餓療法化學療法
外文關鍵詞: Carbon quantum dots, Chemodynamic therapy, Gas Therapy, Glucose Starvation Therapy, Chemotherapy
相關次數: 點閱:236下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳量子點 (CQDs) 是一種新穎的碳奈米材料,由於其良好的生物相容性、簡易合成方法、細胞內優異的化學穩定性、尺寸小和高光致發光效應等優點,因此在近二十年來受到極大的關注。現今釋放過程常出現無標靶性行為,因此設計出含有標靶性抗癌藥物的CQDs為一大挑戰。本研究以銅、氮和硫摻雜的碳量子點與葡萄糖氧化酶 (GOx) 和喜樹鹼和硫縮酮連接複合物 (TLCPT) 接合形成多功能奈米催化劑 (CuCGC),此催化劑具有強藍光致發光效應及最高量子產率90.1% 並增強催化(類過氧化物酶)活性。此外,CuCGC 奈米催化劑在產生活性氧 (ROS)方面表現出良好的性能,特別是羥基自由基 (•OH),最大反應速率達 51.058 μM/s。除了化學動力療法 (CDT) 性能外,CuCGC 奈米催化劑在腫瘤微環境中還具有氣體療法 (GT)、飢餓療法 (ST) 和活性氧 (ROS) 響應性化學療法,且於體外實驗中可證明在微腫瘤環境中有效提高CDT效果。此外, CuCGC 奈米催化劑具有作為化學和化學動力學試劑、氣體療法和飢餓誘導劑的協同癌症治療潛力。期望 CuCGC 奈米催化劑可應用在未來臨床治療。


    Carbon quantum dots (CQDs), a novel class of carbon-based nanomaterials, have received tremendous attention over the last two decades due to their superior biocompatibility, ease of fabrication, long-term chemical stability in the living cell, small size, and high photoluminescence effect. However, designing on-demand specific anticancer drugs facilitated with CQDs remains a massive challenge due to some off-target behavior during the delivery time. Here, we report copper, nitrogen, and sulfur-doped carbon quantum dots incorporated with glucose oxidase (GOx) and the thioketal linker camptothecin (TLCPT) to form a multifunctional nanocatalyst (CuCGC) that displays strong blue photoluminescence effect with the highest quantum yield reach 90.1% and enhanced catalytic (peroxidase-like) activity. Additionally, the CuCGC shows better performance in generating reactive oxygen species (ROS), specifically hydroxyl radicals (•OH), with a maximum reaction rate of 51.058 μM/s. Besides the CDT performance, CuCGC nanocatalyst also possesses gas therapy (GT), starvation therapy (ST), and reactive oxygen species (ROS) responsive chemotherapeutics in the tumor microenvironment that elevate the chemodynamic therapy (CDT) effect via systematic in vitro studies at the intracellular level. Through extensive in vitro investigations at the intracellular level, this study indicates the potential of CuCGC nanocatalyst to act as chemo- and chemodynamic agents, gas therapy, and starvation-inducing agents for collaborative cancer therapy. We anticipate that CuCGC nanocatalyst might provide a potential therapeutic candidate in future clinical applications.

    摘要 ii Abstract iii Acknowledgments iv Contents v List of Figures ix List of Equations xv List of Abbreviations xvi Chapter 1 Introduction 1 1.1 General Introduction 2 1.2 Objective of study 6 1.3 Structure of thesis 6 Chapter 2 Literature Review 7 2.1 Nanoparticles 8 2.2 Carbon quantum dots 8 2.3 Synthesis of CQDs 9 2.3.1 Laser ablation 11 2.3.2 Electrochemical oxidation 12 2.3.3 Ultrasonic wave approach 12 2.3.4 Hydrothermal approach 13 2.3.5 Solvothermal approach 15 2.3.6 Pyrolysis approach 15 2.3.7 Microwave-assisted approach 17 2.4 CQDs for therapeutic applications 18 2.4.1 Optical imaging 19 2.4.2 Chemodynamic Therapy 21 2.4.3 Gas Therapy 24 2.4.4 Starvation Therapy 26 2.4.5 Drug Delivery System 29 Chapter 3 Experimental Section 32 3.1 Chemicals 33 3.2 Characterizations 34 3.3 Experimental Section 34 3.3.1 Cu,N,S-CQDs synthesis 35 3.3.2 Cu,N,S-CQDs@GOx (CuCG) conjugation 35 3.3.3 ROS-cleavable and responsive TLCPT preparation 35 3.3.4 Modulation of Cu,N.S-CQDs@GOx/TLCPT (CuCGC). 36 3.3.5 Chemodynamic therapy evaluation 36 3.3.6 Hydroxyl radical rate assessment 37 3.3.7 Gas therapy generation of CuCGC 38 3.3.8 GSH depletion preparation 38 3.3.9 Glucose starvation therapy performance 39 3.3.10 Drug release evaluation 39 3.3.11 Biocompatibility against cancer cell lines 40 3.3.12 Bioimaging and cellular uptake pathways 40 3.3.13 Intracellular ROS and H2S gas detection 41 3.3.14 Synergetic therapeutic efficacy of CuCGC 42 3.3.15. Qualitative evaluation for CuCGC performance in vitro 43 3.3.16. Apoptosis assay of CuCGC nanocatalysts 43 3.3.17 Other characterizations 43 Chapter 4 Result and Discussion 45 4.1 Cu,N,S-CQDs characterizations 46 4.2. Conjugated CuCGC drug release study 51 4.3. Peroxidase-like, GSH depletion, and H2S gas generation analysis 55 4.4. Cascade enzymatic-like glucose starvation and stimuli-responsive cumulative release study 59 4.5. Biocompatibility, intracellular ROS, and H2S detection Properties 64 4.6. In vitro synergetic performance of CuCGC nanocatalyst as a therapeutic agent 68 Chapter 5 Conclusions 74 5.1 General Conclusion 75 5.2 Future Outlook 75 Appendix 77 References 93 Biography 118

    [1] D. Zhang, D. Chao, C. Yu, Q. Zhu, S. Zhou, L. Tian, L. Zhou, One-Step Green Solvothermal Synthesis of Full-Color Carbon Quantum Dots Based on a Doping Strategy, The Journal of Physical Chemistry Letters 12(37) (2021) 8939-8946.
    [2] X. Wen, G. Wen, W. Li, Z. Zhao, X. Duan, W. Yan, J.F. Trant, Y. Li, Carbon dots for specific “off-on” sensing of Co2+ and EDTA for in vivo bioimaging, Materials Science and Engineering: C 123 (2021) 112022.
    [3] A. Wibrianto, S.Q. Khairunisa, S.C. Sakti, Y.L. Ni'mah, B. Purwanto, M.Z. Fahmi, Comparison of the effects of synthesis methods of B, N, S, and P-doped carbon dots with high photoluminescence properties on HeLa tumor cells, RSC Adv. 11(2) (2021) 1098-1108.
    [4] J. Liu, T. Kong, H.-M. Xiong, Mulberry-Leaves-Derived Red-Emissive Carbon Dots for Feeding Silkworms to Produce Brightly Fluorescent Silk, Adv. Mater. 34(16) (2022) 2200152.
    [5] Z. Sun, F. Yan, J. Xu, H. Zhang, L. Chen, Solvent-controlled synthesis strategy of multicolor emission carbon dots and its applications in sensing and light-emitting devices, Nano Research 15(1) (2022) 414-422.
    [6] Y. Dong, R. Yu, B. Zhao, Y. Gong, H. Jia, Z. Ma, H. Gao, Z.a. Tan, Revival of Insulating Polyethylenimine by Creatively Carbonizing with Perylene into Highly Crystallized Carbon Dots as the Cathode Interlayer for High-Performance Organic Solar Cells, ACS Applied Materials & Interfaces 14(1) (2022) 1280–1289.
    [7] G.-Y. Zou, L. Guo, S. Chen, N.-Z. Liu, Y.-L. Yu, Multifunctional ratiometric fluorescent sensing platform constructed by grafting various response groups on carbon dots with bromine active site for biosensing and bioimaging, Sensors Actuators B: Chem. (2022) 131376.
    [8] Y. Zhou, N. Kandel, M. Bartoli, L.F. Serafim, A.E. ElMetwally, S.M. Falkenberg, X.E. Paredes, C.J. Nelson, N. Smith, E. Padovano, W. Zhang, K.J. Mintz, B.C.L.B. Ferreira, E.K. Cilingir, J. Chen, S.K. Shah, R. Prabhakar, A. Tagliaferro, C. Wang, R.M. Leblanc, Structure-activity relationship of carbon nitride dots in inhibiting Tau aggregation, Carbon 193 (2022) 1-16.
    [9] C. Wang, J. Xie, X. Dong, L. Mei, M. Zhao, Z. Leng, H. Hu, L. Li, Z. Gu, Y. Zhao, Clinically approved carbon nanoparticles with oral administration for intestinal radioprotection via protecting the small intestinal crypt stem cells and maintaining the balance of intestinal flora, Small 16(16) (2020) 1906915.
    [10] F. Liu, Y. Zhang, C. Ding, S. Kobayashi, T. Izuishi, N. Nakazawa, T. Toyoda, T. Ohta, S. Hayase, T. Minemoto, Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield, ACS nano 11(10) (2017) 10373-10383.
    [11] Z. Wang, L. Zhang, K. Zhang, Y. Lu, J. Chen, S. Wang, B. Hu, X. Wang, Application of carbon dots and their composite materials for the detection and removal of radioactive ions: A review, Chemosphere 287 (2022) 132313.
    [12] T. Feng, X. Ai, G. An, P. Yang, Y. Zhao, Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency, ACS Nano 10(4) (2016) 4410-4420.
    [13] Z. Yi, X. Li, H. Zhang, X. Ji, W. Sun, Y. Yu, Y. Liu, J. Huang, Z. Sarshar, M. Sain, High quantum yield photoluminescent N-doped carbon dots for switch sensing and imaging, Talanta 222 (2021) 121663.
    [14] W. Zhang, L. Shi, Y. Liu, X. Meng, H. Xu, Y. Xu, B. Liu, X. Fang, H.-B. Li, T. Ding, Supramolecular interactions via hydrogen bonding contributing to citric-acid derived carbon dots with high quantum yield and sensitive photoluminescence, RSC Adv. 7(33) (2017) 20345-20353.
    [15] D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R.E. Haddad, H. Fan, Z. Sun, Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots, Scientific Reports 4(1) (2014) 5294.
    [16] Y. Wu, D. Qin, Z. Luo, S. Meng, G. Mo, X. Jiang, B. Deng, High quantum yield boron and nitrogen codoped carbon quantum dots with red/purple emissions for ratiometric fluorescent IO4– sensing and cell imaging, ACS Sustainable Chemistry & Engineering 10(16) (2022) 5195-5202.
    [17] M. Zhang, C. Jia, J. Zhuang, Y.-Y. Hou, X.-W. He, W.-Y. Li, G. Bai, Y.-K. Zhang, GSH-Responsive Drug Delivery System for Active Therapy and Reducing the Side Effects of Bleomycin, ACS Applied Materials & Interfaces 14(1) (2022) 417-427.
    [18] R. Barman, R. Bej, P. Dey, S. Ghosh, Cisplatin-Conjugated Polyurethane Capsule for Dual Drug Delivery to a Cancer Cell, ACS Applied Materials & Interfaces 15(21) (2023) 25193-25200.
    [19] M. Zhang, C.T. Hagan, H. Foley, X. Tian, F. Yang, K.M. Au, Y. Mi, Y. Medik, K. Roche, K. Wagner, Z. Rodgers, Y. Min, A.Z. Wang, Co-delivery of etoposide and cisplatin in dual-drug loaded nanoparticles synergistically improves chemoradiotherapy in non-small cell lung cancer models, Acta Biomater. 124 (2021) 327-335.
    [20] S. Wang, G. Yu, Z. Wang, O. Jacobson, L.S. Lin, W. Yang, H. Deng, Z. He, Y. Liu, Z.Y. Chen, Enhanced antitumor efficacy by a cascade of reactive oxygen species generation and drug release, Angew. Chem. 131(41) (2019) 14900-14905.
    [21] B. Niu, K. Liao, Y. Zhou, T. Wen, G. Quan, X. Pan, C. Wu, Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy, Biomaterials 277 (2021) 121110.
    [22] J. Zhang, X. Gao, D. Ma, S. He, B. Du, W. Yang, K. Xie, L. Xie, Y. Deng, Copper ferrite heterojunction coatings empower polyetheretherketone implant with multi-modal bactericidal functions and boosted osteogenicity through synergistic photo/Fenton-therapy, Chemical Engineering Journal 422 (2021) 130094.
    [23] X. Zhong, X. Wang, L. Cheng, Y.a. Tang, G. Zhan, F. Gong, R. Zhang, J. Hu, Z. Liu, X. Yang, GSH‐depleted PtCu3 nanocages for chemodynamic‐enhanced sonodynamic cancer therapy, Advanced Functional Materials 30(4) (2020) 1907954.
    [24] J.-E. Cun, X. Fan, Q. Pan, W. Gao, K. Luo, B. He, Y. Pu, Copper-based metal–organic frameworks for biomedical applications, Advances in Colloid and Interface Science 305 (2022) 102686.
    [25] Y. Ma, Z. Su, L. Zhou, L. He, Z. Hou, J. Zou, Y. Cai, D. Chang, J. Xie, C. Zhu, W. Fan, X. Chen, S. Ju, Biodegradable metal–organic-framework-gated organosilica for tumor-microenvironment-unlocked glutathione-depletion-enhanced synergistic therapy, Adv. Mater. 34(12) (2022) 2107560.
    [26] Z. Zhong, C. Liu, Y. Xu, W. Si, W. Wang, L. Zhong, Y. Zhao, X. Dong, γ-Fe2O3 loading mitoxantrone and glucose oxidase for pH-responsive chemo/chemodynamic/photothermal synergistic cancer therapy, Advanced Healthcare Materials 11(11) (2022) 2102632.
    [27] R.K. Kankala, Y.H. Han, J. Na, C.H. Lee, Z. Sun, S.B. Wang, T. Kimura, Y.S. Ok, Y. Yamauchi, A.Z. Chen, Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles, Adv. Mater. 32(23) (2020) 1907035.
    [28] M.M. Modena, B. Rühle, T.P. Burg, S. Wuttke, Nanoparticle characterization: what to measure?, Adv. Mater. 31(32) (2019) 1901556.
    [29] S. Yang, I.-C. Sun, H.S. Hwang, M.K. Shim, H.Y. Yoon, K. Kim, Rediscovery of nanoparticle-based therapeutics: boosting immunogenic cell death for potential application in cancer immunotherapy, J. Mater. Chem. B 9(19) (2021) 3983-4001.
    [30] J. Wang, Y. Jia, Q. Wang, Z. Liang, G. Han, Z. Wang, J. Lee, M. Zhao, F. Li, R. Bai, D. Ling, An Ultrahigh-Field-Tailored T1–T2 Dual-Mode MRI Contrast Agent for High-Performance Vascular Imaging, Adv. Mater. 33(2) (2021) 2004917.
    [31] B. Sarkar, S. Bhattacharjee, A. Daware, P. Tribedi, K.K. Krishnani, P.S. Minhas, Selenium Nanoparticles for Stress-Resilient Fish and Livestock, Nanoscale Research Letters 10(1) (2015) 371.
    [32] S. Sawan, R. Maalouf, A. Errachid, N. Jaffrezic-Renault, Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals: A review, TrAC, Trends Anal. Chem. 131 (2020) 116014.
    [33] A.S. Rasal, S. Yadav, A.A. Kashale, A. Altaee, J.-Y. Chang, Stability of quantum dot-sensitized solar cells: A review and prospects, Nano Energy 94 (2022) 106854.
    [34] P. Wu, C. Zhou, Y. Li, M. Zhang, P. Tao, Q. Liu, W. Cui, Flower-like FeOOH hybridized with carbon quantum dots for efficient photo-Fenton degradation of organic pollutants, Appl. Surf. Sci. 540 (2021) 148362.
    [35] S.J. Park, J.Y. Park, J.W. Chung, H.K. Yang, B.K. Moon, S.S. Yi, Color tunable carbon quantum dots from wasted paper by different solvents for anti-counterfeiting and fluorescent flexible film, Chemical Engineering Journal 383 (2020) 123200.
    [36] N. Murugan, M. Prakash, M. Jayakumar, A. Sundaramurthy, A.K. Sundramoorthy, Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+, Appl. Surf. Sci. 476 (2019) 468-480.
    [37] M.J. Molaei, Carbon quantum dots and their biomedical and therapeutic applications: A review, RSC Adv. 9(12) (2019) 6460-6481.
    [38] J. Du, N. Xu, J. Fan, W. Sun, X. Peng, Carbon Dots for In Vivo Bioimaging and Theranostics, Small 15(32) (2019) 1805087.
    [39] Q. Feng, Z. Xie, M. Zheng, Room temperature phosphorescent carbon dots for latent fingerprints detection and in vivo phosphorescence bioimaging, Sensors Actuators B: Chem. 351 (2022) 130976.
    [40] M.Z. Fahmi, N.F. Sholihah, A. Wibrianto, S.C. Sakti, F. Firdaus, J.-y. Chang, Simple and fast design of folic acid-based carbon dots as theranostic agent and its drug release aspect, Materials Chemistry and Physics 267 (2021) 124596.
    [41] P. Zhang, J. Li, D. Yang, R.A. Soomro, B. Xu, Flexible Carbon Dots-Intercalated MXene Film Electrode with Outstanding Volumetric Performance for Supercapacitors, Advanced Functional Materials 33(1) (2023) 2209918.
    [42] V.D. Dang, T. Annadurai, A.P. Khedulkar, J.-Y. Lin, J. Adorna, W.-J. Yu, B. Pandit, T.V. Huynh, R.-A. Doong, S-scheme N-doped carbon dots anchored g-C3N4/Fe2O3 shell/core composite for photoelectrocatalytic trimethoprim degradation and water splitting, Applied Catalysis B: Environmental 320 (2023) 121928.
    [43] Y.-Q. Zhang, D.-K. Ma, Y.-G. Zhang, W. Chen, S.-M. Huang, N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells, Nano Energy 2(5) (2013) 545-552.
    [44] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, Journal of the American Chemical Society 126(40) (2004) 12736-12737.
    [45] Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.-Y. Xie, Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence, Journal of the American Chemical Society 128(24) (2006) 7756-7757.
    [46] M. Liu, Y. Xu, F. Niu, J.J. Gooding, J. Liu, Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging, Analyst 141(9) (2016) 2657-2664.
    [47] S. Zhuo, M. Shao, S.-T. Lee, Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis, ACS Nano 6(2) (2012) 1059-1064.
    [48] X. Wang, L. Zhao, J. Hu, H. Wei, X. Liu, E. Li, S. Yang, Rational design of novel carbon-oxygen quantum dots for ratiometrically mapping pH and reactive oxygen species scavenging, Carbon 190 (2022) 115-124.
    [49] Z. Li, W. Liu, P. Ni, C. Zhang, B. Wang, G. Duan, C. Chen, Y. Jiang, Y. Lu, Carbon dots confined in N-doped carbon as peroxidase-like nanozyme for detection of gastric cancer relevant D-amino acids, Chemical Engineering Journal 428 (2022) 131396.
    [50] G. Getachew, C. Korupalli, A.S. Rasal, J.-Y. Chang, ROS generation/scavenging modulation of carbon dots as phototherapeutic candidates and peroxidase mimetics to integrate with polydopamine nanoparticles/GOx towards cooperative cancer therapy, Composites Part B: Engineering 226 (2021) 109364.
    [51] C. Xia, S. Zhu, T. Feng, M. Yang, B. Yang, Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots, Advanced Science 6(23) (2019) 1901316.
    [52] S. Hu, J. Liu, J. Yang, Y. Wang, S. Cao, Laser synthesis and size tailor of carbon quantum dots, J. Nanopart. Res. 13(12) (2011) 7247-7252.
    [53] R. Wang, K.-Q. Lu, Z.-R. Tang, Y.-J. Xu, Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis, J. Mater. Chem. A 5(8) (2017) 3717-3734.
    [54] K. Kakaei, K. Hasanpour, Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction, J. Mater. Chem. A 2(37) (2014) 15428-15436.
    [55] J. Deng, Q. Lu, N. Mi, H. Li, M. Liu, M. Xu, L. Tan, Q. Xie, Y. Zhang, S. Yao, Electrochemical Synthesis of Carbon Nanodots Directly from Alcohols, Chemistry – A European Journal 20(17) (2014) 4993-4999.
    [56] H. Li, X. He, Y. Liu, H. Huang, S. Lian, S.-T. Lee, Z. Kang, One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties, Carbon 49(2) (2011) 605-609.
    [57] J. Xu, K. Cui, T. Gong, J. Zhang, Z. Zhai, L. Hou, F.U. Zaman, C. Yuan, Ultrasonic-Assisted Synthesis of N-Doped, Multicolor Carbon Dots toward Fluorescent Inks, Fluorescence Sensors, and Logic Gate Operations, Nanomaterials 12(3) (2022).
    [58] L.M. Belca, A. Ručigaj, D. Teslič, M. Krajnc, The use of ultrasound in the crystallization process of an active pharmaceutical ingredient, Ultrason. Sonochem. 58 (2019) 104642.
    [59] W. Li, Y. Liu, M. Wu, X. Feng, S.A.T. Redfern, Y. Shang, X. Yong, T. Feng, K. Wu, Z. Liu, B. Li, Z. Chen, J.S. Tse, S. Lu, B. Yang, Carbon-Quantum-Dots-Loaded Ruthenium Nanoparticles as an Efficient Electrocatalyst for Hydrogen Production in Alkaline Media, Adv. Mater. 30(31) (2018) 1800676.
    [60] D.-H. Zhao, C.-Q. Li, X.-L. Hou, G.-Y. Wu, X.-T. Xie, D. Zhu, F. Jin, Y.-D. Zhao, B. Liu, A metal ion-drug-induced self-assembly nanosystems for augmented chemodynamic and chemotherapy synergetic anticancer therapy, Carbon 188 (2022) 104-113.
    [61] M. Wu, J. Zhan, B. Geng, P. He, K. Wu, L. Wang, G. Xu, Z. Li, L. Yin, D. Pan, Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs, Nanoscale 9(35) (2017) 13195-13202.
    [62] J. Zhan, B. Geng, K. Wu, G. Xu, L. Wang, R. Guo, B. Lei, F. Zheng, D. Pan, M. Wu, A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence, Carbon 130 (2018) 153-163.
    [63] D. Chen, W. Wu, Y. Yuan, Y. Zhou, Z. Wan, P. Huang, Intense multi-state visible absorption and full-color luminescence of nitrogen-doped carbon quantum dots for blue-light-excitable solid-state-lighting, J. Mater. Chem. C 4(38) (2016) 9027-9035.
    [64] H. Zhu, Z. Liu, Z.-L. Cheng, Stable dispersed N-doped carbon quantum dots-decorated 2D Ni-BDC nanocomposites towards the tribological application, Appl. Surf. Sci. 582 (2022) 152428.
    [65] Y. Ganjkhanlou, J.J.E. Maris, J. Koek, R. Riemersma, B.M. Weckhuysen, F. Meirer, Dual Fluorescence in Glutathione-Derived Carbon Dots Revisited, The Journal of Physical Chemistry C (2022).
    [66] F. He, J. Bai, Y. Cheng, K. Weerasinghe, X. Meng, H. Xu, W. Zhang, X. Fang, H.-B. Li, T. Ding, Insights into Fluorophores of Dual-Emissive Carbon Dots Derived by Naphthalenediol Solvothermal Synthesis, The Journal of Physical Chemistry C 125(9) (2021) 5207-5216.
    [67] Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao, J. Chen, Highly Luminescent N-Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform, Chemistry – A European Journal 20(8) (2014) 2254-2263.
    [68] H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life, Adv. Mater. 27(47) (2015) 7861-7866.
    [69] C.a. Ma, C. Yin, Y. Fan, X. Yang, X. Zhou, Highly efficient synthesis of N-doped carbon dots with excellent stability through pyrolysis method, Journal of Materials Science 54(13) (2019) 9372-9384.
    [70] Y. Hu, Y. Wang, C. Wang, Y. Ye, H. Zhao, J. Li, X. Lu, C. Mao, S. Chen, J. Mao, L. Wang, Q. Xue, One-pot pyrolysis preparation of carbon dots as eco-friendly nanoadditives of water-based lubricants, Carbon 152 (2019) 511-520.
    [71] W. Tang, B. Wang, J. Li, Y. Li, Y. Zhang, H. Quan, Z. Huang, Facile pyrolysis synthesis of ionic liquid capped carbon dots and subsequent application as the water-based lubricant additives, Journal of Materials Science 54(2) (2019) 1171-1183.
    [72] Y.-Y. Aung, A. Wibrianto, J.S. Sianturi, D.K. Ulfa, S.C. Sakti, I. Irzaman, B. Yuliarto, J.-y. Chang, Y. Kwee, M.Z. Fahmi, Comparison Direct Synthesis of Hyaluronic Acid-Based Carbon Nanodots as Dual Active Targeting and Imaging of HeLa Cancer Cells, ACS omega (2021).
    [73] K. P, A.R. Cherian, U. Sirimahachai, D.A. Thadathil, A. Varghese, G. Hegde, Detection of picric acid in industrial effluents using multifunctional green fluorescent B/N-carbon quantum dots, Journal of Environmental Chemical Engineering 10(2) (2022) 107209.
    [74] U.A. Rani, L.Y. Ng, C.Y. Ng, E. Mahmoudi, A review of carbon quantum dots and their applications in wastewater treatment, Advances in Colloid and Interface Science 278 (2020) 102124.
    [75] G. Getachew, C. Korupalli, A.S. Rasal, W.B. Dirersa, M.Z. Fahmi, J.-Y. Chang, Highly Luminescent, Stable, and Red-Emitting CsMgxPb1–xI3 Quantum Dots for Dual-Modal Imaging-Guided Photodynamic Therapy and Photocatalytic Activity, ACS Applied Materials & Interfaces 14(1) (2022) 278-296.
    [76] N. Azam, M. Najabat Ali, T. Javaid Khan, Carbon Quantum Dots for Biomedical Applications: Review and Analysis, Frontiers in Materials 8 (2021).
    [77] V. Singh, S. Kashyap, U. Yadav, A. Srivastava, A.V. Singh, R.K. Singh, S.K. Singh, P.S. Saxena, Nitrogen doped carbon quantum dots demonstrate no toxicity under in vitro conditions in a cervical cell line and in vivo in Swiss albino mice, Toxicology Research 8(3) (2019) 395-406.
    [78] B.B. Karakoçak, A. Laradji, T. Primeau, M.Y. Berezin, S. Li, N. Ravi, Hyaluronan-Conjugated Carbon Quantum Dots for Bioimaging Use, ACS Applied Materials & Interfaces 13(1) (2021) 277-286.
    [79] A. Sharma, V. Panwar, J. Thomas, V. Chopra, H.S. Roy, D. Ghosh, Actin-binding carbon dots selectively target glioblastoma cells while sparing normal cells, Colloids Surf. B. Biointerfaces 200 (2021) 111572.
    [80] R. Mohammadi, H. Naderi-Manesh, L. Farzin, Z. Vaezi, N. Ayarri, L. Samandari, M. Shamsipur, Fluorescence sensing and imaging with carbon-based quantum dots for early diagnosis of cancer: A review, J. Pharm. Biomed. Anal. (2022) 114628.
    [81] A. Khan, K. Waqar, A. Shafique, R. Irfan, A. Gul, Chapter 18 - In Vitro and In Vivo Animal Models: The Engineering Towards Understanding Human Diseases and Therapeutic Interventions, in: D. Barh, V. Azevedo (Eds.), Omics Technologies and Bio-Engineering, Academic Press2018, pp. 431-448.
    [82] X. Li, M. Zheng, H. Wang, Y. Meng, D. Wang, L. Liu, Q. Zeng, X. Xu, D. Zhou, H. Sun, Synthesis of carbon dots with strong luminescence in both dispersed and aggregated states by tailoring sulfur doping, J. Colloid Interface Sci. 609 (2022) 54-64.
    [83] T.-Y. Ciou, C. Korupalli, T.-H. Chou, C.-H. Hsiao, G. Getachew, S. Bela, J.-Y. Chang, Biomimetic nanoreactor for cancer eradication via win–win cooperation between starvation/photo/chemodynamic therapies, ACS Applied Bio Materials 4(7) (2021) 5650-5660.
    [84] H. Wang, J. Guo, W. Lin, Z. Fu, X. Ji, B. Yu, M. Lu, W. Cui, L. Deng, J.W. Engle, Open‐Shell Nanosensitizers for Glutathione Responsive Cancer Sonodynamic Therapy, Adv. Mater. 34(15) (2022) 2110283.
    [85] S. Koo, O.K. Park, J. Kim, S.I. Han, T.Y. Yoo, N. Lee, Y.G. Kim, H. Kim, C. Lim, J.-S. Bae, J. Yoo, D. Kim, S.H. Choi, T. Hyeon, Enhanced chemodynamic therapy by Cu–Fe peroxide nanoparticles: tumor microenvironment-mediated synergistic fenton reaction, ACS Nano 16(2) (2022) 2535-2545.
    [86] Y. Huang, S. Wu, L. Zhang, Q. Deng, J. Ren, X. Qu, A Metabolic Multistage Glutathione Depletion Used for Tumor-Specific Chemodynamic Therapy, ACS Nano 16(3) (2022) 4228-4238.
    [87] L.-S. Lin, T. Huang, J. Song, X.-Y. Ou, Z. Wang, H. Deng, R. Tian, Y. Liu, J.-F. Wang, Y. Liu, Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy, Journal of the American Chemical Society 141(25) (2019) 9937-9945.
    [88] W. Xie, J. Ye, Z. Guo, J. Lu, W. Xu, X. Gao, H. Huang, R. Hu, L. Mao, Y. Wei, L. Zhao, TME-responded Full-biodegradable nanocatalyst for mitochondrial calcium Overload-induced hydroxyl radical bursting cancer treatment, Chemical Engineering Journal 438 (2022) 135372.
    [89] H. Zhang, R. Han, P. Song, X. Wei, Y. Hou, J. Yu, K. Tang, Hydrogen peroxide self-sufficient and glutathione-depleted nanoplatform for boosting chemodynamic therapy synergetic phototherapy, J. Colloid Interface Sci. 629 (2023) 103-113.
    [90] Y. Wang, X. Sun, Y. Han, K. Wang, L. Cheng, Y. Sun, F. Besenbacher, M. Yu, Au@MnSe2 Core–Shell Nanoagent Enabling Immediate Generation of Hydroxyl Radicals and Simultaneous Glutathione Deletion Free of Pre-Reaction for Chemodynamic-Photothermo-Photocatalytic Therapy with Significant Immune Response, Advanced Healthcare Materials 11(14) (2022) 2200041.
    [91] Y. Pan, Y. Zhu, C. Xu, C. Pan, Y. Shi, J. Zou, Y. Li, X. Hu, B. Zhou, C. Zhao, Q. Gao, J. Zhang, A. Wu, X. Chen, J. Li, Biomimetic Yolk–Shell Nanocatalysts for Activatable Dual-Modal-Image-Guided Triple-Augmented Chemodynamic Therapy of Cancer, ACS Nano 16(11) (2022) 19038-19052.
    [92] Y.-Z. Jing, S.-J. Li, Z.-J. Sun, Gas and gas-generating nanoplatforms in cancer therapy, J. Mater. Chem. B 9(41) (2021) 8541-8557.
    [93] T. He, X. Qin, C. Jiang, D. Jiang, S. Lei, J. Lin, W.-G. Zhu, J. Qu, P. Huang, Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy, Theranostics 10(6) (2020) 2453-2462.
    [94] Y. Ding, C. Du, J. Qian, C.-M. Dong, NIR-Responsive Polypeptide Nanocomposite Generates NO Gas, Mild Photothermia, and Chemotherapy to Reverse Multidrug-Resistant Cancer, Nano Lett. 19(7) (2019) 4362-4370.
    [95] X. Huang, F. Xu, H. Hou, J. Hou, Y. Wang, S. Zhou, Stimuli-responsive nitric oxide generator for light-triggered synergistic cancer photothermal/gas therapy, Nano Research 12(6) (2019) 1361-1370.
    [96] Y. Ding, Y. Ma, C. Du, C. Wang, T. Chen, Y. Wang, J. Wang, Y. Yao, C.-M. Dong, NO-releasing polypeptide nanocomposites reverse cancer multidrug resistance via triple therapies, Acta Biomater. 123 (2021) 335-345.
    [97] S.B. Thakar, P.N. Ghorpade, B. Shaker, J. Lee, D. Na, Gas-mediated cancer therapy combined with starvation therapy, ultrasound therapy, chemotherapy, radiotherapy, and photodynamic therapy: a review, Environmental Chemistry Letters 19(4) (2021) 2981-2993.
    [98] S.-S. Wan, J.-Y. Zeng, H. Cheng, X.-Z. Zhang, ROS-induced NO generation for gas therapy and sensitizing photodynamic therapy of tumor, Biomaterials 185 (2018) 51-62.
    [99] C. Han, X. Zhang, F. Wang, Q. Yu, F. Chen, D. Shen, Z. Yang, T. Wang, M. Jiang, T. Deng, C. Yu, Duplex metal co-doped carbon quantum dots-based drug delivery system with intelligent adjustable size as adjuvant for synergistic cancer therapy, Carbon 183 (2021) 789-808.
    [100] J. Wang, Z. Sun, S. Wang, C. Zhao, J. Xu, S. Gao, M. Yang, F. Sheng, S. Gao, Y. Hou, Biodegradable Ferrous Sulfide-Based Nanocomposites for Tumor Theranostics through Specific Intratumoral Acidosis-Induced Metabolic Symbiosis Disruption, Journal of the American Chemical Society 144(43) (2022) 19884-19895.
    [101] M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation, Science 324(5930) (2009) 1029-1033.
    [102] O. Warburg, F. Wind, E. Negelein, The metabolism of tumors in the body, The Journal of general physiology 8(6) (1927) 519.
    [103] J. Yu, Z. Wei, Q. Li, F. Wan, Z. Chao, X. Zhang, L. Lin, H. Meng, L. Tian, Advanced Cancer Starvation Therapy by Simultaneous Deprivation of Lactate and Glucose Using a MOF Nanoplatform, Advanced Science 8(19) (2021) 2101467.
    [104] W. Ni, K. Jiang, Q. Ke, J. Su, X. Cao, L. Zhang, C. Li, Development of an intelligent heterojunction fenton catalyst for chemodynamic/starvation synergistic cancer therapy, Journal of Materials Science & Technology 141 (2023) 11-20.
    [105] Y. Chen, Y. Yao, X. Zhou, C. Liao, X. Dai, J. Liu, Y. Yu, S. Zhang, Cascade-Reaction-Based Nanodrug for Combined Chemo/Starvation/Chemodynamic Therapy against Multidrug-Resistant Tumors, ACS Applied Materials & Interfaces 11(49) (2019) 46112-46123.
    [106] C. Korupalli, K.-L. You, G. Getachew, A.S. Rasal, W.B. Dirersa, M. Zakki Fahmi, J.-Y. Chang, Engineering the surface of Ti3C2 MXene nanosheets for high stability and multimodal anticancer therapy, Pharmaceutics 14(2) (2022) 304.
    [107] H. Wang, L. Cheng, S. Ma, L. Ding, W. Zhang, Z. Xu, D. Li, L. Gao, Self-Assembled Multiple-Enzyme Composites for Enhanced Synergistic Cancer Starving–Catalytic Therapy, ACS Applied Materials & Interfaces 12(18) (2020) 20191-20201.
    [108] K. Kang, L. Wang, Y. Ma, K. Yu, J. Liu, F. Qu, H. Lin, NIR-II sensitive Co9S8/S-CDs@PEG nanocomposites with enhanced multi-enzyme mediated phototherapy, Carbon 197 (2022) 98-111.
    [109] Y. Yu, Y. Meng, X. Xu, T. Tong, C. He, L. Wang, K. Wang, M. Zhao, X. You, W. Zhang, L. Jiang, J. Wu, M. Zhao, A Ferroptosis-Inducing and Leukemic Cell-Targeting Drug Nanocarrier Formed by Redox-Responsive Cysteine Polymer for Acute Myeloid Leukemia Therapy, ACS Nano 17(4) (2023) 3334-3345.
    [110] J. Chen, B. Zhao, J. Zou, J. Yang, L. Yang, J. Zhang, W. Chen, D. Huang, Y. Zhong, Macromolecular NO-Donor Micelles for Targeted and Augmented Chemotherapy against Prostate Cancer, Advanced Healthcare Materials 12(6) (2023) 2202266.
    [111] C. Wang, C. Liang, Y. Hao, Z. Dong, Y. Zhu, Q. Li, Z. Liu, L. Feng, M. Chen, Photodynamic creation of artificial tumor microenvironments to collectively facilitate hypoxia-activated chemotherapy delivered by coagulation-targeting liposomes, Chemical Engineering Journal 414 (2021) 128731.
    [112] L. Zhang, C.-X. Li, S.-S. Wan, X.-Z. Zhang, Nanocatalyst-Mediated Chemodynamic Tumor Therapy, Advanced Healthcare Materials 11(2) (2022) 2101971.
    [113] Y. Shu, J. Lu, Q.-X. Mao, R.-S. Song, X.-Y. Wang, X.-W. Chen, J.-H. Wang, Ionic liquid mediated organophilic carbon dots for drug delivery and bioimaging, Carbon 114 (2017) 324-333.
    [114] H. Wang, K. Wang, B. Tian, R. Revia, Q. Mu, M. Jeon, F.-C. Chang, M. Zhang, Preloading of Hydrophobic Anticancer Drug into Multifunctional Nanocarrier for Multimodal Imaging, NIR-Responsive Drug Release, and Synergistic Therapy, Small 12(46) (2016) 6388-6397.
    [115] G.M.L. Consoli, M.L. Giuffrida, S. Zimbone, L. Ferreri, L. Maugeri, M. Palmieri, C. Satriano, G. Forte, S. Petralia, Green Light-Triggerable Chemo-Photothermal Activity of Cytarabine-Loaded Polymer Carbon Dots: Mechanism and Preliminary In Vitro Evaluation, ACS Applied Materials & Interfaces 15(4) (2023) 5732-5743.
    [116] X. Zhang, J. Jiang, Q. Yu, P. Zhou, S. Yang, J. Xia, T. Deng, C. Yu, ZIF-based carbon dots with lysosome-Golgi transport property as visualization platform for deep tumour therapy via hierarchical size/charge dual-transform and transcytosis, Nanoscale 14(23) (2022) 8510-8524.
    [117] G. Getachew, C.-H. Hsiao, A. Wibrianto, A.S. Rasal, W. Batu Dirersa, C.-C. Huang, N. Vijayakameswara Rao, J.-H. Chen, J.-Y. Chang, High performance carbon dots based prodrug platform: image-guided photodynamic and chemotherapy with on-demand drug release upon laser irradiation, J. Colloid Interface Sci. 633 (2023) 396-410.
    [118] J.-S. Lin, Y.-W. Tsai, K. Dehvari, C.-C. Huang, J.-Y. Chang, A carbon dot based theranostic platform for dual-modal imaging and free radical scavenging, Nanoscale 11(43) (2019) 20917-20931.
    [119] K. Dehvari, S.-H. Chiu, J.-S. Lin, W.M. Girma, Y.-C. Ling, J.-Y. Chang, Heteroatom doped carbon dots with nanoenzyme like properties as theranostic platforms for free radical scavenging, imaging, and chemotherapy, Acta Biomater. 114 (2020) 343-357.
    [120] C. Yue, Y. Yang, C. Zhang, G. Alfranca, S. Cheng, L. Ma, Y. Liu, X. Zhi, J. Ni, W. Jiang, J. Song, J.M.d.l. Fuente, D. Cui, ROS-responsive mitochondria-targeting blended nanoparticles: chemo- and photodynamic synergistic therapy for lung cancer with on-demand drug release upon irradiation with a single light source, Theranostics 6(13) (2016) 2352-2366.
    [121] M. Razavi, A. Barras, M. Ifires, A. Swaidan, M. Khoshkam, S. Szunerits, M. Kompany-Zareh, R. Boukherroub, Colorimetric assay for the detection of dopamine using bismuth ferrite oxide (Bi2Fe4O9) nanoparticles as an efficient peroxidase-mimic nanozyme, J. Colloid Interface Sci. 613 (2022) 384-395.
    [122] H. Zhao, L. Wang, K. Zeng, J. Li, W. Chen, Y.-N. Liu, Nanomessenger-mediated signaling cascade for antitumor immunotherapy, ACS Nano 15(8) (2021) 13188-13199.
    [123] D. Liu, Y. Liao, E.J. Cornel, M. Lv, T. Wu, X. Zhang, L. Fan, M. Sun, Y. Zhu, Z. Fan, J. Du, Polymersome wound dressing spray capable of bacterial inhibition and H2S generation for complete diabetic wound healing, Chemistry of Materials 33(20) (2021) 7972-7985.
    [124] B. Liu, S. Liang, Z. Wang, Q. Sun, F. He, S. Gai, P. Yang, Z. Cheng, J. Lin, A Tumor-Microenvironment-Responsive Nanocomposite for Hydrogen Sulfide Gas and Trimodal-Enhanced Enzyme Dynamic Therapy, Adv. Mater. 33(30) (2021) 2101223.
    [125] Q. Wang, D. Niu, J. Shi, L. Wang, A three-in-one ZIFs-derived CuCo(O)/GOx@PCNs hybrid cascade nanozyme for immunotherapy/enhanced starvation/photothermal therapy, ACS Applied Materials & Interfaces 13(10) (2021) 11683-11695.
    [126] W. Luo, C. Zhu, S. Su, D. Li, Y. He, Q. Huang, C. Fan, Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles, ACS Nano 4(12) (2010) 7451-7458.
    [127] F. Li, Y. Li, X. Yang, X. Han, Y. Jiao, T. Wei, D. Yang, H. Xu, G. Nie, Highly fluorescent chiral N‐S‐doped carbon dots from cysteine: affecting cellular energy metabolism, Angew. Chem. 130(9) (2018) 2401-2406.
    [128] A. Munir, T.u. Haq, A. Qurashi, H.u. Rehman, A. Ul-Hamid, I. Hussain, Ultrasmall Ni/NiO nanoclusters on thiol-functionalized and -exfoliated graphene oxide nanosheets for durable oxygen evolution reaction, ACS Applied Energy Materials 2(1) (2019) 363-371.
    [129] N. Sanna, G. Chillemi, L. Gontrani, A. Grandi, G. Mancini, S. Castelli, G. Zagotto, C. Zazza, V. Barone, A. Desideri, UV−Vis spectra of the anticancer campothecin family drugs in aqueous solution: specific spectroscopic signatures unraveled by a combined computational and experimental study, The Journal of Physical Chemistry B 113(16) (2009) 5369-5375.
    [130] B. Wang, Z. Wei, L. Sui, J. Yu, B. Zhang, X. Wang, S. Feng, H. Song, X. Yong, Y. Tian, B. Yang, S. Lu, Electron–phonon coupling-assisted universal red luminescence of o-phenylenediamine-based carbon dots, Light: Science & Applications 11(1) (2022) 172.
    [131] X. Lu, S. Gao, H. Lin, L. Yu, Y. Han, P. Zhu, W. Bao, H. Yao, Y. Chen, J. Shi, Bioinspired copper single-atom catalysts for tumor parallel catalytic therapy, Adv. Mater. 32(36) (2020) 2002246.
    [132] G. Lee, C.W. Kim, J.R. Choi, K.H. Min, H.J. Lee, K.H. Kwack, H.-W. Lee, J.-H. Lee, S.Y. Jeong, K. Chang, S.C. Lee, Copper arsenite-complexed Fenton-like nanoparticles as oxidative stress-amplifying anticancer agents, Journal of Controlled Release 341 (2022) 646-660.
    [133] W.B. Dirersa, G. Getachew, C.H. Hsiao, A. Wibrianto, A.S. Rasal, C.C. Huang, J.Y. Chang, Surface-engineered CuFeS2/Camptothecin nanoassembly with enhanced chemodynamic therapy via GSH depletion for synergistic photo/chemotherapy of cancer, Materials Today Chemistry 26 (2022) 101158.
    [134] M. Liu, L. Huang, X. Xu, X. Wei, X. Yang, X. Li, B. Wang, Y. Xu, L. Li, Z. Yang, Copper Doped Carbon Dots for Addressing Bacterial Biofilm Formation, Wound Infection, and Tooth Staining, ACS Nano 16(6) (2022) 9479-9497.
    [135] Y. Dai, F. Zhang, K. Chen, Z. Sun, Z. Wang, Y. Xue, M. Li, Q. Fan, Q. Shen, Q. Zhao, An Activatable Phototheranostic Nanoplatform for Tumor Specific NIR-II Fluorescence Imaging and Synergistic NIR-II Photothermal-Chemodynamic Therapy, Small n/a(n/a) (2023) 2206053.
    [136] B. Zhao, Y. Wang, X. Yao, D. Chen, M. Fan, Z. Jin, Q. He, Photocatalysis-mediated drug-free sustainable cancer therapy using nanocatalyst, Nature Communications 12(1) (2021) 1345.
    [137] H. Ding, J. Chang, F. He, S. Gai, P. Yang, Hydrogen sulfide: an emerging precision strategy for gas therapy, Advanced Healthcare Materials 11(4) (2022) 2101984.
    [138] C. Xie, D. Cen, Z. Ren, Y. Wang, Y. Wu, X. Li, G. Han, X. Cai, FeS@BSA nanoclusters to enable H2S-amplified ROS-based therapy with MRI guidance, Advanced Science 7(7) (2020) 1903512.
    [139] L. Qiao, Y. Sun, Y. Hu, J. Fan, Z. Wang, P. Wu, C. Cai, A tumor microenvironment-triggered and photothermal-enhanced nanocatalysis multimodal therapy platform for precise cancer therapy, Chemistry of Materials 33(23) (2021) 9334-9347.
    [140] J. Lu, Y. Yang, Q. Xu, Y. Lin, S. Feng, Y. Mao, D. Wang, S. Wang, Q. Zhao, Recent advances in multi-configurable nanomaterials for improved chemodynamic therapy, Coord. Chem. Rev. 474 (2023) 214861.
    [141] C. Wang, F. Xue, M. Wang, L. An, D. Wu, Q. Tian, 2D Cu-bipyridine MOF nanosheet as an sgent for colon cancer therapy: a three-in-one approach for enhancing chemodynamic therapy, ACS Applied Materials & Interfaces 14(34) (2022) 38604-38616.
    [142] X.-L. Guo, Z.-Y. Ding, S.-M. Deng, C.-C. Wen, X.-C. Shen, B.-P. Jiang, H. Liang, A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies, Carbon 134 (2018) 519-530.
    [143] T. Gonzalez, F. Peiretti, C. Defoort, P. Borel, R. Govers, 2′,7′-dichlorofluorescin-based analysis of fenton chemistry reveals auto-amplification of probe fluorescence and albumin as catalyst for the detection of hydrogen peroxide, Biochemical Journal 477(24) (2020) 4689-4710.
    [144] T. He, X. Qin, C. Jiang, D. Jiang, S. Lei, J. Lin, W.-G. Zhu, J. Qu, P. Huang, Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy, Theranostics 10(6) (2020) 2453.
    [145] K. Cheng, B. Liu, X.-S. Zhang, R.-Y. Zhang, F. Zhang, G. Ashraf, G.-Q. Fan, M.-Y. Tian, X. Sun, J. Yuan, Y.-D. Zhao, Biomimetic material degradation for synergistic enhanced therapy by regulating endogenous energy metabolism imaging under hypothermia, Nature Communications 13(1) (2022) 4567.
    [146] E. Prince, S. Kheiri, Y. Wang, F. Xu, J. Cruickshank, V. Topolskaia, H. Tao, E.W.K. Young, A.P. McGuigan, D.W. Cescon, E. Kumacheva, Microfluidic arrays of breast tumor spheroids for drug screening and personalized cancer therapies, Advanced Healthcare Materials 11(1) (2022) 2101085.
    [147] C. Hu, S. He, Y.J. Lee, Y. He, E.M. Kong, H. Li, M.A. Anastasio, G. Popescu, Live-dead assay on unlabeled cells using phase imaging with computational specificity, Nature Communications 13(1) (2022) 713.
    [148] Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection, Adv. Mater. 22(19) (2010) 2206-2210.
    [149] R. Li, M. Zhen, M. Guan, D. Chen, G. Zhang, J. Ge, P. Gong, C. Wang, C. Shu, A novel glucose colorimetric sensor based on intrinsic peroxidase-like activity of C60-carboxyfullerenes, Biosensors and Bioelectronics 47 (2013) 502-507.
    [150] W. Ma, Y. Xue, S. Guo, Y. Jiang, F. Wu, P. Yu, L. Mao, Graphdiyne oxide: a new carbon nanozyme, Chem. Commun. 56(38) (2020) 5115-5118.
    [151] V.K. Singh, P.K. Yadav, S. Chandra, D. Bano, M. Talat, S.H. Hasan, Peroxidase mimetic activity of fluorescent NS-carbon quantum dots and their application in colorimetric detection of H2O2 and glutathione in human blood serum, J. Mater. Chem. B 6(32) (2018) 5256-5268.
    [152] P.K. Yadav, V.K. Singh, S. Chandra, D. Bano, V. Kumar, M. Talat, S.H. Hasan, Green synthesis of fluorescent carbon quantum dots from Azadirachta indica leaves and their peroxidase-mimetic activity for the detection of H2O2 and ascorbic acid in common fresh fruits, ACS Biomaterials Science & Engineering 5(2) (2019) 623-632.
    [153] X. Xu, Q. Sun, Y. Ma, X. Jiang, N. Niu, L. Chen, Synthesis of KCl-doped lignin carbon dots nanoenzymes for colorimetric sensing glutathione in human serum, Sensors Actuators B: Chem. 364 (2022) 131881.
    [154] Q. Li, H. Li, K. Li, Y. Gu, Y. Wang, D. Yang, Y. Yang, L. Gao, Specific colorimetric detection of methylmercury based on peroxidase-like activity regulation of carbon dots/Au NPs nanozyme, J. Hazard. Mater. 441 (2023) 129919.
    [155] P. Muhammad, S. Hanif, J. Li, A. Guller, F.U. Rehman, M. Ismail, D. Zhang, X. Yan, K. Fan, B. Shi, Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway, Nano Today 45 (2022) 101530.
    [156] B. Kong, T. Yang, F. Cheng, Y. Qian, C. Li, L. Zhan, Y. Li, H. Zou, C. Huang, Carbon dots as nanocatalytic medicine for anti-inflammation therapy, J. Colloid Interface Sci. 611 (2022) 545-553.
    [157] M.A. Wahab, S.M.A. Hossain, M.K. Masud, H. Park, A. Ashok, M. Mustapić, M. Kim, D. Patel, M. Shahbazi, M.S.A. Hossain, Y. Yamauchi, Y.V. Kaneti, Nanoarchitectured superparamagnetic iron oxide-doped mesoporous carbon nanozymes for glucose sensing, Sensors Actuators B: Chem. 366 (2022) 131980.


    無法下載圖示
    全文公開日期 2024/07/25 (校外網路)
    全文公開日期 2024/07/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE