簡易檢索 / 詳目顯示

研究生: 謝宣佑
Hsuan-Yu Hsieh
論文名稱: 新式互補式金氧半壓控振盪器與四相位壓控振盪器
Design of Novel CMOS Voltage-Controlled Oscillator and Quadrature Voltage-Controlled Oscillator
指導教授: 張勝良
Sheng-lyang Jang
口試委員: 徐敬文
Ching-wen Hsu
馮武雄
Wu-shiung Feng
鄧恒發
Heng-fa Teng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 85
中文關鍵詞: 壓控振盪器
外文關鍵詞: VCO
相關次數: 點閱:191下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在射頻收發機裡,壓控振盪器的相位雜訊好壞會有3種影響,(1)增加數位通訊位元錯誤率,(2)降低收發機的靈敏度,(3)造成訊號抖動,所以把壓控振盪器雜訊的降低,是很重要的事.
首先,本論文先做一個互補式考畢茲壓控振盪器,在供應電壓1.5V時,振盪器在10.2GHz時相位雜訊為-118.7dBc/Hz,FOM是-191.72dBc/Hz.功耗為5.2mW.可調範圍有1.8GHz,從10.04GHz到11.84GHz,控制電壓從0V到1.5V.接著設計互補式考畢茲四相位壓控振盪器.在供應電源1.5V時,總功耗是6.72mW.可調頻率比有15.37%,可調範圍由10.24到11.98GHz可調電壓由0V到1.5V.此四相位壓控振盪器由台積電0.18製程晶片面積為0.811 1.38 .量測相位雜訊-116.39dBc/Hz在10.24GHz.FOM為-188.3dBc/Hz.
其次,提出一個優質的LC tank 四相位壓控振盪器,在供應電壓0.7V時,功耗是2.58mW.可調範圍從5.15GHz到5.55GHz,可調電壓從0V到0.7V. 在振盪頻率5.28GHz下量測到的相位雜訊-120.88dBc/Hz.FOM為-191.21dBc/Hz.
最後一個晶片為雙頻帶四相位壓控振盪器,使用Sige18製程,在供應電壓為1.6V下,總核心功耗為11.52mW.低頻和高頻的可調範圍從3/6.14GHz到2.65.71GHz可調電壓從0/1.4V到1.3/2V.在振盪頻率2.99/6.07GHz下量測到的相位雜訊是-128.97/-123.47dBc/Hz,在高底頻的FOM都是-188dBc/Hz.


In the RF transceiver, the VCO’s phase noise is good or bad will have the effect to (1) increase of digital communication bit error rate, (2) reduce the sensitivity of the transceiver, (3) increase signal jitter,so reduced voltage-controlled oscillator’s phase noise is a very important.
First, this thesis designs complementary Colpitts voltage controlled oscillator, At the supply voltage of 1.5 V, the output phase noise of the VCO is -118.7dBc/Hz at 1MHz offset frequency from the carrier frequency of 10.2 GHz, and the figure of merit is -191.72dBc/Hz. The VCO core power consumption is 5.2 mW. Tuning range is about 1.8GHz, from 10.04 to 11.84 GHz, while the control voltage was tuned from 0 V to 1.5 V. And we design complementary Colpitts QVCO. At the supply voltage of 1.5 V, the total power consumption is 6.72 mW. The free-running frequency tuning range is 15.37 %, tunable from 10.24 to 11.98 GHz as the tuning voltage is varied from 0.0 V to 1.5 V. The QVCO has been implemented with the TSMC 0.18 μm CMOS technology and the die area is 0.811 ×1.38 mm2. The measured phase noise at 1 MHz offset is -116.39 dBc/Hz at the oscillation frequency of 10.24 GHz and the figure of merit (FOM) of the proposed QVCO is about -188.3 dBc/Hz.
Secondly, we propose a high-quality LC tank quadrature voltage-controlled oscillator. At the supply voltage of 0.7 V, the total power consumption is 2.58 mW. The free-running frequency of the QVCO is tunable from 5.15 GHz to 5.55 GHz as the tuning voltage is varied from 0 V to 0.7 V. The measured phase noise at 1 MHz frequency offset is -120.88 dBc/Hz at the oscillation frequency of 5.28 GHz and the figure of merit (FOM) of the proposed QVCO is -191.21 dBc/Hz.
Finally,chapter is a dual band QVCO, useing 0.18 μm SiGe technology, At the supply voltage of 1.6 V, the total core power consumption is 11.52 mW. The low-/high-band free-running frequency of the QVCO is tunable from 3/6.14 GHz to 2.6/5.71 GHz as the tuning voltage is varied from 0.0/1.4 V to 1.3/2 V. The measured phase noise at 1MHz frequency offset is -128.97/-123.47 dBc/Hz at the oscillation frequency of 2.99/6.07 GHz and the high-/low-band figure of merit (FOM) of the proposed QVCO is about -188.0dBc/Hz.

中文摘要 1 Abstract 2 致謝 3 Table of Contents 4 List of Figures 6 List of Tables 9 Chapter 1 Introduction 9 1.1 Motivation 9 1.2 Thesis Organization 12 Chapter 2 Overview of the Voltage-Controlled Oscillators 13 2.1 Introduction 13 2.2 Basic Theory of Oscillators 14 2.3 Classification of Oscillators 18 2.3.1 LC-Tank Oscillator 18 2.3.2 Ring Oscillator 22 2.4 Transformer and Varactor Design in VCO 25 2.4.1 Transformer 25 2.4.2 Capacitor 29 2.4.3 Varactor Design 31 2.5 Important Parameters of VCO 34 2.5.1 Phase Noise 35 2.5.2 Tuning Range 38 2.5.3 Figure of Merit [dBc/Hz]: 39 2.5.4 RF Frequency [Hz]: 39 2.5.5 RF Power [dBm]: 39 2.5.6 Tuning Sensitivity [Hz/V]: 40 2.5.7 Power Dissipation [mW]: 40 2.5.8 Harmonic/spurious [dBc]: 41 2.5.9 Quality Factor: 41 2.6 Quadrature VCO Design 43 Chapter 3 Design Balanced Complementary Colpitts VCO 50 3.1 A Wide-Tuning Range X-Band Balanced Complementary Colpitts VCO 50 3.1.1 Introduction 50 3.1.2 Circuit Design 51 3.1.3 Measurement Results 55 3.2 A Wide-Tuning Quadrature VCO Using Balanced Complementary Colpitts VCOs 58 3.2.1 Introduction 58 3.2.2 Circuit Design 59 3.2.3 Measurement Results 62 Chapter 4 CMOS Quadrature VCO Using a Passive Coupling Device 67 4.1 Introduction 67 4.2 Circuit Design 69 4.3 Measurement Results 71 Chapter 5 Dual-Band BiCMOS Quadrature VCO Coupling by the Quadruple-Push and Capacitor Ring 75 5.1 Introduction 75 5.2 Circuit Design 76 5.3 Measurement Results 80 Chapter 6 Conclusion 85 References 88

[1] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
[2] N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuits, vol. 27, no. 5, pp. 810−820, May 1992.
[3] B. Razavi, Design of Analog CMOS Integrated Crcuits, MC Graw Hall,2001.
[4] J. R. Long, “Monolithic transformers for silicon RF IC design," IEEE J.Solid-State Circuits, vol. 35, pp. 1368-1382, 2000.
[5] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628,2001.
[6] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 905−910, Jun. 2000.
[7] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000, pp. 569−572.
[8] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000.
[9] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
[10] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[11] D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
[12] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
[13] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
[14] D. Baek, S. Ko, J.-G. Kim, D.-W. Kim, and S. Hong, “Ku-band InGaPGaAs HBT MMIC VCOs with balanced and differential topologies,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1353–1359, Apr. 2004.
[15] Y.-H. Chuang, S.-L. Jang, S.-H. Lee, R.-H. Yen and J.-J. Jhao, “5 GHz low power CMOS differential Armstrong VCOs with balanced current-reused topology ,” IEEE Microw. Wireless Compon. Lett., pp. 139-141, Feb. 2007.
[16] S.-H. Li, S.-L. Jang, Y.-S. Chuang and C.-F. Li, “A new LC-tank voltage controlled oscillator,” in IEEE Asia-Pacific Cir. Syst. Conf., Dec. 2004, pp. 425 – 427.
[17] S.-L. Jang, C.-C. Liu, Y.-J. Song, and M.-H. Juang , ” A low voltage balanced Clapp VCO in 0.13 μm CMOS technology,” Micro. and Opti. Tech. Lett., vol. 52, no. 7, pp., 1623-1625, 2010.
[18] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[19] S.-L. Jang, W.-C. Liu, C.-W. Chang and J.-F. Huang,” A 0.35 μm CMOS cross-coupled complementary Colpitts voltage controlled oscillator,” Micro. and Opti. Tech. Lett., pp.2189-2192, Sept., 2011.
[20] X. Li, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.
[21] S.-L. Jang, Y.-J. Song, and C.-C. Liu, ” A differential Clapp VCO in 0.13 µm CMOS technology,” IEEE Microw. Wireless Compon. Lett., pp. 404–406, June 2009.
[22] S.-L. Jang, C.-Y. Wu, C.-C. Liu, and M.-H. Juang, ” A 5.6 GHz low power balanced VCO in 0.18 μm CMOS,” IEEE Microw. Wireless Compon. Lett., pp. 233-235, April, 2009.
[23] N. J. Oh and S. G. Lee, “11-GHz CMOS differential VCO with back-gate transformer feedback,” IEEE Microw.Wireless Compon. Lett., vol. 15, no. 11, pp. 733-735, Nov. 2005
[24] S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz integrated CMOS frequency sources with a quadrature VCO using transformers,”Proc. IEEE Radio Frequency Integrated Circuits Symp., pp. 269–272, Jun. 2004.
[25] S. Ko, J.-G. Kim, T. Song, E.Yoon, and S. Hong, “K- and Q-bands CMOS frequency sources with x-band quadrature VCO,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2789–2799, Sept. 2005.
[26] L. Jia, J.-G. Ma, K. S. Yeo, and M. A. Do, “9.3–10.4-GHz-band cross-coupled complementary oscillator with low phase-noise performance,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1273–1277, Sept. 2004.
[27] T.-Y. Choi, H. Lee, L. P. B. Katehi, S. Mohammad, ” Low phase noise 10 GHz VCO in 0.18μm CMOS proces,” European Conf. Wireless Tech., pp. 273 - 276, 2005.
[28] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[29] D. Baek, S. Ko, J.-G. Kim, D.-W. Kim, and S. Hong, “Ku-band InGaPGaAs HBT MMIC VCOs with balanced and differential topologies,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1353–1359, Apr. 2004.
[30] Y.-H. Chuang, S.-L. Jang, S.-H. Lee, R.-H. Yen and J.-J. Jhao, “5 GHz low power CMOS differential Armstrong VCOs with balanced current-reused topology ,” IEEE Microw. Wireless Compon. Lett., pp. 139-141, Feb. 2007.
[31] S.-L. Jang, C.-Y. Wu, C.-C. Liu, and M.-H. Juang, ” A 5.6 GHz low power balanced VCO in 0.18 μm CMOS,” IEEE Microw. Wireless Compon. Lett., pp. 233-235, April, 2009.
[32] S.-L. Jang, C.-C. Liu, Y.-J. Song, and M.-H. Juang , ” A low voltage balanced Clapp VCO in 0.13 μm CMOS technology,” Micro. and Opti. Tech. Lett., vol. 52, no. 7, pp., 1623-1625, 2010.
[33] J.-H. Chang and C.-K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 670-672, Oct. 2005.
[34] S. Lo and S. Hong, “Noise property of a quadrature balanced VCO,” IEEE Microw. Wireless Compon. Lett.,vol. 15, no. 10, pp.673-675, Oct. 2005.
[35] S.-H. Li, S.-L. Jang, Y.-S. Chuang and C.-F. Li, “A new LC-tank voltage controlled oscillator,” in IEEE Asia-Pacific Cir. Syst. Conf., Dec. 2004, pp. 425 – 427.
[36] H. Wu and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2001, pp. 412–413.
[37] S.-L. Jang, C.-C. Liu, J.-F. Huang, Y.-K. Wu, and J.-J. Chen, ” Quadrature VCOs using single-ended injected injection-locked frequency dividers,” IEICE Trans. Electron., Vol.E92-C, No.9, pp.1226-1229, Sept. 2009.
[38] J. Kim, J.-O. Plouchart, N. Zamdmer, R. Trzcinski, K.Wu, B. J. Gross, and M. Kim, “A 44 GHz differentially tuned VCO with 4 GHz tuning range in 0.12 μm SOI CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2005, pp. 416–417.
[39] W.-Z. Chen, C.-L. Kuo, and C.-C. Liu, “10 GHz quadrature-phase voltage controlled oscillator and prescaler,” . In Proceed. European Solid-State Circuits Conf., Sep. 2003, pp. 361-364
[40] Baek, D., T. Song, E. Yoon, and S. Hong, “8 GHz CMOS quadrature VCO using transformer-based LC tank," IEEE Microw. Wireless Compon. Lett.,vol. 13, No. 10, 446-448, Oct.2003.
[41] T.-H. Huang and Y.-R. Tseng, “A 1 V 2.2 mW 7 GHz CMOS quadrature VCO using current-reused and cross-coupled transformer-feedback technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 10, pp. 698-700, Oct. 2008.
[42] C. T. Fu and H. C. Luong, “A 0.8-V CMOS quadrature LC VCO using capacitive coupling ,” IEEE Asian Solid-State Circuits Conf. 436-439, 2007.
[43] C. T. Fu and H. C. Luong, “A 1V CMOS quadrature LC VCO using diode coupling,” IEEE Radio and Wireless Symposium, pp. 167-170, 2008.
[44] S.-L. Jang, C.-C. Shih, C.-C. Liu, C.-W. Chang, and C.-W. Hsue, ” CMOS quadrature VCOs using the varactor coupling technique,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 9, pp. 498-500, Sept. 2011.
[45] S.-L. Jang, C.-C. Shih, C.-C. Liu, and M.-H. Juang, “A 0.18 μm CMOS quadrature VCO using the quadruple push-push technique,” IEEE Microw. Wireless Compon. Lett., vol.20, pp.343–345, 2010.
[46] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148–1154, Jul. 2003.
[47] S.-L. Jang, T.-S. Lee, C.-W. Hsue and C.-W. Chang, ” A low voltage and low power bottom-series coupled quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 11, 722-724, Nov., 2009.
[48] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, and M.-H. Juang, “A low-voltage quadrature CMOS VCO based on voltage-voltage feedback topology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 696–698, Dec. 2006.
[49] A. W. L. Ng and H. C. Luong, “A 1-V 17-GHz 5-mW CMOS quadrature VCO based on transformer coupling,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1933–1941, Sep. 2007.
[50] C.-I. Shie, J.-C. Cheng, S.-C. Chou, and Y.-C. Chiang, "Design of cmos quadrature vco using on-chip trans-directional couplers," Progress In Electromagnetics Research, Vol. 106, 91-106, 2010.
[51] J. Crols and M. Steyaert, “A fully integrated 900 MHz CMOS double quadrature downconverter,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, San Francisco, CA, Feb. 1995, pp. 136–137.
[52] Y. C. Chiang, T. F. Han and H. H. Hsu, “Design of a CMOS quadrature VCO with current reuse method”, Microw. and Opti. Tech. Letts., Vol. 44, No.2, pp.202-204, Feb. 2005.
[53] C.-Y. Jeong and C. Yoo, “5-GHz low-phase noise CMOS quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 11, pp. 609–611, Nov. 2006.
[54] C.-Y. Yang, C.-H. Chang, and J.-H. Weng, “A quadrature CMOS VCO using a distributed MIM poly-phase network,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 2, pp. 107–109, 2011.
[55] T. Wakimoto and S. Konako, “A 1.9 GHz Si bipolar quadrature VCO with fully-integrated LC tank,” IEEE VLSl Circuits, pp 30-31, June1998.
[56] V. Kakani, F. F. Dai and R. C. Jaeger, “A 5 GHz low- power series coupled BiCMOS quadrature VCO with wide tuning range” Bipolar/BiCMOS Circuits and Technology Meeting, pp.1-4, Oct. 2006.
[57] S. Hackl et al., “A 28-GHz Monolithic integrated quadrature oscillator in SiGe bipolar technology,” IEEE JSSC, vol. 38, no. 1, pp. 135-137, January 2003.
[58] H. Shin, Z. Xu, and M. F. Chang, “A 1.8-V 6/9-GHz switchable dual-band quadrature LC VCO in SiGe BiCMOS technology,” in IEEE Radio Frequency Integrated Circuits Symp, Jun. 2002, pp. 71–74.
[59] J.-S. Syu, C. Meng, and G.-W. Huang, “SiGe HBT quadrature VCO utilizing trifilar transformers,” in A-SSCC 2008, pp. 465–468.
[60] W. L. Chan, H. Veenstra, and J. R. Long, “Quadrature VCO based on a common-collector SiGe Colpitts VCO,” Proc. IEEE ISSCC, February 2005, pp. 538-539.
[61] W. L. Chan, H. Veenstra, and J. R. Long, “A 32 GHz quadrature LC-VCO in 0.25-μm SiGe BiCMOS Technology,” Proc. IEEE ISSCC, Feb. 2005, pp. 538-539.
[62] D. Cordeau, J. Paillot, G. De Astis, and L. Dascalescu, “A dual band SiGe quadrature VCO design for GSM/DCS-PCS applications,” in 7th European Conf. Wireless Tech. Oct. 2004.

無法下載圖示 全文公開日期 2017/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE