簡易檢索 / 詳目顯示

研究生: 諾路門
Lukman - Noerochim
論文名稱: 稀土元素摻雜於BNKT壓電陶瓷之電性研究
Effect of Rare Earth Oxides on Dielectric and Electromechanical Properties of BNKT Piezoelectric Ceramics
指導教授: 周振嘉
Chen-Chia chou
口試委員: 曾俊元
Tseung-Yuen Tseng
蘇裕軒
Yu-Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 90
中文關鍵詞: 非鉛壓電陶瓷
外文關鍵詞: lead-free material of piezoelectric ceramic
相關次數: 點閱:148下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Bi0.5-xNa0.5-xKxRExTiO3 (稀土元素= La 、Sm 和 Gd) 非鉛陶瓷系統以濃度 x = 0.05, 0.025, 0.0125 和 Bi0.5-xNa0.5-yKyRExTiO3 陶瓷與x = 0.0125, 和 y = 0.09 以傳統陶瓷處理技術成功地製備陶瓷塊材。此陶瓷系統之結構與微觀結構以XRD繞射分析與電子顯微鏡微觀分析觀察,結果發現,Bi0.5-xNa0.5-xKxRExTiO3陶瓷具有rhombohedral相,且非晶質批覆於尖銳的試片表面,顯示於材料系統之中有玻璃相產生。粒徑大小則發現與摻雜之稀土元素不同而改變,且非晶相於試片中產生的量與摻雜量有關。於介電量測中觀察得知,相變化於試片中發生,分別是鐵電轉成反鐵電與鐵轉成順電相,且更廣的波峰顯示更多的擴散相變化,即 稀土元素造成缺陷與區域性的應變場使材料電性改變。由交流阻抗分析得知,非晶相對電性的影響取決頻率與溫度,由Cole-cole plots (Z’-Z”)得知,在不同溫度下皆測得之單半圓,表示材料的均質性與成份分布均勻。鬆弛現象的產生與氧空缺有關。高Gd摻雜量之BNKT陶瓷系統具有教少的非晶相,因此,較少的非晶相產生於晶界,造成電性的改變。並發現Sm摻雜之試片具有較高的殘留極化值(Pr=33.4 µC/cm2),較低的矯頑電場(Ec=19.8 kV/cm),因摻雜元素之離子半徑差異小,使電偶極矩較易旋轉。高密度與小晶粒尺寸,影響導電性與機電特性,於Gd摻雜之試片量測中,達到高Kp值與高晶界導電率。


    Lead-free material system of Bi0.5-xNa0.5-xKxRExTiO3 (RE = La, Sm and Gd) ceramics with concentration x = 0.05, 0.025, 0.0125 and Bi0.5-xNa0.5-yKyRExTiO3 ceramics with x = 0.0125, and y = 0.09 were successfully synthesized by conventional ceramic processing techniques. The structural and micro structural properties of these ceramics were examined using X-ray diffractometer, and electron microscopy. XRD of Bi0.5-xNa0.5-xKxRExTiO3 ceramics has shown the presence of phases. Amorphous phase coated on granular surfaces and sharp edge of fractured surface specimens indicates the formation of glassy phase in this system. Grain size is found to change with rare earth element. Microstructure indicates the different amount of amorphous phase in different rare earth doped ceramic. The temperature dependence of dielectric measurement reveal that the solid solutions experience two phase transitions from ferroelectric to anti-ferroelectric and anti-ferroelectric to paraelectric. Broadening of peak parameter indicates higher diffuse phase transition implying that rare earth dopants introduce defects and localized strain field and hence modification in electrical properties of material. AC impedance study was carried out to separate the contribution of amorphous phase and the effect of amorphous phase on electrical properties. Impedance is found to be dependent on temperature and frequency. Cole-cole plots (Z’-Z”) show single semicircles at all temperatures indicating the uniform distribution and homogeneity in the specimen under study. Relaxation phenomenon is found to exist due to oxygen vacancies. Grain boundary conductivity is observed to be high in Gd doped BNKT ceramics due to less amorphous phase indicating the effect of amorphous phase existing at the grain boundary on the electrical conductivity. Higher magnitude of remanant polarization (Pr=33.4 µC/cm2) with lower coercive field (Ec=19.8 kV/cm) is observed in Sm doped Bi0.5-xNa0.5-yKyRExTiO3 specimen, due to less difference in ionic radii of host and doped cation which makes easy switching of dipole. Highly dense and smaller grain size has effected on conductivity and electromechanical property to achieve higher value of kp as well as grain boundary conductivity in Gd doped BNKT specimen.

    Abstract i Preface ii Content iii List of Figure v List of Table vii CHAPTER I INTRODUCTION 1 1.1 Lead-Free Materials System I-1 1.2 The factor affecting dielectric and piezoelectric properties of lead containing ferroelectric perovskite I-2 1.3Research Objectives I-4 Chapter II Experimental Procedures II-1 2.1 Powder preparation II-2 2.2 Material synthesis II-3 2.3 Specimen Characterization II-7 2.3.1 Crystal structure by X-ray diffraction II-7 2.3.2 Density measurement II-7 2.3.3 Scanning electron microscopy (SEM) II-7 2.3.4 Transmission Electron Microscopy (TEM) II-8 2.3.4 Dielectric measurement II-8 2.3.5 Ferroelectric properties (Polarization vs Electric field) II-9 2.3.6 Electromechanical Characterization II-9 2.3.7 AC Impedance spectroscopy II-10 Chapter III The Effect of La, Sm and Gd on Dielectric and Electromechanical Properties of BNKT Ceramic III-1 3.1 Phase and Density Analysis III-1 3.2 Microstucture studies III-5 3.3 Dielectric Properties III-9 3.3.1 Temperature Dependence of Dielectric Constant and Loss Tangent III-10 3.4 Ferroelectric property III-20 3.5 Electromechanical property III-24 3.6 Conclusion III-26 Chapter IV Effect of La, Sm and Gd on Dielectric and Electromechanical Properties of BNKT ceramics on MPB region IV-1 4.1. Phase and Density IV-1 4.2. Microstructure IV-3 4.3. Dielectric Constant IV-5 4.3.1 Temperature dependence of dielectric constant and loss tangent IV-5 4.4. Ferroelectric property IV-6 4.5. Electromechanical property IV-8 4.6. Cole-Cole plots IV-10 4.7. Conclusions IV-22 Chapter V General Conclusions V-1 References viii Appendix xi

    References

    A.A. Bokov, Z. G. Ye. (2000). "Phenomenological description of dielectric permittivity peak in relaxor ferroelectric." Solid State Communications 116: 105-108.

    A. Garg, Agrawal. (2001). "Effect of rare earth (Er,Gd, Eu, Nd and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics
    " Materials Science and Engineering B86: 134-143.

    A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki (1999). "Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems." Japanese Journal of Applied Physics 38(9B): 5564-5567.

    B. Jaffe, W. R. Cook., H. Jaffe (1971). Piezoelectric Ceramics. New York, Academic.

    Buhrer, C. F. (1961). "Some properties of Bismuth perovskites." The Journal of Chemical Physic 36: 798.

    C. Ang, Z. Yu and Z. Jing. (2000). "Impurity-induced ferroelectric relaxor behavior in quantum paraelectric SrTiO3 and ferroelectric BaTiO3." Physical Review B 61(2): 957.

    R. E. Cohen, (1999). "Theory of ferroelectric: a vision for next decade and beyond." Journal of Physics and Chemistry of Solid 61: 139-146.

    D. Lin, D. Xiao, J. Zhu, P. Yu, H. Yan, L. Li (2004). "Synthesis and piezoelectric properties of lead-free piezoelectric [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 ceramics." Materials Letters 58: 615-618.

    H. Nagata, T. Takenaka (2001). "Additive effects on electrical properties of Bi0.5Na0.5TiO3 ferroelectric ceramics." Journal of the European Ceramic Society 21: 1299-1302.

    H. Yan, D. Xiao, P. Yu, J. Zhu, D. Lin, G. Li (2005). "The dependence of piezoelectric properties on the differences of the A-site and B-site ions for Bi1-xNaxTiO3 based ceramics." Materials and Design 26: 474-478.

    J. Shieh, K.C. Wu, C.S. Chen (2007). "Switching characteristic of MPB compositions of BNT-BT-BKT lead-free ferroelectric ceramic." Acta Materialia 55: 3081-3087.

    J. Yoo, D. Oh, Y. Jeong, J. Hong, M. Jung (2004). "Dielectric and piezoelectric characteristic of lead-free Bi0.5(Na0.84K0.16)0.5TiO3 ceramics substituted with Sr." Materials Letters 58: 3831-3835.

    K. Pengpat, S. H., S. Eitssayeam, U. Intatha (2006). "Morphotropic phase boundary and electrical properties of lead-free bismuth sodium lanthanum titanate-barium titanate ceramics." Journal Electroceramic 16: 301-305.

    K. Yoshi, Y. Hiruma., H. Nagata and T. Takenaka (2006). "Electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 lead free piezoelectric ceramic." Japanese Journal of Applied Physics 45(5B): 4493-4496.

    M. Aparna, T. Bhimasankaram, S V Suryanarayana, G. Prasad, G.S. Kumar (2001). "Effect of lanthanum doping on electrical and electromechanical properties of Ba1-xLaxTiO3." Bulletin Material Science 24(5): 497-504.

    N. Marandian Hagh, M. Allahverdi and A. Safari (2004). "Lead-free piezoelectric ceramic in the system of Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-BaTiO3." IEEE 04.

    R. Wang, Y Shimojo, T. Sekiya and M. Itoh (2005). "Predominant factors affecting the dielectric and piezoelectric properties of bismuth-containing complex perovskite solid solution." Solid State Communications 134: 791-795.

    S. R. Shannigrahi, F.E.H. Tay, K. Yao, R.N.P. Choudhary (2004). "Effect of rare earth (La, Nd, Sm, Eu, Gd, Dy, Er, and Yb) ion substitution on the microstructural and electrical properties of sol-gel grown PZT ceramics." Journal of the European Ceramic Society 24: 163-170.

    S.C. Abrahams, S.K. Kurtz and P.B. Jamieson (1968). "Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectric." Physical Review 172(2): 551.

    S. Said, Jean-Pierre Mercurio. (2000). "Relaxor behavior of low lead and lead-free ferroelectric ceramics of the Na0.5Bi0.5TiO3-PbTiO3 and Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 systems." Journal of the European Ceramic Society 21: 1333-1336.

    Shannon, R. D. (1976). "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides." Acta Crystallica A32: 751.

    Shimamura, K., Takeda, H., Kohno, T. and Fukuda, T. (1996). J. Cryst. Growth 163.

    Sinclair D. C. and A. R. West, Journal Applied Physic (1989), 66(8) : 3850.
    V.K. Katiyar and S. L. Srivastava (1994). "Dielectric and piezoelectric properties of lead zirconate titanate doped with chromium oxide." Journal Applied Physic 76(1): 455.

    T. Takenaka, K.I. Maruyama, and K. Sakata (1991). "(Bi0.5Na0.5)TiO3-BaTiO3 system for lead-free piezoelectric ceramic." Japanese Journal of Applied Physics 30(9B): 2236-2239.

    T.R.N. Kutty, P. Murugaraj (1987). "Phase relations and dielectric properties of BaTiO3 ceramics heavily substituted with neodyium." Journal of Materials Science 22: 3652-3664.

    T. Takenaka, H. Nagata (2005). "Current status and prospect of lead-free piezoelectric ceramic." Journal of the European Ceramic Society 25: 2693-2700.

    West, A. R. (1984). Solid state chemistry and its application.

    X.P. Jiang, L.Z. Li, M. Zeng, H. L. W. Chan (2006). "Dielectric properties of Mn-doped (Na0.8K0.2)0.5Bi0.5TiO3." Materials Letters 60: 1780-1790.

    X.X. Wang, K.W. Kwok, X.G. Tang, H.L.W. Chan, C.L. Choy (2004). "Electromechanical properties and dielectric behavior of (Bi0.5Na0.5)(1-1.5x)BixTiO3 lead-free piezoelectric ceramics." Solid State Communications 129: 319-323.

    Yamamoto, T. (1996). "Ferroelectric properties of the PbZrO3-PbTiO3 system." Japanese Journal of Applied Physics 35(9B): 5104-5108.

    Y. Yamashita, Y. Hosono, K. Harada and N. Ichinose (2000). "Effect of molecular mass of B-site ions on electromechanical coupling factors of lead-based perovskite piezoelectric materials." Japanese Journal of Applied Physics 39(9B): 5593-5596.

    Y. Makiuchi, R. Aoyagi, Y. Hiruma, H. Nagata, and T. Takenaka
    (2005). "BNT-BKT-BT based lead-free piezoelectric ceramics." Japanese Journal of Applied Physics 44(6B): 4350-4353.

    Y. Li, W. Chen, J. Zhou, Q. Xu, H. Sun, M. Liao (2004). "Dielectric and ferroelectric properties of lead-free Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 ferroelectric ceramic." Ceramic Internasional 31: 139-142.

    Y. Li, W. Chen, J. Zhou, Q. Xu, Y. Wang, H. Sun (2007). "Piezoelectric and dielectric properties of CeO2-doped Bi0.5Na0.44K0.06TiO3 lead-free ceramics." Ceramic Internasional 33: 95-99.

    Y. Hiruma, R. Aoyagi, H. Nagata and T. Takenaka (2005). "Ferroelectric and piezoelectric properties of (Bi0.5K0.5)TiO3 ceramics." Japanese Journal of Applied Physics 44(7A): 5040-5044.

    Y. Liao, D. Xiao, D. Lin, J. Zhu, P. Yu, L. Wu, X. Wang (2006). "The effect of CeO2-doping on piezoelectric and dielectric properties of Bi0.5(Na1-x-yKxLiy)0.5TiO3 piezoelectric ceramic." Materials Science and Engineering B 133: 172-176.

    Y. Liao, D. Xiao, D. Lin, J. Zhu, P. Yu, L. Wu, X. Wang (2006). "Synthesis and properties of Bi0.5(Na1-x-yKxAgy)0.5TiO3 lead-free piezoelectric ceramics." Ceramic Internasional.

    Z.Y. Cheng, L.Y. Zhang and X. Yao (1996). "Investigation of glassy behavior of lead magnesium niobate relaxors." Journal Applied Physic 79(11): 8615.

    QR CODE