簡易檢索 / 詳目顯示

研究生: 陳騟毅
Fong-Yi Chen
論文名稱: 不同觸媒對氣相成長硒化鋅一維奈米結構之影響
Effects of catalysts on the vapor phase growth of one-dimensional Zinc Selenide nanostructures
指導教授: 郭東昊
Dong-Hau Kuo
鄭如茵
Ju-Yin Cheng
口試委員: 蘇程裕
Cherng-Yuh Su
陳建光
Jem-Kun Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 90
中文關鍵詞: 硒化鋅奈米線氣相沉積法金觸媒
外文關鍵詞: ZnSe nanowires, vapor phase reaction, gold catalyst
相關次數: 點閱:225下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

硒化鋅因具有2.7eV的能帶差,且是直接能隙材料,所以一直被視為極具有潛力的光電材料之一,至今已應用在許多不同的領域中,比如:光電元件、發光二極體、平面顯示器、感測器與太陽能電池等。
本實驗以鋅粉和硒粉作為材料源,在鍍有金觸媒的(100)矽基板上經由氣相沉積法成長硒化鋅奈米線 。我們使用旋鍍法製作一層氧化鋁薄膜,用來分散金觸媒,使金觸媒在退火的過程中不會聚集而形成更大的顆粒,證明若能有效的降低金觸媒的尺寸就能成長出更細的硒化鋅一維奈米結構。
經過SEM顯微結構的觀察,基板置於800℃、鋅源於800℃與硒源630℃可成長出硒化鋅奈米線,並在PL光譜儀分析中觀測到因本質缺陷所導致的523nm左右的高強度純綠光波峰。


Zinc selenide(ZnSe), as a II-VI semiconductor with a band gap energy of 2.7 eV, has received much attention due to its excellent properties, such as large band-gap energy, direct recombination and resistance to a high electric field. Zinc selenide is one of the most important materials in electro-optics with a wide range of applications, including optical devices, LEDs, flat panel displays, sensors, and solar cells etc.
ZnSe nanowires have been synthesized through a vapor phase reaction of zinc and selenium powders on a (100) silicon substrate coated with gold catalysts. Spin-coated alumina oxide films on Si substrates were used to disperse the gold catalysts and to prevent gold catalysts from clustering as the catalyst films underwent an annealing process. By controlling the size of catalysts, the size of ZnSe nanowires is reduced .
ZnSe nanowires were synthesized with the substrates temperature at 800 oC, the zinc source at 800 oC, and the selenium source at 630oC. The characteristics and optical properties of the ZnSe nanowires were analyzed by XRD, SEM, TEM, and PL spectra. From PL spectra, the ZnS nanowires have a strong green emission band with PL band position centered at about 523nm.

目錄 第一章 導論1 1-1 奈米材料1 1-1-1 奈米材料特性簡介1 1-1-2 奈米材料結構2 1-2 VLS 成長2 1-3 奈米材料的特性4 1-3-1 小尺寸效應4 1-3-2 表面效應5 1-3-3 量子尺寸效應(Quantum size effect)6 第二章 硒化鋅一維奈米材料10 2-1 硒化鋅之結構10 2-2 硒化鋅的性質與應用11 2-3 分子束磊晶法12 2-3-1硒化鋅的形態和成長機制13 2-3-2硒化鋅的尺寸和成長方向15 2-3-3 MBE製備硒化鋅一維奈米線的光學性質18 2-4 化學氣相沉積法20 2-4-1在低壓的情況下製備硒化鋅一維奈米線22 2-4-2 在常壓的情況下製備硒化鋅一維奈米線25 2-5 有機金屬化學氣相沉積法31 2-5-1在不同的基板成長硒化鋅奈米線31 2-5-2在不同的壓力下成長硒化鋅奈米線33 2-6 硒化鋅奈米線的摻雜36 (b) HRTEM圖、(c)SAED圖、(d)奈米線上分支的TEM圖38 第三章 實驗方法與步驟39 3-1 實驗設備39 3-1-1 鍍金機39 3-1-2 DC濺鍍機( DC-Sputter )39 3-1-2 旋鍍機( Spin coating )39 3-1-3 自組式水平管型高溫爐40 3-2 實驗藥品選擇41 3-3實驗流程42 3-3-1 CVD爐管加熱42 3-4 性質量測及分析儀器43 3-4-1表面分析43 3-4-2結構分析44 3-4-3成分分析44 3-4-4光電特性分析45 第四章 實驗結果與討論46 4-1 表面形貌與顯微結構46 4-1-1 材料源種類對於沉積硒化鋅奈米結構之影響46 4-1-2 石墨載台之設計50 4-1-3 硒氣流之控制52 4-1-4 鋅源Zn+ZnO混合比例對硒化鋅奈米結構之影響54 4-1-5 沉積溫度對硒化鋅奈米結構之影響56 4-1-6 不同沉積時間對於沉積硒化鋅奈米結構之影響58 4-1-7 不同基板退火溫度對於沉積硒化鋅奈米結構之影響60 4-1-8 旋鍍法觸媒61 4-1-9 旋鍍法與濺鍍法之複合觸媒64 4-2 XRD與TEM分析硒化鋅奈米線結構71 4-2-1 硒化鋅材料之XRD結構分析71 4-2-2 TEM分析硒化鋅奈米線結構72 4-3 硒化鋅奈米線之PL量測分析77 4-4探討氧化鋅奈米線的成長過程及機制81 第五章 結論86

1.Rupp, J. Birringer, R. Phys. Rev. B36, 7888, (1987).
2.Hellstern, E.; Fecht, H.; Fu, Z.; Johnson, W. L. Appl. Phys. 65,305, (1989)
3.Horvath, J. Diffus. Defect. Data; Defect. Diffus. Forum 66,207, (1989)
4.Horvath, J.; Birringer, R.; Gleiter, H. Solid. State. Commun. 62,319,(1987)
5.Birringer, R.; Hahn, H.; Hofler, H. J.; Karch, J.; Gleiter, H. Diffus.Defect.Data: Defect. Diffus. Forum 59, 17, (1998)
6.Gleiter, H. Prog. Mater. Sci. 32,223, (1989)
7.R.S. Wanger, W.C. Ellis, Appl. Phys. Letters 4, 89 (1964).
8.E.I. Givargizov, J. Cryst. Growth 31, 20 (1975).
9.A.M. Morales and C.M. Lieber, Science 279, 208 (1998).
10.C.W. Zhou et al., J. of Mater. Res. 18, 245 (2003).
11.Yuan, Y., Fendler, J.H., Cabasso, I., 4, 2, 1992, 312-318(1992)
12.Alivisator, A. P., Science, 271,933 (1996)
13.Murray, C. B. et al, J. Am. Chem. Soc., 115,8706 (1993)
14.Xia Dong Yang, Dai Lun, Xu Wan Jin, You Li Ping, CHIN. PHYS. LETT. Vol.23, No.5(2006) 1317
15.Joysurya Basu, R. Divakar, Julia Nowak, Stephan Hofmann, Alan Colli, A. Franciosi, and C. Barry Carter, Journal of Applied Physics 104, 064302 (2008)
16.Bu Yuan Cai, Siu Deung Chan, Iam Keong Sou, Yu Fai Chan, Dang Sheng Su, and Ning Wang, Advanced Materials 2006, 18, 109-114
17.Thomas Aichele, Adrien Tribu, Catherine Bougero, Kuntheak Kheng, RegisAndre, and Serge Tatarenko, Applied Physucs Letters 93, 143106 (2008)
18.B. Xiang and H. Z. Zhang, G.. H. Li, F. H. Yang, and F. H. Su, R. M. Wang, j. Xu, G.. W. Lu, X. C. Sun, Q. Zhao, and D. P. Yu, Applied Physucs Letters volume 82, number 19, 12 MAY 2003
19.Z. D. Hu, X. F. Duan, M. Gao, Q. Chen, and L. M. Peng, Journal of Physical Chemistry C 2007, 111. 2987-2991
20.U. Philipose, T. Xu, S. Yang, P. Sun, Y. Q.Wang and K L Kavanagh,, Journal of Applied Physics 100, 084316 (2006)
21.U. Philipose, Ping Sun, Tao Xu, and Harry E. Ruda, L. Yang and K. L. Kavanagh, Journal of Applied Physics 101, 014326 (2007)
22.U. Philipose, Ankur Saxena, Harry E Ruda, P J Simpson, Y Q Wang and K L Kavanagh, Nanotechnology 19 (2008) 215715 (6pp)
23.C X Shan, Z Liu, X T Zhang, C C Wong and S K Hark, Nanotechnology 17 (2006) 5561–5564
24.X. T. Zhang, Z. Liu, K. M. Ip, Y. P. Leung, Quan Li, and S. K. Hark, Journal Of Applied Physics Volume 95, Number 1015, May 2004
25.Chunrui Wang, Juan Wang, Quan Li, and Gyu-Chul Yi, Advanced functional materials. 2005, 15, 1471-1477

QR CODE