簡易檢索 / 詳目顯示

研究生: JONI WELMAN SIMATUPANG
JONI - WELMAN SIMATUPANG
論文名稱: Vertical InGaAsP/InP Taper FP-LD For Injection-Locking Applications
Vertical InGaAsP/InP Taper FP-LD For Injection-Locking Applications
指導教授: 李三良
San-Liang Lee
口試委員: 邱逸仁
Yi-Jen Chiu
曹恆偉
Hen-Wai Tsao
劉政光
Cheng-Kuang Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 92
中文關鍵詞: diffusion-limited etchingvertical taper waveguideFabry Perot Laser DiodeInjection-Locking TechniqueEdge Emitting Laser
外文關鍵詞: diffusion-limited etching, vertical taper waveguide, Fabry Perot Laser Diode, Injection-Locking Technique, Edge Emitting Laser
相關次數: 點閱:208下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, vertical InGaAsP/InP taper FP-LD was successfully realized using diffusion-limited etching method as a simple and low-cost fabrication technology that easier to be controlled compared to others method. For the test samples, we used different gap widths and mask widths to control the etching rate. But, for the real samples, we chose the fixed gap width with different taper lengths in a linear profile. Under optimal conditions, we can have the etching selectivity ratio of two between taper and non-taper region for the test and real samples. It means that this method has a good repetition results.
    For the laser without taper, the best laser diode was achieved is for 300 µm cavity length that produced 6.774 mW output power with 18% slope efficiency. And for the laser with taper region, two laser diodes are the best. First is the 500 µm cavity length with 200 µm taper produces 8.566 mW output power with 16% slope efficiency, and the second is the 800 µm cavity length with 500 µm taper length produces 5.197 mW output power with 10.8% slope efficiency. From the divergence angle measurement results before facets coating is known that both laser diodes performed the smallest divergence angle (19ox19o) for vertical and lateral direction. If the measurement results are correct, although there are not much improvement have been made between the taper and non-taper divergence angles, but at least from the data we are confirmed that the taper FP-LD has the better performance than the conventional ones.
    For the injection-locking applications, the high SMSR value that more than 30 dB can be achieved. It is believed that this vertical InGaAsP/InP taper FP-LD can be a good and sufficient candidate as a light source in WDM-PON system and technology.


    In this thesis, vertical InGaAsP/InP taper FP-LD was successfully realized using diffusion-limited etching method as a simple and low-cost fabrication technology that easier to be controlled compared to others method. For the test samples, we used different gap widths and mask widths to control the etching rate. But, for the real samples, we chose the fixed gap width with different taper lengths in a linear profile. Under optimal conditions, we can have the etching selectivity ratio of two between taper and non-taper region for the test and real samples. It means that this method has a good repetition results.
    For the laser without taper, the best laser diode was achieved is for 300 µm cavity length that produced 6.774 mW output power with 18% slope efficiency. And for the laser with taper region, two laser diodes are the best. First is the 500 µm cavity length with 200 µm taper produces 8.566 mW output power with 16% slope efficiency, and the second is the 800 µm cavity length with 500 µm taper length produces 5.197 mW output power with 10.8% slope efficiency. From the divergence angle measurement results before facets coating is known that both laser diodes performed the smallest divergence angle (19ox19o) for vertical and lateral direction. If the measurement results are correct, although there are not much improvement have been made between the taper and non-taper divergence angles, but at least from the data we are confirmed that the taper FP-LD has the better performance than the conventional ones.
    For the injection-locking applications, the high SMSR value that more than 30 dB can be achieved. It is believed that this vertical InGaAsP/InP taper FP-LD can be a good and sufficient candidate as a light source in WDM-PON system and technology.

    TABLE OF CONTENTS ABSTRACT………………………………………………………………I ACKNOWLEDGMENTS……………………………………………….II LIST OF FIGURES……………………………………………………..VI LIST OF TABLES……………………………………………………...IX CHAPTER 1-INTRODUCTION 1.1 WDM-PON Technology 1 1.2 Injection-Locking FP-LD 3 1.3 Theoretical Model of Injection-Locking FP-LD 6 1.3.1 Wavelength-Locking FP-LD 7 1.3.2 Spectrum Sliced ASE 8 1.3.3 Optical Power 9 1.4 Research Motivation 10 1.5 Thesis Overview 10 CHAPTER 2-BASIC THEORY OF LASER DIODE 2.1 Semiconductor Optoelectronics 11 2.2 Semiconductor Laser Diode 13 2.3 Basic Structure and Material Systems 15 2.4 Strained Multi-Quantum Well (MQW) Lasers 19 2.5 Carrier Confinement 22 2.6 Optical Confinement 23 2.7 Fiber Optic & Laser Emission 25 2.8 Laser to Fiber Coupling 28 CHAPTER 3-DEVICE FABRICATION 3.1 Background 30 3.1.1 Lateral Tapers 32 3.1.2 Vertical Tapers 33 3.1.3 Etching Techniques 34 3.2 Vertical Taper Design 35 3.3 Fabrication Process 37 3.3.1 Diffusion-Limited Etching Method 37 3.3.2 Mask Pattern Design (Test & Real Samples) 38 3.3.3 Diffusion Limited Etching & Ridge-Waveguide 39 3.3.4 Epitaxial Re-Growth & Self-Alignment Process 45 3.3.5 Metallization & Lift-off 49 3.3.6 Lapping & Polishing 51 3.3.7 N-Metal Contact & RTA Process 51 CHAPTER 4-EXPERIMENTAL RESULTS 4.1 Light-Current Measurement Results 53 4.2 Divergence Angle (Far-Field) Measurement Results 60 4.3 Injection-Locking Measurement Results 63 CHAPTER 5-CONCLUSION 71 REFERENCES 72 APPENDICES 83-92

    REFERENCES
    Acknowledgements
    [1] S.E. Fischer, “Acknowledgements of Semiconductor Lasers with Gallium Indium Arsenide Active Regions for Monolithic Optoelectronics,” Cornell University, 1987

    Chapter 1
    [1] “WDM-PON for the Access Network,” white paper by Novera Optics, Inc.
    [2] Z. Xu, Y. J. Wen, W-D. Zhong, C-J. Chae, X-F. Cheng, Y. Wang, C. Lu, and J. Shankar, “High-Speed WDM-PON using CW injection-locked Fabry-Perot laser diodes,” Optics Express, vol. 15 pp. 2953-2962, 2007
    [3] K-Y. Park, J-S. Baik, and C-H. Lee, “Effects of the Injected ASE Bandwidth on the Performance of Wavelength-locked Fabry-Perot Laser Diodes,” J. Optical Sociecty of Korea, vol. 9, pp. 1-4, 2005
    [4] H.D. Kim, S. Kang, C. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett., vol. 12, pp. 1067-1069, 2000
    [5] X. Jin and S.L. Chuang, “Injection Locking in Fabry-Perot Quantum Well Lasers,” IEEE, 2005
    [6] X. Cheng, Y.J. Wen, Z. Xu, Y. Wang, and J. Shankar, “Impact of Front Facet Reflectivity and Operation Conditionon Injection-Locking Fabry-Perot Laser Diodes with Spectrum Sliced ASE Noise in WDM-PON,” JTuA137.pdf
    [7] X. Cheng, Y.J. Wen, Z. Xu, Y. Wang, “Characterization of Fabry-Perot laser diodes injection locked by spectrum sliced ASE noise in WDM-PON,” Optical Fiber Tehnology, vol. 15, pp. 161-164, 2009
    [8] A. Banerjee, Y. Park, F. Clarke and H. Song, S. Yang, G. Kramer, K. Kim, B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review [Invited],” J. Optical Networking, vol. 4, pp. 737-758, 2005
    [9] S.J. Park, C. H. Lee, K.T. Jeong, H.J. Park, J.G. Ahn, K.H. Song, “Fiber-to-the Home Services Based on Wavelength-Division-Multiplexing Passive Optical Network-Invited Paper,” J. Lightwave Technol., vol. 22, pp. 2582-2591, 2004
    [10] N.H. Zhu, W. Han, W. Li, W. Chen, J.M. Wen, Y. Liu, and L. Xie, “Single Mode Operation of A FP Laser Locked by A Tunable Laser,” Microwave and Optical Technol. Lett., vol. 50, pp. 1888-1892, 2008
    [11] S. Jacobs, “Laser Spectroscopy” Addison-Wesley Publishing, Arizona, Tucson, 1975
    [12] M. Lockwood, “Anti-Reflective Coating of A Diode Laser System,” Union College Physics Department
    [13] D. Ludwig, “Applying Anti-Reflective Coatings To Laser Diodes,” Union College Physics Department
    [14] R. Lang, “Injection Locking Properties of a Semiconductor Laser,” IEEE J. Quantum Electron., vol. 18, pp. 976-983, 1982
    [15] J. Horer and E. Patzak, “Large-Signal Analysis of All-Optical Wavelength Conversion Using Two-Mode Injection-Locking in Semiconductor Lasers,” IEEE J. Quantum Electron., vol. 33, pp. 596-608, 1997
    [16] K-Y. Park, S-G. Mun, K-M. Choi, and C-H. Lee, “A Theoretical Model of a Wavelength-Locked Fabry-Perot Laser Diode to the Externally Injected Narrow-Band ASE,” IEEE Photon. Technol. Lett., 17 (2005), 1797-1799
    [17] K-Y. Park, and C-H. Lee, “Noise Characteristics of a Wavelength-Locked Fabry-Perot Laser Diode,” IEEE J. Quantum Electron., vol. 44, pp. 995-1002, 2008
    [18] R. Adler, “A Study of Locking Phenomena in Oscillators,” Proceeding of The IEEE, vol. 61, pp. 1380-1385, 1973 [reprinted from the original version of June 1946]
    [19] W.H. Steier and H.L. Stover, “Locking of Laser Oscillators by Light Injection,” Bell Telephone Laboratories, NJ, 1966
    [20] S. Kobayashi, J. Yamada, S. Machida, T. Kimura, “Single-Mode Operation of 500 Mbit/s Modulated AlGaAs Semiconductor Laser by Injection Locking,” Electron. Lett., vol. 16, pp. 746-748, 1980
    [21] S. Kobayashi and T. Kimura, “Injection Locking in AlGaAs Semiconductor Laser,” IEEE J. Quantum Electron., vol.17, pp. 681-689, 1981
    [22] Y.J. Wen, C.J. Chae, “WDM-PON upstream transmission using Fabry-Perot laser diodes externally injected by polarization-insensitive spectrum-sliced supercontinuum pulses,” Optic Communications, vol. 260, pp. 691-695, 2006
    [23] H.K. Tsang, L.Y. Chan, S.P. Yam, C. Shu, “Experimental Characterization of Dual-Wavelength Injection-Locking of a Fabry-Perot Laser Diode,” Optics Communications, vol. 156, pp. 321-326, 1998
    [24] B. Ramamurthy, B. Mukherjee, “Wavelength Conversion in WDM Networking,” IEEE J. Select. Areas in Communications, vol. 16, pp. 1061-1073, 1998
    [25] T.R. Zaman and R.J. Ram, “Modulation of Injection Locked Lasers for WDM-PON Applications,” OFC/NFOEC, 2008
    [26] K. Iwashita and K. Nakagawa, “Suppression of Mode Partition Noise by Laser Diode Light Injection,” IEEE J. Quantum Electron., vol. 18, pp. 1669-1674, 1982
    [27] G. Yabre and J. Le-Bihan, “Reduction of nonlinear distortion in directly modulated semiconductor lasers by coherent light injection,” IEEE J. Quantum Electron., vol. 33, pp. 1132-1140, 1997
    [28] W. Han, N.H. Zhu, L. Xie, M. Ren, B.H. Zhang, L. Li, and H.G. Zhang, “The Optical Injection Locking Technique and Its Applications for WDM-PON Spare Function,” Photonics and Optoelectronics Meetings (POEM) 2008: Fiber Optic Communication and Sensors, Proceeding of SPIE, 2009
    [29] R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, “Injection Locking in Distributed Feedback Semiconductor Lasers,” IEEE J. Quantum Electron., vol. 27, pp. 1688-1695, 1991
    [30] J. Wang, M.K. Haldar, L. Li, and F.V.C. Mendis, “Enhancement of Modulation Bandwidth of Laser Diodes by Injection Locking,” IEEE Photon. Technol. Lett., vol. 8, pp. 34-36, 1996
    [31] T.B. Simpson, J.M. Liu, “Enhanced Modulation Bandwidth in Injection-Locked Semiconductor Lasers,” IEEE Photon. Technol. Lett., vol. 9, pp. 1322-1324, 1997
    [32] T.B. Simpson, J.M. Liu, A. Gavrielides, “Bandwidth Enhancement and Broadband Noise Reduction in Injection-Locked Semiconductor Laser,” IEEE Photon. Technol. Lett., vol. 7, pp. 709-711, 1995
    [33] X. Jin, S.L. Chuang, “Bandwidth Enhancement of Fabry-Perot Quantum Well Lasers by Injection Locking”
    [34] H-K. Sung, “Strong Optical Injection Locking of Edge-Emitting Lasers and Its Applications,” PhD Dissertation, EECS of University of California at Berkeley, August 18, 2006

    Chapter 2
    [1] http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_8/illustr/bandgap_misfit.gif
    [2] David Burns, Solid-State Laser Engineering Development Team, Institute of Photonics, University of Strathclyde, Glasgow
    [3] http://cord.org/cm/leot/course04_mod06/mod04_06.htm
    [4] http://en.wikipedia.org/wiki/Population_inversion
    [5] Amnon Yariv and Pochi Yeh, “PHOTONICS Optical Electronics in Modern Communications, 6th ed,”, Oxford University Press, 2007
    [6] http://cord.org/cm/leot/course04_mod06/mod04_06.htm
    [7] M. Leonard Riaziat, “Introduction to High-Speed Electronics and Optoelectronics,” John Wiley & Sons, 1996
    [8] P. Bhattacharya, “Semiconductor Optoelectronic Devices,” Prentice Hall International, 2nd Edition, 1997
    [9] G.P. Agrawal and N.K. Dutta, “Semiconductor Laser” 2nd Edition, New York: Van Nostrand , 1993
    [10] L.A. Coldren, S.W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” John Wiley and Sons, 1995
    [11] J. Singh, “Electronic and Optoelectronic Properties of Semiconductor Structures,” Cambridge University Press, 2003
    [12] Jens Buus, Markus-Christian Amann, and Daniel J. Blumenthal, “Tunable Laser Diodes and Related Optical Sources, 2nd ed,” John Wiley & Sons, 2005
    [13] M. Silver and E.P. O’Reilly, “Optimization of Long Wavelength InGaAsP Strained Quantum-Well Lasers,” IEEE J. Quantum Electron., vol 31, pp. 1193-1200, 1995
    [14] PAC, 2004, 76, 1985 (Definition of terms related to polymer blends, composites, and multiphase polymeric materials (IUPAC Recommendations 2004)) on page 1996, IUPAC Compendium of Chemical Terminology 2007
    [15] D. Nichols, M. Sherwin, G. Munns, J. Pamulapati, J. Loehr, J. Singh, P. Bhattacharya, and M. Ludowise, “Theoretical and Experimental Studied of the Effects of Compressive and Tensile Strain on the Performance of InP-InGaAs Multiquantum-Well Lasers,” IEEE J. Quantum Electron., vol. 28, pp. 1239-1242, 1992
    [16] William J. Wadsworth, “Diode Laser, An Overview”, 1994 in www.physics.ox.ac.uk/.../laser/diodes.html
    [17] Uyless Black, OPTICAL NETWORKS: Third Generation Transport Systems, Prentice Hall PTR, New Jersey, 2002
    [18] http://www.rp-photonics.com/img/threshold_and_slope.png
    [19] Application Note HFAN-02.0.2 (Rev.1; 04/08), “Laser Diode to Single-Mode Fiber Coupling Efficiency: Part 1–Butt Coupling,” pp. 2-7, Maxim Integrated Products
    [20] C. Langrock and J.J. Zhang, “LASER-TO-FIBER COUPLING,” EE234 Photonics Laboratory, Lab 4
    [21] T. Wongcharoen, B.M.A. Rahman, M. Rajarajan, K.T.V. Grattan, “Spot-Size Conversion Using Uniform Waveguide Sections for Efficient Laser-Fiber Coupling,” J. Lightwave Technol., vol. 19, pp. 708-716, 2001

    Chapter 3
    [1] I. Moerman, M. D’Hondt, W. Vanderbauwhede, G. Coudenys, J. Haes, P. De Dobbelaere, R. Baets, P. Van Daele, and P. Demeester, “Monolithic Integration of a Spot Size Transformer With a Planar Buried Heterostructure InGaAsP/InP-Laser Using the Shadow Masked Growth Technique,“ IEEE Photon. Technol. Lett., vol. 6, pp. 888-890, 1994
    [2] E.O. Ladele, B.M.A. Rahman, T. Wongcharoen, S.S.A. Obayya, and K.T.V. Grattan, “Design optimization of monolithically integrated semiconductor spot-size converters for efficient laser-fiber coupling,” Proceedings EDMO, Vienna, 2001
    [3] I. Moerman, P.P. Van Daele, P.M. Demeester, “A Review on Fabrication Technologies for the Monolithic Integration of Tapers with III–V Semiconductor Devices,” IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 1308-1320, 1997
    [4] F.M. Soares, F. Karouta, E.J. Geluk, J.H.C. Van Zantvoort, H. De Waardt, R. Baets, and M.K. Smit, “Extremely low-loss vertically-tapered spot size converter in InP-based waveguide structure,” Proc. Symposium IEEE/LEOS Benelux Chapter, Ghent, 2004
    [5] G.R. Hadley, “Design of Tapered Waveguides for Improved Output Coupling,” IEEE Photon. Technol. Lett., vol 5, pp. 1068-1070, 1993
    [6] K. Kasaya, Y. Kondo, M. Okamoto, O. Mitomi, and M. Naganuma, “Monolithically Integrated DBR Lasers with Simple Tapered Waveguide for Low-Loss Fiber Coupling,” Electron. Lett., vol. 29, pp. 2067-2068, 1993
    [7] J. N. Walpole, Z. L. Liau, J. Missaggia, and D. Yap, “Diode Lasers with Cylindrical Mirror Facets and Reduced Beam Divergence,” Appl. Phys.Lett., vol. 50, pp. 1219-1221, 1987
    [8] G. A. Vawter, R. E. Smith, H. Hou, and J. R. Wendt, “Semiconductor Lasers with Tapered-Rib Adiabatic-Following Fiber Coupler for Expanded Output-Mode Diameter,” IEEE Photon. Technol. Lett., vol. 9, pp. 425-427, 1997
    [9] J. G. Bauer, M. Schier, and G. Ebbinghaus, “High Responsivity Integrated Tapered Waveguide PIN Photodiode,” Proc. 19th Europe Conf. Optical Communication (ECOC ’93), pp.277–280, Montreux, Switzerland
    [10] R. Zengerle, O. Leminger, W. Weiershausen, K. Faltin, and B. Hubner, “Laterally Tapered InP-InGaAsP Waveguides for Low-Loss Chip-to-Fiber Butt Coupling: A Comparison of Different Configurations,” IEEE Photon. Technol. Lett., vol. 7, pp. 532–534, 1995
    [11] Y. Yoshimoto, K. Kawano, Y. Hasumi, T. Takeuchi, S. Kondo, and Y. Noguchi, “InGaAlAs/InAlAs Multiple Quantum Well Phase Modulator Integrated with Spot Size Conversion Structure,” IEEE Photon. Technol. Lett., vol. 6, 208–210, 1994
    [12] K. Kawano, M. Kohtoku, N. Yoshimoto, S. Sekine, and Y. Noguchi, “2x2 InGaAlAs/InAlAs MultiQuantum Well (MQW) Directional Coupler Waveguide Switch Modules Integrated with Spot Size Convertors,” Electron. Lett., vol. 30, pp. 353–354, 1994
    [13] M. Wada, M. Kohtoku, K. Kawano, S. Kondo, Y. Tohmori, Y. Kondo, K. Kishi, Y. Sakai, I. Kotaka, Y. Noguchi, and Y. Itaya, “Laser Diodes Monolithically Integrated with Spot-Size Converters Fabricated on 2 inch InP Substrates,” Electron. Lett., vol. 31, pp. 1252–1254, 1995
    [14] T. Schwander, S. Fischer, A. Kramer, M. Laich, K. Luksic, G. Spatschek, and M. Warth, “Simple and Low-Loss Fiber-to-Chip Coupling by Integrated Field-Matching Waveguide in InP,” Electron. Lett., vol. 29, pp. 326–328, 1993
    [15] A.N.M. Masum Choudhury, T.R. Stanczyk, D. Richardson, A. Donval. R. Oron, “Method of Improving Light Coupling Efficiency Between Optical Fibers and Silicon Waveguides,” IEEE Photon. Technol. Lett., vol. 17, pp. 1881-1883, 2005
    [16] I. Moerman, M. D’Hondt, W. Vanderbauwhede, P. Van Daele, P. Demeester, and W. Hunziker, “InGaAsP/InP Strained MQW Laser with Integrated Mode Size Converter Using the Shadow Masked Growth Technique,” Electron. Lett., vol. 31, pp. 452–454, 1995
    [17] T. Brenner and H. Melchior, “Integrated Optical Modeshape Adapters in InGaAsP/InP for Efficient Fiber-to-Waveguide Coupling,” IEEE Photon. Technol. Lett., vol. 50, pp. 1053–1056, 1993
    [18] T. Brenner, W. Hunziker, M. Smit, M. Bachmann, G. Guekos, and H. Melchior, “Vertical InP/InGaAsP Tapers for Low-Loss Optical Fiber Waveguide Coupling,” Electron. Lett., vol. 28, pp. 2040–2041, 1992
    [19] B. Jacobs, R. Zengerle, K. Faltin, and W. Weiershausen, “Vertically Tapered Spot Size Transformers by A Simple Masking Technique,” Electron. Lett., vol 31, pp. 794–796, 1995
    [20] G. Muller, B. Stegmuller, H. Westermeier, and G. Wenger, “Tapered In/InGaAsP Waveguide Structure for Efficient Fiber-Chip Coupling,” Electron. Lett., vol. 2, pp. 1836–1838, 1991
    [21] G. Wenger, L. Stoll, B. Weiss, M. Schienle, R. Muller-Nawrath, S. Eichinger, J. Muller, B. Acklin, G.Muller, “Design and Fabrication of Monolithic Optical Spot Size Transformer (MOST’s) for Highly Efficient Fiber-Chip Coupling,” J. Lightwave Technol., vol. 12 1782-1790, 1994
    [22] M. Chien, U. Koren, T. L. Koch, B. I. Miller, M. Oron, M. G. Young, and J. L. Demiguel, “Short Cavity Distributed Bragg Reflector Laser with an Integrated Tapered Output Waveguide,” IEEE Photon. Technol. Lett., vol. 3, pp. 418–420, 1991
    [23] H. Huang, X. Wang, X. Ren, Q. Wang, and Y. Huang, “Selective Wet Etching of InGaAs/InGaAsP in HCl/HF/CrO3 Solution: Application to Vertical Taper Structures in Integrated Optoelectronic Devices,” J. Vac. Sci. Technol. B 23(4), pp. 1650-1653, 2005
    [24] T. Brenner, M. Bachman, and H. Melchior, “Vertically tapered In-GaAsP/InP Waveguides for Highly Efficient Coupling to Flat-End Singlemode Fibers,” Appl. Phys. Lett., vol. 65, pp. 798–800, 1994
    [25] H. Jeon, J-M. Verdiell, M. Ziari, and A. Mathur, “High-Power Low-Divergence Semiconductor Lasers for GaAs-Based 980-nm and InP-based 1550-nm Applications,” IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 1344- 1350, 1997
    [26] J. Stulemeijer, A. F. Bakker, I. Moerman, F. H. Groen, and M. K. Smith, “InP-Based Spotsize Converter for Integration with Switching Devices,” IEEE Photon. Technol. Lett., vol. 11, pp. 81-83, 1999
    [27] T. L. Koch, U. Koren, G. Eisenstein, M. G. Young, M. Oron, C. R. Giles, and B. I. Miller, “Tapered Waveguide InGaAs/InGaAsP Multiple-Quantum-Well Lasers,” IEEE Photon. Technol. Lett., vol. 2, pp. 88–90, 1990
    [28] N. Kitano, H. Komano, H. Ishikawa, K. Maru, K. Tanaka, S. Kashimura, and H. Mimura, “Spot Size Converter with Vertically Tapered Waveguide Core Fabricated by Sputter Etching,” 6A-4-p. 160
    [29] G. Belenky, L. Shterengas, C.W. Trussell, C.L. Reynolds, Jr., M.S. Hybertsen, and R. Menna, “Trends in semiconductor laser design: Balance between leakage, gain and loss in InGaAsP/InP MQW structures”
    [30] T. Kunii, Y. Matsui, Y. Katoh, T. Kamijoh, “Low Threshold Current and High Output Power Operation for 1.5µm GRINSCH Strained MQW Laser Diode,” Electron. Lett., vol. 31, pp. 282-284, 1995
    [31] H. Hirayama, Y. Miyake, and M. Asada, “Analysis of Current Injection Efficiency of Separate-Confinement-Heterostructure Quantum-Film Lasers,” IEEE J. Quantum Electron., vol. 28, pp. 68-74, 1992
    [32] T. Brenner and H. Melchior, “Local Etch-Rate Control of Masked InP/InGaAsP by Diffusion-Limited Etching,” J. Electrochem. Soc., vol. 141, pp. 1954-1956, 1994

    Chapter 4
    [1] S.-W. Ryu, S.-B. Kim, J.-S. Sim, and J. Kim, “1.55-µm Spot-Size Converter Integrated Laser Diode With Conventional Buried-Heterostructure Laser Process,” IEEE Photon. Technol. Lett., vol. 15, pp. 12-14, 2003
    [2] H. Bissessur, C. Graver, O. Le Guoezigou, G. Michaud, and F. Gaborit, “Ridge Laser with Spot-Size Converter in a Single Epitaxial Step for High Coupling Efficiency to Single-Mode Fibers,” IEEE Photon.Technol.Lett., vol. 10, pp. 1235-1237, 1998
    [3] I. Moerman, M. D’Hondt, W. Vanderbauwhede, G. Coudenys, J. Haes, P. De Dobbelaere, R. Baets, P. Van Daele, and P. Demeester, “Monolithic Integration of a Spot Size Transformer With a Planar Buried Heterostructure InGaAsP/InP-Laser Using the Shadow Masked Growth Technique,“ IEEE Photon. Technol. Lett., vol. 6, pp. 888-890, 1994

    QR CODE