簡易檢索 / 詳目顯示

研究生: 王瑞鈞
juei-chun Wang
論文名稱: 錳酸鍶鑭陶瓷薄膜應用於微溫度感測元件之研究
Study of La0.7Sr0.3MnO3 thin film applied on micro-thermistor sensor
指導教授: 莊敏宏
miin-horng Juang
口試委員: 李奎毅
kuei-yi Lee
史德智
der-chi Shye
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 90
中文關鍵詞: 錳酸鍶鑭電阻溫度係數鈣鈦礦結構
外文關鍵詞: LSMO, temperature coefficient of resistance, perovskite structure
相關次數: 點閱:281下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究之錳酸鍶鑭(La1-xSrxMnO3, LSMO)薄膜因具有高的電阻溫度系數(Temperature coefficient of Resistance, TCR)之特性,所以是應用在非冷卻型紅外線溫度感測器的重要熱敏電阻材料。具鈣鈦礦結構之陶瓷材料如鋯鈦酸鉛(PZT)、鈦酸鍶鉛(PST)及鈦酸鋇(BTO)通常具有高TCR特性,但是電阻值很高,若應用於溫度感測則其電路設計會有難以匹配的問題。但錳酸鍶鑭薄膜在室溫下電阻值小於傳統鈣鈦礦結構約1000倍,且展現高TCR值與良好的紅外線吸收能力,因此以錳酸鍶鑭作為研究對象。
研究中發現,根據測量結果MIM結構在50℃、量測電壓5V所測得之錳酸鍶鑭薄膜呈現正電阻溫度係數(Positive Temperature coefficient of Resistance, PTCR), TCR值約為2.5%,電阻值約為100M 歐姆。而鍍製於指叉電極微熱敏電阻結構所測得之結果顯示,在室溫下室呈現負電阻溫度係數(Negative Temperature coefficient of Resistance, NTCR),其TCR之絕對值約為1.6%,電阻值約為17K 歐姆。錳酸鍶鑭薄膜於室溫下之電阻溫度係數-1.6%與2.5%皆大於金屬型微熱敏電阻的電阻溫度係數0.1%,是適合應用於室溫下的高感度感測器。
本實驗元件製作利用微細加工製程在SiO2/Si之基板上製作三種微熱敏電阻元件,並利用RF磁控式濺鍍(sputtering)法製備LSMO薄膜。物性方面使用X光繞射(XRD)進行結晶結構分析,並利用場發射式電子顯微鏡(FESEM)研究薄膜之表面型態與結構分析。電性方面則以半導體特性量測儀(Keithley 4200)搭配可變溫探針站(Probe station)進行為熱敏電阻元件其電阻對溫度的特性量測。


For the high temperature coefficient of resistance (TCR), La1-xSrxMnO3 (LSMO) thin films with perovskite structure is an important material of thermistor which is applied on non-cooled infrared temperature sensor. The conventional ceramic materials with perovskite structure, such as lead zirconate titanate (PZT), lead strontium titanate (PST) and barium titanate (BTO), generally have a high TCR characteristic and high resistance. On the circuit design, the device with high resistance is difficult to be matched. The resistance of LSMO thin film is less than conventional perovskite structure 1000 times at room temperature. Beside that, LSMO show high TCR property, good infrared absorption and low resistance which is 1000 times lesser than conventional perovskite structure, therefore it is a excellent material of thermistor.
In the thesis, LSMO films exhibit positive temperature coefficient of resistance (PTCR) at MIM structure temperature 50 ℃, and biased at 5V. TCR value is about 2.5%, and the resistance is approximately 100 mega ohms. The interdigital electrodes of the micro-thermistor show negative temperature coefficient of resistance (NTCR) at room temperature. The absolute value of TCR is about -1.6%, and the resistance is approximately 17K ohms. At room temperature, the TCR of LSMO thin film is larger than metal micro-thermistor that is 0.1%. As a result, it is high-sensitivity sensors at room temperature
The experimental process is using Semiconductor process to fabricate three kinds of micro thermistor device and RF magnetron sputtering to prepare LSMO film. On the physical characteristic, crystal structure could be analyzed by X-ray diffraction. In addition, surface morphology and cross-sectional structure could be analyzed by Field Emission Scanning Electron Microscopy. On the electrical property, the resistance versus temperature of micro thermistor could be detected by Keithley 4200 and Probe station.

中文摘要……………………………………………………………………………….i 英文摘要………………………………………………………………………………ii 目錄…………….……………………………………………………...……………...iv 圖目錄……………………………….. ……………………………………………...vii 表目錄. …………………………………………………………. ………….………. xi 第一章 前言 1.1 Micor-thermistor簡介…………………………………………………….…...1 1.2 熱敏電阻薄膜在微溫感元件之應用……………………………………………2 1.3 微機電加工簡介………………………………………………………...……….3 1.4 研究動機………………………………………………………………...……….4 第二章 文獻回顧 2.1 微溫敏元件…………………………………………………………...………….5 2.1.1 溫敏元件與材料……………………………...…………………..……….5 2.1.2 紅外線材料與溫敏材料……………………………………………..……6 2.1.3 微機電加工製程………………………………………………..…………7 2.2 鈣鈦礦材料特性…………………………………………………...…………...10 2.2.1鈣鈦礦材料晶格結構…………………………………………….………10 2.2.2鈣鈦礦材料之高TCR效應………………………………………….……12 2.2.3正溫度係數與負溫度係數………………………………………….……13 2.3 錳酸鍶鑭的特性……………………………………………………...………...14 2.3.1錳酸鍶鑭之晶格結構……………………………………………….……14 2.3.2錳酸鍶鑭之導電機制……………………………………………….……14 第三章 實驗方法及步驟 3.1實驗流程…………………………………………………………………..…….17 3.2元件設計製作…………………………………………………………………...18 3.2.1微熱感元件光罩設計…………………………………………….………18 3.2-2指叉電極元件製程流程……………………………………….…………25 3.3薄膜物理性質分析………………………………………………..…………….30 3.3.1表面輪廓儀…………………………………………………….………..30 3.3.2掃描式電子顯微鏡……………………………………………….……..31 3.3.3 X-ray繞射分析儀………………………………………………………32 3.3.4白光表面分析儀………………………………………………….……..33 3.4 薄膜電氣特性量測………………………………………………………...…...34 3.4.1電阻率四點探針………………………………………………….……..34 3.4.2 keithley 4200……………………………………………….………….35 3.5實驗材料及儀器列表………………………………………………..………….37 第四章 金屬薄膜元件特性分析 4.1 金屬銀之薄膜特性分析結果……………………….…………..……...………40 4.1.1薄膜沉積速率……………………..…………………………….………...40 4.1.2四點探針電阻率分析……………..…………………………………..…..42 4.1.3SEM微觀分析……………………………………………………...……….44 4.1.4薄膜X-ray 分析………………………………………………………….46 4.1.5白光表面分析 4.2 元件電性檢測…………………………………………………...……………...48 第五章 錳酸鍶鑭薄膜元件特性分析 5.1 錳酸鍶鑭之薄膜特性分析結果……………………………………...………...51 5.1.1 薄膜沉積速率……………………………………………………..……..51 5.1.2 四點探針電阻率分析……………………………………………..……..53 5.1.3 SEM微觀分析……………………………………………..………………55 5.1.4 錳酸鍶鑭粉末與薄膜X-ray 分析……………………………………...59 5.1.5 白光表面分析…………………………………………..………………..62 5.2 元件電性檢測………………………………………………………...………...64 5.2.1指叉電極元件…..…………………………………………..……………..64 5.2.2 MIMS結構元件………………………………………………..………….71 第六章 結論 結論…………………………………………………………………………………..75 參考文獻 附錄 微機電陣列之體型微加工製程

1. Wikipedia 百科 Thermistor 網站介紹.
2. 邱碧秀,“電子陶瓷材料”,徐氏基金會出版, P347-P381(1996).
3. 李幸峰 余志成, 壓電薄膜加速度微感測元件規劃與研究, 中國機械工程學會第十八屆全國學術研討會, 新興工程技術論文集, 2001/12/7-8, 台灣科技大學.
4. 國家實驗研究院 儀器科技研究中心,“微機電系統技術與應用(上)”, P1~P5,(2008).
5. L.E. Felton, N. Hablutzel, W.A. Webster and K.P Harney,“Chip Scale Packaging of a MEMS Accelerometer”, Micromachined Product Division, Analog Devices, Inc.
6. Darcy Haluzan,“Microwave LIGA-MEMS Variable Capacitors”,University of Saskatchewan 碩士論文(2004).
7. Genchu Tang, Yun Yu, Wei Chen, Yunzhen Cao,“The electrical resistivity and thermal infrared properties of La1-xSrxMnO3 compounds”, Journal of Alloys and Compounds 461, 486-489(2008).
8. Rahul Tripathi, V.P.S Awana, H. Kishan, G.L. Bhalla,“Search for room temperature high-TCR manganite/silver composites”,Journal of Magnetism and Magnetic Materials 320, L89-L92(2008).
9. S.M. Sze,“Semiconductor Sensors”John Wiley & Sons, Inc,(1994).
10. 劉俊延,“砷化銦金屬絕緣體半導體電容與紅外光偵測器之研究”,國立台灣大學電機工程研究所碩士論文,(1998).
11. K. Morinaka, K. Hashimoto, S. Tanaka, and N. Yoshiike,“Human information sensor,”Sensors and Actuators, A:Physical, Vol.66, No. 1-3, pp. 1-8,(1996).
12. 巫瑞琪,“輻射溫度計”國立中央大學光電科學研究所碩士論文,(1996).
13. Shih-Ta Hung, Shwin-Chung Wong, Weileun Fang,“The development and application of microthermal sensors with a mesh-membrance supporting structure”, Sensors and Actuators 84 70-75(2000).
14. Zhan Jie Wang, Hirokazu Usuki, Toshihide Kumagai, Hiroyuki Kokawa,“Microstructure and electrical properties of La0.7Sr0.3MnO3 thin films deposited by metallo-organic decomposition method”, Journal of Crystal Growth 293, 68-73 (2006).
15. Maclaren and Sons LTD, London, Márta Déri, “Ferroelectric Ceramics”, 1-7(1966).
16. Y. Xu, “Ferroelectric Materials and Their Applications”, North-Holland, New York, 102(1991).
17. Tripathi R., Awana V. P. S., Kishan H. and Bhalla G. L.,“Search for room temperature high-TCR manganite/silver composites”, Journal of Magnetism Materials 320, L89-L92 (2008).
18. W. B. Wu, K. H. Wong, C. L. Choy, Y. H. Zhang,“Top-Interface-Contrlled Fatigue of Epitaxial Pb(Zr0.52Ti0.58)O3 Ferroelectric Thin Films on La0.7Sr0.3MnO3 Electrodes”, Appl. Phys. Lett., 77[10], 3441-3443 (2000).
19. J. Li, Q. Huang, Z. W. Li, L. P. You, S. Y. Xu, C. K. Ong,“Enhanced Magnetoresistance in Ag-Doped Granular La2/3Sr1/3MnO3 Thin Films Prepares by Dual-Beam Pulsed-Laser Deposition”, J. Appl. Physi., 89[6], 7428-7430(2001).
20. N. Zhang, W. P. Ding, Z. B. Guo, W. Zhong, D. Y. Xing, Y. W. Du, G. Li, Y. Zheng,“Large Lattice Compression Coefficient and Uniaxial Piezoresistance in CMR Perovskite La1-xSrxMnO3(0.15≤X≤0.25),” Zeitschrift fur Physik B, vol. 102, Issue 4, 461-465(1997).
21. M. J. Villafuerte, S. Duhalde, M. C. Terzzoli, G. Polla, G. Leyva, L. Correra,“ Structural and Transport Properties of La0.67Sr0.33Mn1-xSnxO3 Thin Films”, Appl. Phys. A (Materials Science & Processing), vol. 69, Issue 7, 565-567(1999).
22. D. Nicolaescu, Valeriu Filip, Junji Itoh, Fumio Okuyama,“Analysis of a pressure sensor using n-Si/nitrogen doped diamond cathodes”, J. Vac. Sci. Technol. B 18(2), Mar/Apr 2000, American Vacuum Society, pp1077-1080.
23. A. tiwari, A. Chug, C. Jin, D. Kumar, J. Narayan,“Integration of Single Crystal La0.7Sr0.3MnO3 Films with Si(100)”, Solid state Commum., 121[11], 679-682(2002).
24. J. Santen, G. Jonker,“Electrical Conductivity of Ferromagnetic Compounds of Manganese with Perovskite Structure”, Physica XVI, No.7-3, 599-560(1950).
25. A. Chakraborty, P. S. Devi, H. S. Maiti,“Preparation of La1-xSrxMnO3(0≤X≤0.6) Powder by Autoignition of Carboxylate-Nitrate Gels”, Master. Lett., 20, 63-69(1994).
26. M. Schiessl, E. Ivers-Tiffee and W. Wersing,“Ceramic Cathode Materials (La1-uSruMn1-xCoxO3-δ) for Solid Oxide Fuel Cell (SOFC) Application”, 2607-2614 in Materials Science Monographs, Vol. 66D, Ceramic Today-Tomorrow’s Ceramics. Edited by P. Vincenzini. Proceedings of the 7th International Meeting on Modern Ceramics Technologies (7th CIMTEC-World Ceramics Congress 1990), Elsevier Science , New York, 1991.
27. N. Zhang, W. P. Ding, Z. B. Guo, W. Zhong, D. Y. Xing, Y. W. Du, G. Li, Y. Zheng,“Large Lattice Compression Coefficient and Uniaxial Piezoresistance in CMR Perovskite La1-xSrxMnO3(0.15≤X≤0.25)”, ZEITSCHRIFT FUR PHYSIK B, vol. 102, Issue 4, 461-465(1997).
28. M. J. Villafuerte, S. Duhalde, M. C. Terzzole, G. Polla, G. Leyva, L. Correra,“Structural and Transport Properties of La0.67Sr0.33Mn1-xSnxO3 Thin Films”, App1. Phys. A(Materials Science & Processing), vol. 69, Issue 7, 565-567(1999).
29. 蔣志陽,逢甲大學自動控制工程研究所碩士論文,1990年.

無法下載圖示 全文公開日期 2016/07/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE