簡易檢索 / 詳目顯示

研究生: 張鈞奕
Jyun-Yi Jhang
論文名稱: 分佈連續消除位元翻轉解碼器之硬體實現
The Implementation of Segmented Successive Cancellation Flip Decoder
指導教授: 王煥宗
Huan-Chun Wang
口試委員: 王瑞堂
Jui-Tang Wang
林敬舜
Ching-Shun Lin
劉建成
Jian-Cheng Liu
洪啟峻
Chi-Chun Hung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 69
中文關鍵詞: 極化碼連續消除演算法分佈連續消除位元翻轉解碼器超大型積體 電路
外文關鍵詞: Polar Code, Successive Cancellation Algorithm, Segmented Successive Cancellation Flip Decoder, VLSI
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出了極化碼(Polar code)分佈連續消除位元翻轉(Segmented SC-Flip)解碼器之超大型積體電路(Very-large-scale integration,VLSI)硬體設計與實現,演算法以極化碼連續消除(Successive cancellation,SC)演算法為基礎,加入位元翻轉技術以及分佈技術提高解碼效能,並在硬體設計上採用新式的處理單元(Process element,PE)減少關鍵路徑(Critical path)與面積,並採用半平行化架構犧牲適當的解碼週期來減少處理單元數量,除此之外,還藉由提出的零節點去除單元移除不需要計算的節點提高吞吐率(Throughput)。
    本篇論文使用MATLAB進行演算法之開發與模擬驗證,硬體實現則是使用Verilog在Xilinx Virtex-7 VC707開發版進行設計,並且將設計電路藉由TSMC 40nm CMOS製程技術進行晶片設計。


    This paper proposes the very-large-scale integration(VLSI) hardware design and implementation of the polar code segmented successive cancellation flip decoder. The algorithm is based on the polar code Successive Cancellation(SC) algorithm and adds bit-flipping technology and segmented technology to improve the decoding performance. In the hardware design, the new process element is used to reduce the critical path and area, and the semi-parallel architecture is used to sacrifice an appropriate decoding cycle to reduce the number of process elements. In addition, the zero node removal unit proposed in this paper removes nodes that do not require computation to improve throughput.
    This paper uses MATLAB for the development and simulation of the algorithm. The hardware implementation is designed by using Verilog on the Xilinx Virtex-7 VC707 Evaluation Kit, and the proposed Segmented SCF decoder is synthesized using Design Compiler and IC Compiler base on TSMC 40nm CMOS technology.

    圖目錄 v 表目錄 viii 第1章 緒論 1 1.1. 研究背景 1 1.2. 研究目的 2 1.3. 論文架構 2 第2章 極化碼 3 2.1. 極化碼介紹 3 2.1.1. 通道極化 3 2.1.2. 通道組合 4 2.1.3. 通道分裂 8 2.2. 極化碼子通道選擇 10 2.3. 極化碼編碼方式介紹 12 2.4. 分佈連續消除位元翻轉 13 2.4.1. 連續消除解碼方式 13 2.4.2. Critical Set(CS)之建構 17 2.4.3. 分佈連續消除位元翻轉演算法流程 18 第3章 演算法模擬與驗證 20 3.1. 環境設定 20 3.1.1. AWGN通道設定 21 3.2. 程式解碼流程 24 3.3. 模擬效能 25 第4章 解碼器硬體架構與FPGA模擬 28 4.1. 硬體架構圖 28 4.2. 半平行化解碼器之週期分析 29 4.3. 分佈連續消除位元翻轉解碼器 31 4.3.1. 處理單元(Process element,PE) 31 4.3.2. 部分和更新單元(Partial sum update unit) 35 4.3.3. 排序單元(Sorting unit) 36 4.3.4. 先進先出單元(First in first out unit) 37 4.3.5. 循環冗餘校驗(Cyclic redundancy check,CRC) 38 4.3.6. 零節點去除單元(Zero node removal unit) 39 4.4. FPGA模擬環境 42 4.5. FPGA解碼效能表現 44 第5章 晶片設計流程與參數選擇 45 5.1. 晶片設計流程 45 5.2. I/O Pad選擇 46 5.3. 記憶體選擇 49 5.4. 晶片設計結果與文獻比較 51 第6章 結論與未來展望 53 參考文獻 54 附錄一 英文與縮寫對照表 57

    [1] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes,’’ 2008 IEEE International Symposium on Information Theory, Toronto, ON, 2008, pp. 1173-1177 Jul. 2008.
    [2] E. Arikan, “Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels,’’ IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051-3073, July 2009.
    [3] P. Trifonov, “Efficient Design and Decoding of Polar Codes,’’ in IEEE Transactions on Communications, vol. 60, no. 11, pp. 3221-3227, November 2012.
    [4] J. Dai, K. Niu, Z. Si, C. Dong, and J. Lin, “Does Gaussian Approximation Work Well for the Long-Length Polar Code Construction,” IEEE Access, 2017.
    [5] R. Mori and T. Tanaka, “Performance of Polar Codes with the Construction using Density Evolution,’’ in IEEE Communications Letters, vol. 13, no. 7, pp. 519-521, July 2009
    [6] I. Tal and A. Vardy, ‘‘How to Construct Polar Codes,’’ IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6562–6582, Oct. 2013.
    [7] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Multiplexing and channel coding, Release 16, V16.8.0, 3GPP TS 38.212, Jan. 2022.
    [8] H. Zhang et al., ‘‘Parity-Check Polar Coding for 5G and Beyond,’’ 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, 2018, pp. 1-7, May 2018.
    [9] C. Leroux, I. Tal, A. Vardy and W. J. Gross, ‘‘Hardware architectures for successive cancellation decoding of polar codes,’’ 2011 IEEE International Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 1665-1668, May 2011
    [10] M. P. C. Fossorier, M. Mihaljevic and H. Imai, ‘‘Reduced complexity iterative decoding of low-density parity check codes based on belief propagation,’’ IEEE Transactions on Communications, vol. 47, no. 5, pp. 673-680, May 1999
    [11] Z. Zhang, K. Qin, L. Zhang, H. Zhang and G. T. Chen, ‘‘Progressive Bit-Flipping Decoding of Polar Codes over Layered Critical Sets’’, in Proc. IEEE Global Communications Conference (GLOBECOM), pp. 1-6, Dec. 2017.
    [12] Z. Zhang, K. Qin, L. Zhang, and G. T. Chen, ‘‘Progressive Bit-Flipping Decoding of Polar Codes: A Critical-Set Based Tree Search Approach,’’ IEEE Access, vol. 6, pp. 57738–57750, 2018
    [13] S. Li, Y. Deng, X. Gao, H. Li, L. Guo, and Z. Dong, “Generalized Segmented Bit-Flipping Scheme for Successive Cancellation Decoding of Polar Codes With Cyclic Redundancy Check,” IEEE Access, vol. 7, pp. 83424–83436, 2019.
    [14] H. Zhou, C. Zhang, W. Song, S. Xu, and X. You, “Segmented CRC-Aided SC List Polar Decoding,” in Proc. IEEE 83rd Vehicular Technology Conference, May 2016, pp. 1–5.
    [15] U. Lee, j. H. Roh, C. Hwangbo and M. H. Sunwoo, “A Uniformly Segmented SC-Flip Decoder for Polar Codes with Memory Reduction Methods,” 2021 IEEE International Symposium on Circuits and Systems (ISCAS), May 2021, pp. 1–5.
    [16] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A Semi-Parallel Successive-Cancellation Decoder for Polar Codes,” IEEE Transactions on Signal Processing, vol. 61, no. 2, 2013.
    [17] C. Zhang, B. Yuan and K. K. Parhi, “Reduced-latency SC polar decoder architectures,” 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, 2012, pp. 3471-3475, June 2012
    [18] B. Yuan, K. K. Parhi, “Low-Latency Successive-Cancellation Polar Decoder Architectures Using 2-Bit Decoding,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 4, pp. 1241-1254, April 2014
    [19] C. Cheng and K. Parhi, “High-speed parallel CRC implementation based on unfolding, pipelining, and retiming,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 10, pp. 1017–1021, 2006.
    [20] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation. Hoboken, NJ: Wiley, 1999.
    [21] O. Afisiadis, A. Balatsoukas-Stimming and A. Burg, “A low complexity improved successive cancellation decoder for polar codes,” IEEE 48th Asilomar Conf. Signals, syst. comput., Nov. 2014, pp. 2116-2120.
    [22] A. Mishra, A. J. Raymond, L. G. Amaru, G. Sarkis, C. Leroux, P. Meinerzhagen, A. Burg, and W. J. Gross, “A successive cancellation decoder ASIC for a 1024-bit polar code in 180 nm CMOS,” IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2012, pp. 205–208.

    無法下載圖示 全文公開日期 2025/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE