簡易檢索 / 詳目顯示

研究生: 李念祖
Andrew Lee
論文名稱: 使用非線性背景校正技術之十四位元類比數位轉換器
A 14-bit Analog-to-Digital Converter with Background Nonlinearity Calibration Technique
指導教授: 鍾勇輝
Yung-Hui Chung
口試委員: 曾偉信
范振麟
陳亮仁
陳伯奇
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 145
中文關鍵詞: 類比數位轉換器漸進式類比數位轉換器管線式類比數位轉換器管線式逐次逼近式類比數位轉換器非線性背景數位校正切換式電容技術二元窗型技術
外文關鍵詞: Analog to Digital converter, SAR ADC, Pipelined ADC, Pipelined-SAR ADC, Background Nonlinearity Calibration, Capacitor swapping technique, Binary window tecnique
相關次數: 點閱:509下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文著重在於CMOS製程下,設計出一個高性能且滿足高解析度要求的類比數位轉換器(Analog-to-Digital Converter, ADC),可以用於通訊與影像中。我們設計出一個十四位元每秒一億次取樣之管線逐次逼近式類比數位轉換器,利用數位校正技術來提高ADC的解析度,滿足系統所要求的規格。早期使用的架構,以管線式類比數位轉換器(Pipelined ADC)為主要的設計方向。速度是管線式類比數位轉換器的優點。但是,它的缺點是會消耗很大的功率。 近年來ADC研究的方向趨向低功耗的設計,越來越多人研究具有省電優勢的逐次逼近式類比數位轉換器(Successive Approximation Register ADC, SAR ADC)。逐次逼近式類比數位轉換器由比較器、放大器、取樣電路、電容陣列和數位電路所構成,用二進位逼近法,漸進的找到輸入訊號,來達成轉換的工作原理。因此,在速度的比較上,管線式類比數位轉換器會比逐次逼近式類比數位轉換器快。
在此篇論文中,我們使用管線式逐次逼近式類比數位轉換器,採用逐次逼近式類比數位轉換器為主要的架構來達到省電的目的。另外,加入管線式的排程概念,一級取樣一級轉換,更有效率的使用時間,讓速度更加提升。由於兩級間的剩餘放大器 (Residue amplifier),會有非線性的增益誤差。因此,我們利用數位校正處理器,針對線性與非線性誤差做校正,讓剩餘放大器經由數位校正電路可以趨近一個理想的放大器。


The thesis focuses on designing a high-performance Analog-to-Digital converter (ADC) in CMOS fabrication. In addition, the ADC needs to achieve a high-resolution requirement in order to apply communication and graphic system. Accordingly, we design a 14-bit 100MS/s pipelined-SAR ADC. Furthermore, using background calibration to improve linearity and be compatible with the system’s requirement. In early works, pipelined ADC was the major architecture that had been researched and designed for many years. The reason is that pipelined ADC has an advantage of speed. However, its drawback is that it consumes a lot of power to achieve high-speed. In recent years, researches and papers dedicated to invent low power architecture. More and more people studied successive approximation register ADC (SAR ADC) for its advantage of energy efficiency. The architecture of SAR ADC contains comparator, amplifier, sample and hold circuit, capacitor array, and digital logics. SAR ADC uses binary searching method to convert analog signals into digital codes. Thus, comparing the speed to pipelined ADC, SAR ADC has a little bit slower than pipelined ADC.
In this thesis, we introduce a pipelined-SAR ADC. It is based on SAR ADC architecture in order to achieve energy efficiency. Considering to the speed, pipelined-SAR consists the conversion method of pipelined ADC. It uses two stages to do the evaluation. While one stage is sampling, the other is converting. Therefore, with pipelined ADC operation style, pipelined-SAR ADC is able to wisely use a full cycle of time and accelerate the speed. The nonlinearity gain error of residue amplifier may influence pipelined-SAR ADC's resolution. We apply a digital calibration system to correct linearity and nonlinearity errors. After nonlinearity is removed, the residue amplifier is approximately to be a linear amplifier.

論文摘要 I Abstract II 誌謝 IV Contents V List of Figures VIII List of Tables XII Chapter 1 Introduction 1 1.1 Background 1 1.2 Survey of Prior Works 5 1.3 Motivation 8 Chapter 2 Calibration Algorithm 11 2.1 Introduction 11 2.2 Basic Concepts 13 2.3 Lyapunov-Based Calibration 15 2.4 MATLAB Simulation 24 Chapter 3 ADC architecture 28 3.1 Introduction 28 3.2 Proposed ADC Architecture 34 3.2.1 First stage 35 3.2.2 Second stage 39 3.3 Issues & Techniques 42 Chapter 4 Circuit Implementation 44 4.1 ADC1 47 4.1.1 Sample and Hold circuit 49 Linearity requirement 50 Issues 51 Bootstrapping Switch 54 Layout 58 4.1.2 Comparators 59 Noise 61 Performance 61 Offset issue 61 Layout 62 4.1.3 Digital to Analog Convertor 63 KT/C requirement 63 Mismatch requirement 65 Common-mode Voltage issue 67 Splitting capacitor method 68 Binary Window technique 73 Capacitor Swapping technique 75 4.1.4 SAR Control logic 81 4.2 Residue Amplifier 83 4.2.1 Linearity Requirement 83 4.2.2 Architecture 85 Performance 86 4.2.3 Nonlinearity Background Calibration 88 4.3 ADC2 93 4.3.1 Sample and Hold circuit 95 4.3.2 Comparator 97 4.3.3 Digital to Analog Convertor 100 KT/C requirement 100 Mismatch requirement 100 Switch Back method 101 Capacitor Swapping technique 104 4.3.4 SAR control 106 4.4 Calibration Processor 108 4.4.1 Random injection 108 4.4.2 Injection amount 109 4.5 Layout information 112 Chapter 5 Simulation Results 113 5.1 Pre-Layout Simulation 113 5.2 Post-Layout Simulation 117 Chapter 6 Conclusions and Future works 121 6.1 Conclusions 121 6.2 Future works 122 Bibliography 124

Bibliography

[1] G. Manganaro and D. Leenaerts “Advances in Analog and RF IC Design for Wireless Communication Systems,” pp. 207-212, 2013
[2] B. Murmann, "ADC Performance Survey 1997-2016," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[3] Y. Lim and M. Flynn, “A 1mW 71.5dB SNDR 50MS/s 13b Fully Differential Ring-Amplifier-Based SAR-Assisted Pipeline ADC,” in ISSCC Dig. Tech. Papers, Feb 2015, pp. 1–3.
[4] C.C. Lee and M.P. Flynn, “A 12b 50MS/s 3.5mW SAR Assisted 2-stage Pipeline ADC,” VLSI Circ. Symp. Dig. Tech. Papers, pp. 239-230, June 2010.
[5] H-Y Lee, et al., “A 31.3fJ/conversion-step 70.4dB SNDR 30MS/s 1.2V TwoStep Pipelined ADC in 0.13μm CMOS,” ISSCC Dig. Tech. Papers, pp. 474-475, Feb. 2012.
[6] F. van der Goes et al., "A 1.5mW 68dB SNDR 80MS/s 2x Interleaved SAR-Assisted Pipelined ADC in 28nm CMOS", ISSCC Dig. Tech. Papers, pp. 200-201, Feb. 2014.
[7] B Verbruggen, et al., “A 70 dB SNDR 200 MS/s 2.3 mW Dynamic Pipelined SAR ADC in 28nm Digital CMOS,” VLSI Circ. Symp. Dig. Tech. Papers, pp. 242- 243, June 2014.
[8] Chun C. Lee, et al., “A SAR-Assisted Two-Stage Pipeline ADC,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 859-869, Apr. 2011.
[9] C. C. Liu, et al., “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010
[10] Yung-Hui Chung, "The Swapping Binary-Window DAC Switching Technique for SAR ADCs," in Proc. IEEE International Symposium on Circuits and Systems (ISCAS) 2013, in press.
[11] Meng-Hsuan Wu, Yung-Hui Chung, and Hung-Sung Li, “A 12-bit 8.47-fJ/Conversion-Step 1-MS/s SAR ADC using Capacitor-Swapping Technique,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2012, pp. 157-160.
[12] Yung-Hui Chung, Meng-Hsuan Wu, Hung-Sung Li, "A 24μW 12b 1MS/s 68.3dB SNDR SAR ADC with two-step decision DAC switching", Custom Integrated Circuits Conference (CICC) 2013 IEEE, pp. 1-4, 2013.
[13] Yung-Hui Chung, Jieh-Tsorng Wu, "A CMOS 6-mW 10-bit 100-MS/s Two-Step ADC", Solid-State Circuits IEEE Journal of, vol. 45, pp. 2217-2226, 2010, ISSN 0018-9200.
[14] Y. H. Chung, "Perturbation-based digital background calibration technique for pipelined ADCs," 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne VIC, 2014, pp. 1316-1319.
[15] G. Y. Huang, S. J. Chang, C. C. Liu and Y. Z. Lin, "10-bit 30-MS/s SAR ADC Using a Switchback Switching Method," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 3, pp. 584-588, March 2013.
[16] Y. Zhu et al., "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, June 2010.
doi: 10.1109/JSSC.2010.2048498
[17] V. Hariprasath, J. Guerber, S. H. Lee and U. K. Moon, "Merged capacitor switching based SAR ADC with highest switching energy-efficiency," in Electronics Letters, vol. 46, no. 9, pp. 620-621, April 29 2010.
[18] B. Wicht, T. Nirschl and D. Schmitt-Landsiedel, "Yield and speed optimization of a latch-type voltage sense amplifier," in IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158, July 2004.
[19] Y.-S. Hu, C.-H. Shih, H.-T. Tai, H.-W. Chen, H.-S. Chen, “A 0.6V 6.4fJ/conversion-step 10-bit 150MS/s subranging SAR ADC in 40-nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2014, pp. 81–84
[20] Y. H. Chung, M. H. Wu and H. S. Li, "A 12-bit 8.47-fJ/Conversion-Step Capacitor-Swapping SAR ADC in 110-nm CMOS," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 10-18, Jan. 2015.
[21] H. Fan; F. Maloberti, "High-Resolution SAR ADC with Enhanced Linearity," in IEEE Transactions on Circuits and Systems II: Express Briefs , vol.PP, no.99, pp.1-1 doi: 10.1109/TCSII.2016.2626300
[22] C. C. Liu et al., "A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, 2010, pp. 386-387.
doi: 10.1109/ISSCC.2010.5433970
[23] P. C. Parks, “A. M. Lyapunov’s Stability Theory – 100 years on,” IMA J. Math. Control Inform., vol. 9, pp.275-303, 1992.
[24] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita and U. K. Moon, "Ring Amplifiers for Switched Capacitor Circuits," in IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 2928-2942, Dec. 2012.
[25] Y. H. Chung and S. Y. Shih, "A 10-bit 100-MS/s SAR ADC with capacitor swapping technique in 90-nm CMOS," 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, 2017, pp. 1-4.
[26] B. D. Sahoo and B. Razavi, "A 12-Bit 200-MHz CMOS ADC," in IEEE Journal of Solid-State Circuits, vol. 44, no. 9, pp. 2366-2380, Sept. 2009.doi: 10.1109/JSSC.2009.2024809
[27] S. R. Sonkusale and J. Van der Spiegel, "A low distortion MOS sampling circuit," 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353), 2002, pp. V-585-V-588 vol.5.
[28] B. Verbruggen, K. Deguchi, B. Malki and J. Craninckx, "A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS," 2014 Symposium on VLSI Circuits Digest of Technical Papers, Honolulu, HI, 2014, pp. 1-2.
[29] K. S. Tan et al., "Error correction techniques for high-performance differential A/D converters," in IEEE Journal of Solid-State Circuits, vol. 25, no. 6, pp. 1318-1327, Dec 1990.
[30] A. H. Chang, H. S. Lee and D. Boning, "A 12b 50MS/s 2.1mW SAR ADC with redundancy and digital background calibration," 2013 Proceedings of the ESSCIRC (ESSCIRC), Bucharest, 2013, pp. 109-112.
[31] P. Harpe, Y. Zhang, G. Dolmans, K. Philips and H. De Groot, "A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step," 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2012, pp. 472-474.
[32] Y. Z. Lin, S. J. Chang, Y. T. Shyu, G. Y. Huang and C. C. Liu, "A 0.9-V 11-bit 25-MS/s binary-search SAR ADC in 90-nm CMOS," IEEE Asian Solid-State Circuits Conference 2011, Jeju, 2011, pp. 69-72.
[33] T. Ogawa, H. Kobayashi, M. Hotta, Y. Takahashi, Hao San and Nobukazu Takai, "SAR ADC algorithm with redundancy," APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems, Macao, 2008, pp. 268-271.
[34] J. Lin, M. Miyahara and A. Matsuzawa, "A 15.5 dB, wide signal swing, dynamic amplifier using a common-mode voltage detection technique," 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, 2011, pp. 21-24.
[35] B. Verbruggen, M. Iriguchi and J. Craninckx, "A 1.7 mW 11b 250 MS/s 2-Times Interleaved Fully Dynamic Pipelined SAR ADC in 40 nm Digital CMOS," in IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 2880-2887, Dec. 2012.
[36] B. Verbruggen et al., "A 2.1 mW 11b 410 MS/s dynamic pipelined SAR ADC with background calibration in 28nm digital CMOS," 2013 Symposium on VLSI Circuits, Kyoto, 2013, pp. C268-C269.

QR CODE