簡易檢索 / 詳目顯示

研究生: 江冠廷
Kuan-Ting Chiang
論文名稱: 基於攝影機之可用於健康照護的非接觸式生理與姿態監控系統
A Camera-Based Non-Contact Physiological and Position Monitoring System for Health Care
指導教授: 林淵翔
Yuan-Hsiang Lin
口試委員: 陳維美
Wei-Mei Chen
沈中安
Chung-An Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 99
中文關鍵詞: 影像處理訊號處理遠程光體積變化描述圖非接觸式呼吸量測深度學習
外文關鍵詞: image processing, signal processing, remote photoplethysmography, non-contact breathing signal monitoring, deep learning
相關次數: 點閱:292下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

心率與呼吸被視為重要的生理參數,有研究指出靜態心率大於 90 bpm (beats per minute)或是心臟有不正常跳動的情況都容易導致一些心臟疾病。而呼吸中止症、呼吸道阻塞或是嬰兒猝死等症狀都與呼吸有著密切關係。對於受試者而言,進行多項的生理參數監控有利於對其進行及時且有效的治療處理。而錯誤的臥躺姿勢容易造成身體器官的損害或導致呼吸不順暢。
在過去,大多數的生理參數都是透過接觸式量測裝置還進行量測,這些電極貼片或是綁帶容易導致皮膚過敏或是不舒服現象。相反的,非接觸式量測方式具有高舒適性、能夠長時間監控等優點,因此適合應用在長期臥床之病人、嬰幼兒或老年人等。
然而目前的研究大多都只探討正躺情況下的生理參數監控,鮮少針對於不同床上姿態下的生理監控。因此本論文利用攝影機與嵌入式平台建構出一套適用於不同床上姿態下的生理參數監控系統。透過攝影機的拍攝,推算出受試者在不同床上姿勢下的脈搏訊號、呼吸訊號、翻身動作及床上姿態。
經過模擬真實情況下的床邊即時監控證實,受試者在無蓋被的實驗中,其脈搏量測準確度為96.40%、呼吸量測準確度為95.16%、翻身偵測準確度為95.75%、床上姿態辨識準確度為 96.00%。而在有蓋被的實驗中,其脈搏量測準確度為97.19%、呼吸量測準確度為 93.30%、翻身偵測準確度為 91.25%、床上姿態辨識準確度為 83.13%。實驗結果顯示,本論文利用攝影機與嵌入式平台建構出一套基於攝影機之可用於健康照護的非接觸式生理與活動監控系統,能夠在真實環境下量測出蓋被與無蓋被情況下的多種姿態生理參數。


Pulse rate and breathing rate are considered important vital signs. Some studies
have shown that a rest heart rate faster than 90 bpm (beats per minute) or abnormal
heartbeat will easily lead to some heart disease. Sleep apnea, airway obstruction, or sudden infant death are closely related to breathing behavior. For the subject, multiple vital signs monitoring facilitates timely and effective treatment. Moreover, a wrong on bed position will easily cause damage to body organs or airway obstruction.
In the past, most of the vital signs were measured through contact measuring
equipment. These electrode patches or straps were prone to skin irritation or discomfort. On the contrary, the non-contact measuring equipment has high comfort and long-term monitoring, so it’s suitable for patients, infants or the elderly.
However, most researches only discussed the vital signs monitoring under the
condition of supine, rarely focuses on different on bed positions. Therefore, we try to construct vital signs and on bed position monitoring system based on a camera and an embedded platform which can suitable for different kinds of bed positions.
Experiments perform the accuracy of the pulse signal, breathing signal, roll-over
situation and on-bed position are 96.40%, 95.16%, 95.75% and 96.00% without
covering quilt. In the case of covering with quilt are 97.19%, 93.30%, 91.25% and
83.13%. The experimental results convey that this thesis successfully construct a non contact vital signs and activity monitoring system that can be used for health care based on a camera and an embedded system, which can be able to measure vital signs with difference on bed position in the case of covering quilt and covering without quilt in a reality environment.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章、 緒論 1 1.1 動機與目的 1 1.2 文獻探討 4 1.2.1 非接觸式脈搏訊號量測 4 1.2.2 非接觸式呼吸訊號量測 6 1.2.3 非接觸式床上姿態辨識與活動偵測 7 1.3 論文架構 9 第二章、 研究背景 10 2.1 PPG定義與原理 10 2.2 非接觸式脈搏訊號量測 11 2.3 呼吸定義與原理 12 2.4 非接觸式呼吸訊號量測 13 2.5 光流法 14 2.6 深度學習 15 2.7 GoogLeNet卷積神經網路 17 2.8 物件偵測 18 第三章、 研究方法 21 3.1 系統介紹 21 3.2 物件偵測 22 3.3 膚色偵測與追蹤 26 3.3.1 影像平滑 27 3.3.2 膚色偵測 28 3.3.3 形態學 29 3.3.4 膚色中心點與ROI取得 29 3.3.5 感興趣區域追蹤 30 3.4 脈搏訊號提取與處理 32 3.4.1 ROI訊號擷取 33 3.4.2 Savitzky-Golay濾波器 34 3.4.3 帶通濾波器 35 3.4.4 移動平均演算法 36 3.5 呼吸訊號提取與處理 37 3.5.1 呼吸訊號提取 38 3.5.2 帶通濾波器 39 3.5.3 即時訊雜比排序 40 3.6 脈搏與呼吸訊號推算 42 3.6.1 脈搏訊號推算 42 3.6.2 呼吸訊號推算 44 3.7 移動訊號提取與處理 46 3.8 床上姿態辨識 48 3.8.1 資料蒐集 49 3.8.2 資料擴增 50 3.8.3 訓練參數 51 3.9 使用者介面介紹 54 第四章、 實驗方法與結果討論 55 4.1 實驗流程 55 4.2 實驗設計與結果 57 4.2.1 實驗一 57 4.2.2 實驗二 60 4.2.3 實驗結果 63 4.3 結果討論 67 4.3.1 不同顏色通道對於脈搏量測實驗結果的影響 69 4.3.2 距離與脈搏及呼吸量測準確度的影響 71 4.3.3 Savitzky-Golay濾波器對於環境雜訊的影響 72 4.3.4 即時訊雜比排序對於呼吸量測準確度的影響 75 第五章、 結論與未來展望 77 參考文獻 78

[1] United Nations, "Total Fertility by Aggregate and Constituents," 2017. [Online]. Available: https://population.un.org/wpp/DVD/Files/3_Indicators%20(Special%20Aggregates)/EXCEL_FILES/4_Ecological/Fertility/WPP2017_SA4_FERT_F01_BIRTHS_BOTH_SEXES.XLSX
[2] United Nations, "Life Expectancy at Birth," 2017. [Online]. Available: https://population.un.org/wpp/DVD/Files/3_Indicators%20(Special%20Aggregates)/EXCEL_FILES/4_Ecological/Mortality/WPP2017_SA4_MORT_F07_1_LIFE_EXPECTANCY_0_BOTH_SEXES.XLSX
[3] E. Kleinman Monica et al., "2017 American Heart Association Focused Update on Adult Basic Life Support and Cardiopulmonary Resuscitation Quality: An Update to the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care," Circulation, vol. 137, no. 1, pp. e7-e13, Feb. 2018.
[4] American Heart Association, "About Arrhythmia," 2016. [Online]. Available: https://www.heart.org/en/health-topics/arrhythmia/about-arrhythmia
[5] K. Fox et al., "Resting Heart Rate in Cardiovascular Disease," Journal of the American College of Cardiology, vol. 50, no. 9, pp. 823-830, 2007.
[6] American Heart Association Guidelines for Cardiopulmonary Resuscitati-on and Emergency Cardiovascular Care, "Part 5: Adult Basic Life Supp-ort and Cardiopulmonary Resuscitation Quality," 2017. [Online]. Availab-le: https://eccguidelines.heart.org/wp-content/themes/eccstaging/dompdf-master/pdffiles/part-5-adult-basic-life-support-and-cardiopulmonary-resuscitation-quality.pdf
[7] W. Verkruysse, L. O. Svaasand, and J. S. Nelson, "Remote Plethysmographic Imaging Using Ambient Light," Optics express, vol. 16, no. 26, pp. 21434-21445, 2008.
[8] M.-Z. Poh, D. J. McDuff, and R. W. Picard, "Non-Contact, Automated Cardiac Pulse Measurements Using Video Imaging and Blind Source Separation," Optics Express, vol. 18, no. 10, pp. 10762-10774, May. 2010.
[9] P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, 2001, vol. 1, pp. 511-518.
[10] J. Cheng, X. Chen, L. Xu, and Z. J. Wang, "Illumination Variation-Resistant Video-Based Heart Rate Measurement Using Joint Blind Source Separation and Ensemble Empirical Mode Decomposition," IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 5, pp. 1422-1433, 2017.
[11] S. Sanyal and K. K. Nundy, "Algorithms for Monitoring Heart Rate and Respiratory Rate From the Video of a User’s Face," IEEE Journal of Translational Engineering in Health and Medicine, vol. 6, pp. 1-11, 2018.
[12] D. E. King, "Dlib-ml: A Machine Learning Toolkit," vol. 10, no. Jul, pp. 1755-1758, 2009.
[13] E. Zhou, H. Fan, Z. Cao, Y. Jiang, and Q. Yin, "Extensive Facial Landmark Localization with Coarse-to-Fine Convolutional Network Cascade," in 2013 IEEE International Conference on Computer Vision Workshops, 2013, pp. 386-391.
[14] S. B. Park, G. Kim, H. J. Baek, J. H. Han, and J. H. Kim, "Remote Pulse Rate Measurement From Near-Infrared Videos," IEEE Signal Processing Letters, vol. 25, no. 8, pp. 1271-1275, 2018.
[15] G. Bai, J. Huang, and H. Liu, "Real-Time Robust Noncontact Heart Rate Monitoring With a Camera," IEEE Access, vol. 6, pp. 33682-33691, 2018.
[16] K. Lin, D. Chen, and W. Tsai, "Image-Based Motion-Tolerant Remote Respiratory Rate Evaluation," IEEE Sensors Journal, vol. 16, no. 9, pp. 3263-3271, 2016.
[17] M. H. Li, A. Yadollahi, and B. Taati, "Noncontact Vision-Based Cardiopulmonary Monitoring in Different Sleeping Positions," IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 5, pp. 1367-1375, 2017.
[18] F. Deng et al., "Design and Implementation of a Noncontact Sleep Monitoring System Using Infrared Cameras and Motion Sensor," IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 7, pp. 1555-1563, 2018.
[19] L. Walsh, S. McLoone, J. Ronda, J. F. Duffy, and C. A. Czeisler, "Noncontact Pressure-Based Sleep/Wake Discrimination," IEEE Transactions on Biomedical Engineering, vol. 64, no. 8, pp. 1750-1760, 2017.
[20] S. Liu and S. Ostadabbas, "A Vision-Based System for In-Bed Posture Tracking," in 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), 2017, pp. 1373-1382.
[21] Y. Li, Y. Lei, L. C. Chen, and Y. Hung, "Sleep posture classification with multi-stream CNN using vertical distance map," in 2018 International Workshop on Advanced Image Technology (IWAIT), 2018, pp. 1-4.
[22] S. M. Mohammadi, M. Alnowami, S. Khan, D. Dijk, A. Hilton, and K. Wells, "Sleep Posture Classification using a Convolutional Neural Network," in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, pp. 1-4.
[23] C. Chen, M. Liu, H. Liu, B. Zhang, J. Han, and N. Kehtarnavaz, "Multi-Temporal Depth Motion Maps-Based Local Binary Patterns for 3-D Human Action Recognition," IEEE Access, vol. 5, pp. 22590-22604, 2017.
[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet Classification with Deep Convolutional Neural Networks," in Advances in neural information processing systems, 2012, pp. 1097-1105.
[25] A. Z. Karen Simonyan, "Very Deep Convolutional Networks for Large-Scale Image Recognition," 2014. [Online]. Available: https://arxiv.org/abs/1409.1556
[26] C. Szegedy et al., "Going Deeper with Convolutions," in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1-9.
[27] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778.
[28] D. Bibb, R. R. G. Perron, G. C. Huang, and M. F. Iskander, "Development of a Wireless Monitoring System for Microwave-Based Comprehensive Vital Sign Measurement," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1249-1252, 2016.
[29] M. Mercuri et al., "A Direct Phase-Tracking Doppler Radar Using Wavelet Independent Component Analysis for Non-Contact Respiratory and Heart Rate Monitoring," IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 3, pp. 632-643, 2018.
[30] J.-Y. Bouguet, "Pyramidal Implementation of the Affine Lucas Kanade Feature Tracker Description of the Algorithm," vol. 5, no. 1-10, p. 4, 2001.
[31] B. D. Lucas and T. Kanade, "An terative image registration technique with an application to stereo vision," in IJCAI, pp. 674-679, 1981.
[32] P. Migdał, "Learning Deep Learning with Keras," 2017. [Online]. Available: https://p.migdal.pl/2017/04/30/teaching-deep-learning.html
[33] W. Liu et al., "Ssd: Single Shot Multibox Detector," in European conference on computer vision, 2016, pp. 21-37: Springer.
[34] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards Real-Time Object Detection with Region Proposal Networks," in Advances in neural information processing systems, 2015, pp. 91-99.
[35] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779-788.
[36] P. Viola and M. J. Jones, "Robust Real-Time Face Detection," International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, May. 2004.
[37] A. G. Howard et al, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications," 2017. [Online]. Available: https://arxiv.org/abs/1704.04861
[38] S. Kwon, J. Kim, D. Lee, and K. Park, "ROI Analysis for Remote Photoplethysmography on Facial Video," in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 4938-4941.
[39] M. K. Alam, N. F. M. Noor, R. Basri, T. F. Yew, and T. H. J. P. o. Wen, "Multiracial Facial Golden Ratio and Evaluation of Facial Appearance," Public Library of Science, vol. 10, no. 11, pp. 1-22, 2015.
[40] S. L. Phung, A. Bouzerdoum, and D. Chai, "A Novel Skin Color Model in YCbCr Color Space and Its Application to Human Face Detection," in Proceedings. International Conference on Image Processing, 2002, vol. 1, pp. 289-292.
[41] R. W. Schafer, "What Is a Savitzky-Golay Filter?," IEEE Signal Processing Magazine, vol. 28, no. 4, pp. 111-117, 2011.
[42] Y. S. Lee, P. N. Pathirana, C. L. Steinfort, and T. Caelli, "Monitoring and Analysis of Respiratory Patterns Using Microwave Doppler Radar," IEEE Journal of Translational Engineering in Health and Medicine, vol. 2, pp. 1-12, 2014.
[43] G. d. Haan and V. Jeanne, "Robust Pulse Rate From Chrominance-Based rPPG," IEEE Transactions on Biomedical Engineering, vol. 60, no. 10, pp. 2878-2886, 2013.
[44] S. Jianbo and Tomasi, "Good Features to Track," in 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1994, pp. 593-600.
[45] W. Q. Lindh, M. Pooler, C. D. Tamparo, B. M. Dahl, and J. Morris, "Delmar's comprehensive medical assisting: administrative and clinical competencies," Cengage Learning, 2013.
[46] Y. C. Lin and Y. H. Lin, "Step Count and Pulse Rate Detection Based on the Contactless Image Measurement Method," IEEE Transactions on Multimedia, vol. 20, no. 8, pp. 2223-2231, 2018.
[47] J. Ding, B. Chen, H. Liu, and M. Huang, "Convolutional Neural Network With Data Augmentation for SAR Target Recognition," IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 3, pp. 364-368, 2016.

無法下載圖示 全文公開日期 2024/08/22 (校內網路)
全文公開日期 2024/08/22 (校外網路)
全文公開日期 2024/08/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE