簡易檢索 / 詳目顯示

研究生: 林映辰
Ying-Chen Lin
論文名稱: 結合擴增實境、錨定式情境與虛擬實驗室之化學實驗室教學遊戲的發展與評估: 成效、心流與行為之分析
The Development and Evaluation of an Educational Game Integrating Augmented Reality, Anchored Instruction, and Virtual Laboratory for Chemistry Experiment Learning: An Analysis of Learning Achievement, Flow, and Behaviors
指導教授: 侯惠澤
Huei-tse Hou
口試委員: 邱國力
Guo-li Chiou
陳聖智
Sheng-chih Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: 擴增實境虛擬實驗室錨定式學習遊戲式學習合作問題解決心流
外文關鍵詞: augmented reality, virtual laboratory, anchored instruction, game-based learning, cooperative problem solving, flow
相關次數: 點閱:756下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

虛擬實驗室有助於輔助學生在進入實際化學實驗室前,對於實驗操弄與科學概念的學習,並降低在操作實際的化學實驗時的危險且節省化學耗材的成本。本研究開發一款結合擴增實境與虛擬實驗室之行動載具遊戲「氧成大作戰」,這個整合擴增實境、錨定教學情境與虛擬實驗室的遊戲式學習系統,可望讓學生在實體情境中探究搜集實驗器材,並搭配場景中的各種線索作為鷹架,進行合作問題解決活動。學生並可將擴增實境學習活動中所蒐集的器材在虛擬實驗室中進行模擬操弄以達成遊戲任務。遊戲分為兩階段(AR探索遊戲階段、虛擬實驗室遊戲階段)。本研究從實微分析中探討學習成效、心流狀態、接受度以及關鍵的學習行為次數。本研究之研究對象為52位台灣北部某高中學生。研究結果顯示,學生在使用本遊戲進行學習後,學習成效達到顯著進步效果。在心流狀態、接受度的各項維度皆高於中位數。研究發現,AR探索遊戲階段、虛擬實驗室遊戲階段在不同性別的學習者的心流、成效與接受度上皆無顯著差異;虛擬實驗室遊戲階段的高學習成效組的學習者在心流前提的子維度「知行合一」顯著高於低學習成效組。在行為次數部分,AR探索遊戲階段高/低辨識器材次數、辨識錯誤器材次數與閱讀錯誤器材的文字訊息時間的學習者組別在心流的部分維度有達到顯著差異。

另外,本研究也初步分析心流狀態、接受度、學習成效與行為歷程各維度間彼此的關聯與路徑模式,並提出相關的研究與教學實務的建議。


Virtual laboratory helps students’ learning of experiment manipulation and scientific concepts before they actually enter the real chemistry laboratory. It also helps reduce the risks in conducting the real chemistry experiments and reduce the cost for chemistry experiment materials. This study developed an educational game “氧成大作戰”, on the mobile device that combined augmented reality and virtual laboratory. It’s a game-based learning system integrated with augmented reality, anchored instruction, and virtual laboratory. It is expected that the students could explore and collect the experiment materials in the real context and use the clues in the settings as scaffoldings for a collaborative problem-solving activity. The game includes two stages (the AR exploration stage and the virtual experiment stage). The study explored the students’ learning effectiveness, flow, acceptance, and frequency of their important learning behaviors based on the empirical analysis.

Fifty-two senior high school students in northern Taiwan participated in this study. The results showed that the students improved their learning significantly after the game. The scores in each dimension of flow and acceptance were above the median. The results also showed no significant difference in flow, effectiveness, and acceptance between male and female students at both the AR exploration stage and the virtual laboratory stage. However, students in the high learning effectiveness group performed significantly better than the students in the low learning effectiveness group in terms of the sub-dimension of flow “action-awareness merging” at the virtual laboratory stage. As for the frequency of the students’ behaviors, significant differences were found in some dimensions of flow, such as high/ low frequency in recognizing items at the AR exploration stage, frequency in recognizing wrong items, and time for reading guidance messages when finding wrong items. Moreover, the study also preliminarily analyzed the correlation and the path model in each dimension, such as flow, acceptance, learning effectiveness, and behaviors. Related suggestions for research and teaching were also provided in this study.

摘要 / I Abstract / II 致謝 / IV 目錄 / V 圖次 / IX 表次 / X 第一章 緒論 / 1 第一節 研究背景與動機 / 1 第二節 研究目的與研究問題 / 5 第三節 名詞釋義 / 6 第貳章 文獻探討 / 7 第一節 虛擬實驗室 / 7 一、虛擬實驗室 / 7 二、虛擬實驗室輔助科學學習案例 / 8 第二節 擴增實境 / 9 一、擴增實境 / 9 二、擴增實境輔助科學學習案例 / 10 第三節 遊戲輔助實驗學習 / 11 一、遊戲式學習 / 11 二、遊戲輔助實驗學習案例 / 12 第四節 錨定式教學 / 13 第五節 合作問題解決 / 15 第六節 小結 / 17 第参章 研究方法 / 18 第一節 研究設計 / 18 第二節 研究對象 / 18 第三節 研究工具 / 19 一、遊戲系統 / 19 (一) 設計理念 / 19 (二) 遊戲前導介面─AR探索遊戲階段 / 21 (三) 操作簡介─AR探索系統 / 22 (四) 操作流程─AR探索系統 / 24 (五) 遊戲前導介面─虛擬實驗室遊戲階段 / 28 (六) 操作簡介─虛擬實驗室系統 / 29 (七) 操作流程─虛擬實驗室系統 / 31 二、參與遊戲同意書、基本資料問卷與遊戲經驗問卷 / 32 三、學習成效評量(前後測) 32 四、心流問卷 / 35 五、接受度問卷 / 37 第四節 研究程序 / 38 第五節 資料蒐集與分析 / 39 第肆章 研究結果 / 41 第一節 高中生對於「氧成大作戰」之學習成效、心流程度與接受度 / 41 一、學習成效 / 41 二、心流狀態 / 41 三、接受度 / 43 第二節 不同性別的學習者在心流狀態、接受度與學習成效的差異 / 44 第三節 高、低學習成效組的學習者在學習成效、接受度與心流狀態的差異 / 47 第四節 高、低小組在AR探索遊戲階段的解題行為次數組別在心流、接受度與學習成效上的差異 / 49 一、辨識器材次數對於學習成效、接受度與心流狀態的差異 / 49 二、辨識錯誤器材次數對於學習成效、接受度與心流狀態的差異 / 50 三、閱讀錯誤器材的文字訊息時間對於學習成效、接受度與心流狀態的差異 / 52 第五節 相關與路經分析 / 53 一、相關分析 / 54 二、路徑分析 / 56 第伍章 討論 / 59 第一節 高中生對於「氧成大作戰」之學習成效、心流程度與接受度 / 59 第二節 不同性別的學習者在心流狀態、接受度與學習成效的差異 / 60 第三節 高、低學習成效組的學習者在學習成效、接受度與心流狀態的差異 / 60 第四節 高、低小組在AR探索遊戲階段的解題行為次數組別在心流、接受度與學習成效上的差異 / 61 一、辨識器材次數對於學習成效、接受度與心流狀態的差異 / 61 二、辨識錯誤器材次數對於學習成效、接受度與心流狀態的差異 / 61 三、閱讀錯誤器材的文字訊息時間對於學習成效、接受度與心流狀態的差異 / 62 第五節 學習者在AR探索遊戲階段與虛擬實驗室遊戲階段中的學習成效、心流狀態、接受度各個要素間之關聯與路徑 / 63 第陸章 結論與建議 / 64 第一節 結論 / 64 第二節 建議 / 67 一、遊戲系統發展方面 / 67 二、教學實務用方面 / 67 三、未來研究上的建議 / 68 參考文獻 / 69 附錄一 :AR探索遊戲階段─找尋製氧實驗器材遊戲順序 / 78 附錄二 :虛擬實驗室遊戲階段─組裝製氧實驗步驟 / 83 附錄三 :參與遊戲同意書 / 85 附錄四 :基本資料問卷 / 86 附錄五 :遊戲經驗的詳細問卷 / 87 附錄六 :學習成效評量 / 88 附錄七 :心流問卷量表 / 91 附錄八 :接受度問卷量表 / 93

侯惠澤、周逸璇、陳昊暐(2014)。運用迷你解謎遊戲於翻轉教室:“微翻轉遊戲式學習活動”之模式與教育遊戲編輯環境XML-based ER Game Maker©之建置, 2014台灣數位學習發展研討會, 2014/11/13-14, TWELF 2014, 台北。
蔡德馨(2014)。結合3D模擬操弄與角色扮演策略之化學教學遊戲的發展與評估:科技接受度、心流、方向感之分析。國立臺灣科技大學應用科技研究所,未出版,台北市。
吳翊瑄(2013)。結合角色扮演與問題解決策略之模擬化學實驗教學遊戲之發展與評估:心流、科技接受度與學習歷程分析。國立臺灣科技大學應用科技研究所,未出版,台北市。
Akçayır, M., Akçayır, G., Pektaş, H. M., & Ocak, M. A. (2016). Augmented reality in science laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science laboratories. Computers in Human Behavior, 57, 334-342.
Alberto, P., & Troutman, A. C. (1999). Applied behavior analysis for teachers (5th ed.). Upper Saddle River, N.J.: Merrill.
Alessi, S. M., & Trollip, S. R. (2001). Multimedia for learning. Methods and development, 3rd edition. Boston: Allyn & Bacon.
Al-Washmi, R., Baines, M., Organ, S., Hopkins, G., & Blanchfield, P. (2014, October). Mathematics problem solving through collaboration: Game design and adventure. In European Conference on Games Based Learning (Vol. 1, p. 1). Academic Conferences International Limited.
Aziz, E. S., Corter, J. E., Chang, Y., Esche, S. K., & Chassapis, C. (2012, October). Evaluation of the learning effectiveness of game-based and hands-on gear train laboratories. In 2012 Frontiers in Education Conference Proceedings (pp. 1-6). IEEE.
Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators and virtual environments, 6(4), 355-385.
Callaghan, M. J., McCusker, K., Losada, J. L., Harkin, J., & Wilson, S. (2013). Using game-based learning in virtual worlds to teach electronic and electrical engineering. IEEE Transactions on Industrial Informatics, 9(1), 575-584.
Chao, J., Chiu, J. L., DeJaegher, C. J., & Pan, E. A. (2016). Sensor-Augmented Virtual Labs: Using Physical Interactions with Science Simulations to Promote Understanding of Gas Behavior. Journal of Science Education and Technology, 25(1), 16-33.
Chen, C. H., Wang, K. C., & Lin, Y. H. (2015). The Comparison of Solitary and Collaborative Modes of Game-based Learning on Students' Science Learning and Motivation. Educational Technology & Society, 18(2), 237-248.
Chiang, T. H., Yang, S. J., & Hwang, G. J. (2014). An Augmented Reality-based Mobile Learning System to Improve Students' Learning Achievements and Motivations in Natural Science Inquiry Activities. Educational Technology & Society, 17(4), 352-365.
Chiu, J. L., DeJaegher, C. J., & Chao, J. (2015). The effects of augmented virtual science laboratories on middle school students' understanding of gas properties. Computers & Education, 85, 59-73.
Cognition and Technology Group at Vanderbilt. (1996). Anchored instruction and situated cognition revisited. In H. McLellan (Ed.), Situated learning perspectives. Englewood Cliffs, New Jersey: Educational Technology Publications.
Dalgarno, B., Bishop, A. G., & Bedgood Jr, D. R. (2012, November). The potential of virtual laboratories for distance education science teaching: reflections from the development and evaluation of a virtual chemistry laboratory. In Proceedings of The Australian Conference on Science and Mathematics Education (formerly UniServe Science Conference) (Vol. 9).
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 13, 319-340.
Dede, C. (2009). Immersive interfaces for engagement and learning. science, 323(5910), 66-69.
Elcin, M., & Sezer, B. (2014). An Exploratory Comparison of Traditional Classroom Instruction and Anchored Instruction with Secondary School Students: Turkish Experience. Eurasia Journal of Mathematics, Science & Technology Education, 10(6), 523-530.
Evans, H. G., Heyl, D. L., & Liggit, P. (2016). Team-Based Learning, Faculty Research, and Grant Writing Bring Significant Learning Experiences to an Undergraduate Biochemistry Laboratory Course. Journal of Chemical Education, 93(6), 1027-1033.
Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper Perennial.
Gersten, R. (1998). Recent advances in instructional research for students with learning disabilities: An overview. Learning Disabilities Research and Practice, 13(3), 162-170.
Gunbas, N. (2015). Students' mathematics word problem‐solving achievement in a computer‐based story. Journal of Computer Assisted Learning, 31(1), 78-95.
Herga, N. R., & Dinevski, D. (2012, June). Using a virtual laboratory to better understand chemistry-An experimental study on acquiring knowledge. In Information Technology Interfaces: Proceedings of the ITI 2012 34th International Conference (pp. 237-242). Cavtat / Dubrovnik, Croatia: University of Zagreb.
Herga, N. R., Čagran, B., & Dinevski, D. (2016). Virtual Laboratory in the Role of Dynamic Visualisation for Better Understanding of Chemistry in Primary School. Eurasia Journal of Mathematics, Science & Technology Education, 12(3), 593-608.
Hou, H. T. (2012). Exploring the behavioral patterns of learners in an educational massively multiple online role-playing game (MMORPG). Computers and Education, 58, 4, 1225-1233.
Hou, H. T., & Chou, Y. S. (2012). Exploring the technology acceptance and flow state of a chamber escape game-Escape The Lab© for learning electromagnet concept. Poster presented at the 20th International Conference on Computers in Education (ICCE2012), Singapore, November 26-30, 2012.
Hou, H. T., Wu, Y. S., & Chou, Y. S. (2014). How technology acceptance affects flow antecedent and flow experience in a simulation-based science education game: A preliminary path analysis. Paper presented at the Global Chinese Conference on Computers in Education (GCCCE 2014), May 26-30, 2014, Shanghai, China.
Huang, T. C., Chen, C. C., & Chou, Y. W. (2016). Animating eco-education: To see, feel, and discover in an augmented reality-based experiential learning environment. Computers & Education, 96, 72-82.
Hung, C. Y., Sun, J. C. Y., & Yu, P. T. (2015). The benefits of a challenge: student motivation and flow experience in tablet-PC-game-based learning. Interactive Learning Environments, 23(2), 172-190.
Hung, H. C., & Young, S. S. C. (2015). An investigation of game-embedded handheld devices to enhance English learning. Journal of Educational Computing Research, 52(4), 548-567.
Ibáñez, M. B., Di-Serio, Á., Villarán-Molina, D., & Delgado-Kloos, C. (2016). Support for Augmented Reality Simulation Systems: The Effects of Scaffolding on Learning Outcomes and Behavior Patterns. IEEE Transactions on Learning Technologies, 9(1), 46-56.
Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of computer assisted learning, 7(2), 75-83.
Johnstone, A. H. (2006). Chemical education research in Glasgow in perspective. Chemistry Education Research and Practice, 7(2), 49-63.
Kiili, K. (2006). Evaluations of an experiential gaming model. An Interdisciplinary Journal on Humans in ICT Environments, 2(2), 187-201
Kiili, K. (2007). Foundation for problem‐based gaming. British journal of educational technology, 38(3), 394-404.
Koretsky, M. D., Amatore, D., Barnes, C., & Kimura, S. (2008). Enhancement of student learning in experimental design using a virtual laboratory. Education, IEEE Transactions on, 51(1), 76-85.
Lee, H., Parsons, D., Kwon, G., Kim, J., Petrova, K., Jeong, E., & Ryu, H. (2016). Cooperation begins: Encouraging critical thinking skills through cooperative reciprocity using a mobile learning game. Computers & Education, 97, 97-115.
Lehtinen, E., Hakkarainen, K., Lipponen, L., Rahikainen, M., & Muukkonen, H. (1999). Computer supported collaborative learning: A review. The JHGI Giesbers reports on education, 10.
Lester, J. C., Spires, H. A., Nietfeld, J. L., Minogue, J., Mott, B. W., & Lobene, E. V. (2014). Designing game-based learning environments for elementary science education: A narrative-centered learning perspective. Information Sciences, 264, 4-18.
Lin, C. Y., Chai, H. C., Wang, J. Y., Chen, C. J., Liu, Y. H., Chen, C. W., Lin, C. W & Huang, Y. M. (2016). Augmented reality in educational activities for children with disabilities. Displays, 42, 51-54.
Lowe, J. S., & Holton, E. F. (2005). A theory of effective computer-based instruction for adults. Human Resource Development Review, 4(2), 159-188.
Magana, A. J., Falk, M. L., Vieira, C., & Reese, M. J. (2016). A case study of undergraduate engineering students' computational literacy and self-beliefs about computing in the context of authentic practices. Computers in Human Behavior, 61, 427-442.
Markusiewicz, J., & Slyk, J. (2015). From Shaping to Information Modeling in Architectural Education: Implementation of Augmented Reality Technology in Computer-Aided Modeling. eCAADe 2015: Real Time - Extending the reach of Computation, Vol. 2 (pp. 83-90). Vienna: eCAADe (Education and Research in Computer Aided Architectural Design in Europe) and Faculty of Architecture and Regional Planning.
Martínez-Jiménez, P., Pontes-Pedrajas, A., Climent-Bellido, M. S., & Polo, J. (2003). Learning in chemistry with virtual laboratories. Journal of Chemical Education, 80, 346.
Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995, December). Augmented reality: A class of displays on the reality-virtuality continuum. In Photonics for industrial applications (pp. 282-292). International Society for Optics and Photonics.
Morozov, M. Y., Tanakov, A., Gerasimov, A., Bystrov, D., Cvirco, E. (2004) Virtual chemistry laboratory for school education. Advanced Learning Technologies. p. 605 – 608.
OECD (2013). PISA 2015 Draft collaborative problem solving framework. Unpublished manuscript.Adams, R. J., Wilson, M., & Wu, M. (1997). Multilevel item response models: An approach to errors in variables regression. Journal of Educational and Behavioral Statistics, 22, 47-76.
Perner, J. (1991). Understanding the representational mind. The MIT Press.
Prensky, M. (2001). Fun, play and games: What makes games engaging. Digital game-based learning, 5, 1-05.
Prensky, M. (2003). Digital game-based learning. Computers in Entertainment (CIE), 1(1), 21-21.
Redel-Macías, M. D., Pinzi, S., Martínez-Jiménez, M. P., Dorado, G., & Dorado, M. P. (2016). Virtual laboratory on biomass for energy generation. Journal of Cleaner Production, 112, 3842-3851.
Ren, S., McKenzie, F. D., Chaturvedi, S. K., Prabhakaran, R., Yoon, J., Katsioloudis, P. J., & Garcia, H. (2015). Design and comparison of immersive interactive learning and instructional techniques for 3d virtual laboratories. Presence, 24(2), 93-112.
San Chee, Y., Tan, K. C. D., Tan, E. M., & Jan, M. (2011, June). Learning Chemistry Through Inquiry With the Game Legends of Alkhimia: An Evaluation of Learning Outcomes. In Proceedings of the 7th European Conference on Management Leadership and Governance: ECGBL 2011 (p. 98). Academic Conferences Limited.
Shell, D. F., Snow, G. R., & Claes, D. R. (2011). The cosmic ray observatory project: results of a summer high-school student, teacher, university scientist partnership using a capstone research experience. Journal of Science Education and Technology, 20(2), 161-177.
Shyu, H. Y. C. (2000). Using video‐based anchored instruction to enhance learning: Taiwan's experience. British Journal of Educational Technology, 31(1), 57-69.
Sokoutis, D. (2003). Simulation of thermo chemistry experiments, Proceedings of 2nd Conference Information and Communication Technologies in Education, Syros.
Thorndike, E. L., & Woodworth, R. S. (1901). The influence of improvement in one mental function upon the efficiency of other functions. II. The estimation of magnitudes. Psychological Review, 8(4), 384.
Turner, K. L. (2016). A Cost-Effective Physical Modeling Exercise To Develop Students’ Understanding of Covalent Bonding. Journal of Chemical Education, 93(6), 1073-1080.
Tüysüz, C. (2010). The effect of the virtual laboratory on students’ achievement and attitude in chemistry. International Online Journal of Educational Sciences, 2(1), 37-53.
Van Krevelen, D. W. F., & Poelman, R. (2010). A survey of augmented reality technologies, applications and limitations. International Journal of Virtual Reality, 9(2), 1.
Wang, L. C., & Chen, M. P. (2010). The effects of game strategy and preference‐matching on flow experience and programming performance in game‐based learning. Innovations in Education and Teaching International, 47(1), 39-52.
Wenwu, C., & Xinsheng, L. (2011, September) An Anchored Instruction Case Study: Developing Fifteens Puzzle as a Graphical Calculator Class Task. Integration of Technology into Mathematics Education: past, present and future (pp. 299-305). Radford, VA: Mathematics and Technology, LLC.
Wood, P., Bruner, J., & Ross, G. (1976). The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17, 89-100.
Wouters, P., Van Nimwegen, C., Van Oostendorp, H., & Van Der Spek, E. D. (2013). A meta-analysis of the cognitive and motivational effects of serious games. Journal of Educational Psychology, 105(2), 249.
Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 41-49.
Yalcin, N. A., & Vatansever, F. (2016). A web‐based virtual power electronics laboratory. Computer Applications in Engineering Education, 24(1), 71-78.
Yang, J. C., Quadir, B., & Chen, N. S. (2016). Effects of the Badge Mechanism on Self-Efficacy and Learning Performance in a Game-Based English Learning Environment. Journal of Educational Computing Research, 54(3), 371-394.
Zhang, Z., Zhang, M., Chang, Y., Aziz, E. S., Esche, S. K., & Chassapis, C. (2013, November). Real-time 3D model reconstruction and interaction using Kinect for a game-based virtual laboratory. In ASME 2013 International Mechanical Engineering Congress and Exposition (pp. V005T05A053-V005T05A053). American Society of Mechanical Engineers.
Zydney, J. M., Bathke, A., & Hasselbring, T. S. (2014). Finding the optimal guidance for enhancing anchored instruction. Interactive Learning Environments, 22(5), 668-683.

無法下載圖示 全文公開日期 2021/11/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE