簡易檢索 / 詳目顯示

研究生: 蔡秉勳
BING-XUN CAI
論文名稱: 以大數據均值化模型於高位脛骨截骨手術之通用型器械設計與驗證
Design and Validation of Globe Specific Instrument for High Tibia Osteotomy by Statistical Shape Model
指導教授: 鄭正元
Jeng-Ywan Jeng
陳俊名
Chun-Ming Chen
口試委員: 鄭正元
Jeng-Ywan Jeng
林上智
Shang-Chih Lin
許啟彬
Chi-Pin Hsu
陳俊名
Chun-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 96
中文關鍵詞: 高位脛骨截骨術形態學均值化
外文關鍵詞: High Tibial Osteotomy, Morphology, Statistical Shape Model
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為通用型器械(Globe Specific Instrument, GSI)採用AI方法的先期的研究,主要為蒐集人體的脛骨電腦斷層掃描(Computed Tomography, CT)影像後,重建為三維模型資料做分析,並以3D列印脛骨模型進行體外重現性實驗,以驗證通用型器械(GSI)與引切器械的先期手術規劃開發可行性。將膝關節炎的脛骨量測記錄,做脛骨形態學統計結果的AP/ML比例為0.67,以3D模型量測比2D影像量測脛骨尺寸更貼近文獻數據;均值化模型(SSM)與該分群內的脛骨外型的平均差距為0.47mm;GSI限制高度的實驗結果顯示可有效的使重現性誤差降低。重現性實驗的二維誤差統計結果:小於1.0mm範圍為96.67%,小於1.5mm範圍為99.63%,以光學掃描的三維距離誤差值為0.48mm,比文獻的1.5mm還要小,而光學掃描的三維角度誤差值為2.26∘,小於文獻的3∘,因此說明本研究設計的通用型器械手術器械,可透過臨床醫師施打脛骨平台定位導針之後,達到與術前規劃一致的定位位置,讓截骨手術順利完成。


    This study is a preliminary study on the use of AI methods for a universal instrument (Globe Specific Instrument, GSI). It mainly collects Computed Tomography (CT) images of the tibia of the human body, reconstructs it into 3D model data for analysis, and uses 3D images for analysis. The tibia model was printed for in-vitro reproducibility experiments to verify the feasibility of pre-operative planning and development of Globe Specific Instrument (GSI) and Guide instruments. The tibia measurement of knee arthritis was recorded, and the AP/ML ratio of tibial morphological statistics was 0.67. The 3D model measurement was closer to the literature data than the 2D image measurement. The mean value model (SSM) and this grouping The average difference between the inner and outer tibial shapes was 0.47 mm; the experimental results of the GSI limit height showed that it can effectively reduce the reproducibility error. The statistical results of the two-dimensional error of the reproducibility experiment: the range less than 1.0mm is 96.67%, the range less than 1.5mm is 99.63%, and the three-dimensional distance error value of optical scanning is 0.48mm, which is smaller than the 1.5mm in the literature. The error value of the three-dimensional angle of the scan is 2.26∘, which is less than 3∘in the literature. Therefore, it shows that the general-purpose surgical instrument designed in this study can achieve a positioning position consistent with the preoperative planning after applying the tibial plateau positioning guide pin by the clinician, so that the osteotomy can be successfully completed.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 論文架構 5 第二章 文獻回顧 6 2.1 膝關節炎與高位脛骨截骨術 6 2.2 脛骨形態學 16 2.2.1 脛骨平台參數 17 2.2.2 脛骨尺寸量測 19 2.3 均值化模型 21 2.3.1 均值化模計算 21 2.3.2 均值化模型 22 2.4 手術器械導航與體外實驗 23 2.4.1客製化手術器械精度 23 2.4.2引切器械精度 24 第三章 材料與方法 25 3.1脛骨形態學量測 25 3.1.1 脛骨3D模型重建 26 3.1.2 脛骨平台尺寸量測 28 3.2 均值化模型產生 32 3.2.1各組模型定位 34 3.2.2 脛骨內側截面提取 35 3.2.3 均值化模型實體化 36 3.3 通用型手術器械開發 37 3.3.1 通用型貼合器械特徵點定義 37 3.3.2 貼合器械強度驗證 39 3.3.3 鋸切導引板設計 41 3.4 體外實驗驗證規劃 42 3.4.1 脛骨平台定位導針 42 3.4.2 貼合位置重現性實驗 43 3.4.3 逆向掃描實驗 48 3.4.4 鋸切體外實驗 51 第四章 實驗結果與討論 52 4.1 脛骨形態學分析結果 52 4.1.1 脛骨尺寸 52 4.1.2 脛骨模型定位分析 55 4.1.3 均值化模型誤差分析 58 4.2 導引板重現性實驗 61 4.2.1 導引板貼合實驗 61 4.2.2 導引板高度限制實驗 64 4.2.3 導引板重現性實驗 66 4.2.4 光學逆向掃描實驗 71 4.3 體外實驗測試 72 4.4 結果討論 74 第五章 結論與未來研究方向 77 5.1 結論 77 5.2 未來研究方向 77 參考文獻 78

    [1] M.Englund, “The role of biomechanics in the initiation and progression of OA of the knee,” Best Pract. Res. Clin. Rheumatol., vol. 24, no. 1, pp. 39–46, Feb.2010, doi: 10.1016/J.BERH.2009.08.008.
    [2] K. T.Kang, Y. G.Koh, J. A.Lee, J. J.Lee, andS. K.Kwon, “Biomechanical effect of a lateral hinge fracture for a medial opening wedge high tibial osteotomy: Finite element study,” J. Orthop. Surg. Res., vol. 15, no. 1, Feb.2020, doi: 10.1186/S13018-020-01597-7.
    [3] E.Çullu, S.Aydoǧdu, B.Alparslan, andH.Sur, “Tibial slope changes following dome-type high tibial osteotomy,” Knee Surgery, Sport. Traumatol. Arthrosc., vol. 13, no. 1, pp. 38–43, Jan.2005, doi: 10.1007/S00167-004-0501-0/FIGURES/3.
    [4] J. A. W.Tunggal, G. A.Higgins, andJ. P.Waddell, “Complications of closing wedge high tibial osteotomy,” Int. Orthop. 2009 342, vol. 34, no. 2, pp. 255–261, Jun.2009, doi: 10.1007/S00264-009-0819-9.
    [5] R. W.Brouwer, S. M. A.Bierma-Zeinstra, T. M.vanRaaij, andJ. A. N.Verhaar, “Osteotomy for medial compartment arthritis of the knee using a closing wedge or an opening wedge controlled by a Puddu plate. A one-year randomised, controlled study,” J. Bone Joint Surg. Br., vol. 88, no. 11, pp. 1454–1459, Nov.2006, doi: 10.1302/0301-620X.88B11.17743.
    [6] S.Gandhi, R.Kumar Singla, V.Mehta, andR.Kumar Suri, “Morphometric Analysis of Upper End of Tibia,” J. Clin. Diagn. Res., vol. 8, no. 8, p. AC10, 2014, doi: 10.7860/JCDR/2014/8973.4736.
    [7] T. K.Kim, M.Phillips, M.Bhandari, J.Watson, andR.Malhotra, “What Differences in Morphologic Features of the Knee Exist Among Patients of Various Races? A Systematic Review,” Clin. Orthop. Relat. Res., vol. 475, no. 1, pp. 170–182, Jan.2017, doi: 10.1007/S11999-016-5097-4/FIGURES/8.
    [8] J. W.Katz andR. J.Fingeroth, “The diagnostic accuracy of ruptures of the anterior cruciate ligament comparing the Lachman test, the anterior drawer sign, and the pivot shift test in acute and chronic knee injuries,” Am. J. Sports Med., vol. 14, no. 1, pp. 88–91, Apr.1986, doi: 10.1177/036354658601400115.
    [9] Y.Zhang et al., “Comparison between three-dimensional CT and conventional radiography in proximal tibia morphology,” Medicine (Baltimore)., vol. 97, no. 30, Jul.2018, doi: 10.1097/MD.0000000000011632.
    [10] C. W.Ha andS. E.Na, “The correctness of fit of current total knee prostheses compared with intra-operative anthropometric measurements in Korean knees,” J. Bone Joint Surg. Br., vol. 94, no. 5, pp. 638–641, May2012, doi: 10.1302/0301-620X.94B5.28824.
    [11] P.Li et al., “Morphological measurement of the knee: race and sex effects.,” Acta Orthop. Belg., vol. 80, no. 2, pp. 260–268, Jun.2014, Accessed: Jun.23, 2022. [Online]. Available: https://europepmc.org/article/med/25090801
    [12] C.Phombut, S.Rooppakhun, andB.Sindhupakorn, “Morphometric measurement of the proximal tibia to design the tibial component of total knee arthroplasty for the Thai population,” J. Exp. Orthop., vol. 8, no. 1, pp. 1–12, Dec.2021, doi: 10.1186/S40634-021-00429-9/FIGURES/7.
    [13] F. B.Cheng et al., “Three dimensional morphometry of the knee to design the total knee arthroplasty for Chinese population,” Knee, vol. 16, no. 5, pp. 341–347, Oct.2009, doi: 10.1016/J.KNEE.2008.12.019.
    [14] H.Mohan, P.Chhabria, V.Bagaria, K.Tadepalli, L.Naik, andR.Kulkarni, “Anthropometry of Nonarthritic Asian Knees: Is It Time for a Race-Specific Knee Implant?,” Clin. Orthop. Surg., vol. 12, no. 2, p. 158, Jun.2020, doi: 10.4055/CIOS19069.
    [15] K.Uehara, Y.Kadoya, A.Kobayashi, H.Ohashi, andY.Yamano, “Anthropometry of the proximal tibia to design a total knee prosthesis for the Japanese population,” J. Arthroplasty, vol. 17, no. 8, pp. 1028–1032, 2002, doi: 10.1054/ARTH.2002.35790.
    [16] H. C.Lim, J. H.Bae, J. Y.Yoon, S. J.Kim, J. G.Kim, andJ. M.Lee, “Gender differences of the morphology of the distal femur and proximal tibia in a Korean population,” Knee, vol. 20, no. 1, pp. 26–30, Jan.2013, doi: 10.1016/J.KNEE.2012.05.010.
    [17] K. S.Shih, C. P.Hsu, C. W.Liu, L. L.Wang, S. M.Hou, andS. C.Lin, “Comparison between different screening strategies to determine the statistical shape model of the pelvises for implant design,” Comput. Methods Programs Biomed., vol. 178, pp. 265–273, Sep.2019, doi: 10.1016/J.CMPB.2019.06.028.
    [18] O. L.Bruce, M.Baggaley, L.Welte, M. J.Rainbow, andW. B.Edwards, “A statistical shape model of the tibia-fibula complex: sexual dimorphism and effects of age on reconstruction accuracy from anatomical landmarks,” https://doi.org/10.1080/10255842.2021.1985111, vol. 25, no. 8, pp. 875–886, 2021, doi: 10.1080/10255842.2021.1985111.
    [19] S.Meller andW. A.Kalender, “Building a statistical shape model of the pelvis,” Int. Congr. Ser., vol. 1268, no. C, pp. 561–566, Jun.2004, doi: 10.1016/J.ICS.2004.03.295.
    [20] M. A.Baldwin, J. E.Langenderfer, P. J.Rullkoetter, andP. J.Laz, “Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach,” Comput. Methods Programs Biomed., vol. 97, no. 3, pp. 232–240, Mar.2010, doi: 10.1016/J.CMPB.2009.07.005.
    [21] F.Ambellan, H.Lamecker, C.vonTycowicz, andS.Zachow, “Statistical Shape Models: Understanding and Mastering Variation in Anatomy,” Adv. Exp. Med. Biol., vol. 1156, pp. 67–84, 2019, doi: 10.1007/978-3-030-19385-0_5.
    [22] M.Bindernagel, D.Kainmueller, H.Seim, H.Lamecker, S.Zachow, andH. C.Hege, “An articulated statistical shape model of the human knee,” Inform. aktuell, pp. 59–63, 2011, doi: 10.1007/978-3-642-19335-4_14/COVER/.
    [23] J. C. S.Yang et al., “Clinical Experience Using a 3D-Printed Patient-Specific Instrument for Medial Opening Wedge High Tibial Osteotomy,” Biomed Res. Int., vol. 2018, 2018, doi: 10.1155/2018/9246529.
    [24] N.Baka et al., “Evaluation of automated statistical shape model based knee kinematics from biplane fluoroscopy,” J. Biomech., vol. 47, no. 1, pp. 122–129, Jan.2014, doi: 10.1016/J.JBIOMECH.2013.09.022.
    [25] N.Kozic et al., “Optimisation of orthopaedic implant design using statistical shape space analysis based on level sets,” Med. Image Anal., vol. 14, no. 3, pp. 265–275, Jun.2010, doi: 10.1016/J.MEDIA.2010.02.008.
    [26] J. G.Gerbers, P. A. J.Pijpker, R. W.Brouwer, andH. C.van derVeen, “Anterolateral proximal tibial opening wedge osteotomy for biplanar correction in genu valgum recurvatum using patient specific instrumentation (PSI). A technical note,” Knee, vol. 33, pp. 58–64, Dec.2021, doi: 10.1016/J.KNEE.2021.08.030.
    [27] Z.Miao, S.Li, D.Luo, Q.Lu, andP.Liu, “The validity and accuracy of 3D-printed patient-specific instruments for high tibial osteotomy: a cadaveric study,” J. Orthop. Surg. Res., vol. 17, no. 1, Dec.2022, doi: 10.1186/S13018-022-02956-2

    無法下載圖示 全文公開日期 2032/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE