簡易檢索 / 詳目顯示

研究生: 高義明
Hernan - Garron Leon
論文名稱: 用於多根天線通訊系統之低計算量最大事後機率軟決策輸入軟決策輸出偵測器
Low-Complexity Maximum A Posteriori Detector for MIMO Systems
指導教授: 王煥宗
Huan-Chun Wang
口試委員: 黃永發
Yung-Fa Huang
洪珨隆
Ho-Lung Hung
李奎毅
Kuei-Yi Lee
林敬舜
Ching-Shun Lin
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 78
中文關鍵詞: 最大事後機率軟決策輸入軟決策輸出偵測器多根天線系統MMSE-SIC遞迴偵測與解碼EXIT chart額外資訊
外文關鍵詞: Maximum a posteriori probability SISO detector, MIMO systems, MMSE-SIC, iterative detection and decoding, EXIT chart, extrinsic information
相關次數: 點閱:426下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目標是提出了一種用於多根天線通訊系統之低計算量最大事後機率軟決策輸入軟決策輸出偵測器。我們所提出的低計算量最大事後機率軟決策輸入軟決策輸出偵測器的基礎在於接受端的信號看成高斯複數隨機變數。我們提出兩種方法來降低偵測器的計算量。第一種方法針對接受信號的共變異數矩陣做簡化,第二種方法利用遞歸方程式來取代最大事後機率的積分。模擬結果顯示我們所提出的低計算量偵測器接近最佳效能而且計算量比所有其它偵測器還低,例如比最常用的 minimum mean-square error with soft interference cancellation (MMSE-SIC) 軟決策輸入軟決策輸出偵測器低 24 倍。除此優點以外我們所提出的偵測器利用比較穩健的數值運算方法。低計算量及穩健的數值運算使我們所提出的偵測器可以在硬體上實現。


    This thesis proposes a low-complexity maximum a posteriori probability (MAP) soft-in soft-out (SISO) detector for multiple-input multiple-output (MIMO) communication systems. Our low-complexity MAP SISO detector is based on the assumption that the received signal has a joint complex Gaussian probability density function (PDF). We propose two methods to reduce computational complexity. The first method simplifies the computation of the covariance matrix of the received signal. The second method introduces a recursive formula which substitutes the integration of the maximum a posteriori probability. Simulation results show that the proposed low-complexity MAP SISO detectors approach optimum performance, which is obtained with the conventional MAP SISO detector. Moreover, the computational complexity of our proposed detectors are much lower than those of other SISO detectors. For example, its computational
    complexity is 24 times lower than the minimum mean-square error with soft interference cancellation (MMSE-SIC) SISO detector, which is the most commonly used detection algorithm. It also uses more stable numerical methods which, coupled with lower computational complexity, enable hardware implementation.

    摘要 Abstract 誌謝 Acknowledgements Contents List of Abbreviations List of Symbols List of Figures List of Tables Chapter 1 Introduction 1.1 Background 1.2 Problems 1.3 Solutions 1.4 Thesis Organization Chapter 2 System Description Chapter 3 Low-Complexity MAP SISO Detector 3.1 Computing p(y(q)|xi(q)) 3.1.1 Covariance matrix reduction algorithm 3.1.2 Low-complexity integration-based algorithm 3.2 Computing {p(xi(q))} for i = 1,..., N 3.2.1 Computing E(xi(q)) 3.2.2 Computing var(xi(q)) 3.3 Computing {Le(dl(q))} for l = 1,..., 2QN Chapter 4 Computational Complexity Chapter 5 Simulation Results Chapter 6 Conclusions References Appendix Appendix A: proof of (3.33)-(3.34) Appendix B: proof of (3.60)-(3.63) Appendix C: proof of (3.65)-(3.68) Brief Biography Publication List Journal Conference

    [1] J. G. Foschini, "Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas," Bell Labs Tech. J., vol. 1, no. 2, pp. 41–59, Summer 1996.
    [2] G. D. Golden, C. J. Foschini, R. A. Valenzuela, and P. W. Wolniansky, "Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture," Electron. Lett., vol. 35, no. 1, pp. 14–16, Jan. 1999.
    [3] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications. Boston, USA: Artech House, 2000.
    [4] 3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Network; Requirements for Further Advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced) (Release 12), TR 36.913 V12.0.0, 3GPP Organizational Partners, Sep. 2014.
    [5] IEEE 802.16 Broadband Wireless Access Working Group, "IEEE 802.16m System Description Document (SDD)," IEEE 802.16m-09/0034r4, Dec. 2010.
    [6] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications. Cambridge, UK: Cambridge University Press, 2003.
    [7] A. M. Tonello, "Space-time bit-interleaved coded modulation with an iterative decoding strategy," in Proc. IEEE Vehicular Technology Conference, Boston, USA, Sep. 2000, vol. 1, pp. 473–478.
    [8] A. van Zelst, R. van Nee, and G. A. Awater, "Turbo-BLAST and its performance," in Proc. IEEE Vehicular Technology Conference, Rhodes, Greece, May 2001, vol. 2, pp. 1282–1286.
    [9] A. Stefanov and T. M. Duman, "Turbo-coded modulation for systems with transmit and receive antenna diversity over block fading channels: System model, decoding approaches, and practical considerations," IEEE J. Sel. Areas Commun., vol. 19, no. 5, pp. 958–968, Mar. 2001.
    [10] B. M. Hochwald and S. ten Brink, "Achieving near-capacity on a multiple-antenna channel," IEEE Trans. Commun., vol. 51, no. 3, pp. 389–399, Mar. 2003.
    [11] Z. Guo and P. Nilsson, "Algorithm and implementation of the K-best sphere decoding for MIMO detection," IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 491–503, Mar. 2006.
    [12] B. Farhang-Boroujeny, H. Zhu, and Z. Shi, "Markov chain Monte Carlo algorithms for CDMA and MIMO communication systems," IEEE Trans. Signal. Process., vol. 54, no. 5, pp. 1896–1909, May 2006.
    [13] R. R. Chen, R. Peng, A. Ashikhmin, and B. Farhang-Boroujeny, "Approaching MIMO capacity using bitwise Markov chain Monte Carlo detection," IEEE Trans. Commun., vol. 58, no. 2, pp. 423−428, Feb. 2010.
    [14] T. Datta, N. A. Kumar, A. Chockalingam, and B. S. Rajan, "A novel Monte-Carlo-sampling-based receiver for large-scale uplink multiuser MIMO systems," IEEE Trans. Veh. Technol., vol. 62, no. 7, pp. 3019−3038, Sep. 2013.
    [15] X. Wang and H. V. Poor, "Iterative (turbo) soft interference cancellation and decoding for coded CDMA," IEEE Trans. Commun., vol. 47, no. 7, pp. 1046−1061, Jul. 1999.
    [16] M. Sellathurai and S. Haykin, "TURBO-BLAST for wireless communications: Theory and experiments," IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2538–2546, Oct. 2002.
    [17] J. Choi, "A correlation based analysis for approximate MAP detectors and iterative receivers," IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1764–1773, May 2007.
    [18] J. W. Choi, A. C. Singer, J. Lee, and N. I. Cho, "Improved linear soft-input soft-output detection via soft feedback successive interference cancellation," IEEE Trans. Commun., vol. 58, no. 3, pp. 986–996, Mar. 2010.
    [19] Z. Q. Luo, W. K. Ma, A. M. C. So, Y. Ye, and S. Zhang, "Semidefinite relaxation of quadratic optimization problems," IEEE Signal Process. Mag., vol. 27, no. 3, pp. 20–34, May 2010.
    [20] M. Nekuii, M. Kisialiou, T. N. Davidson, and Z. Q. Luo, "Efficient soft-output demodulation of MIMO QPSK via semidefinite relaxation," IEEE J. Sel. Topics Signal Process., vol. 5, no. 8, pp. 1426–1437, Dec. 2011.
    [21] Y. Sun, "A family of linear complexity likelihood ascent search detectors for CDMA multiuser detection," in Proc. IEEE 6th Intl. Symp. on Spread Spectrum
    Tech. & App., Parsippany, New Jersey, USA, vol. 2, pp. 713–717, Sep. 2000.
    [22] K. V. Vardhan, S. K. Mohammed, A. Chockalingam, and B. S. Rajan, "A low-complexity detector for large MIMO systems and multicarrier CDMA systems," IEEE J. Sel. Areas Commun., vol. 26, no. 3, pp. 473–485, Apr. 2008.
    [23] R. Koetter, A. C. Singer, and M. Tuchler, "Turbo equalization," IEEE Signal
    Process. Mag., vol. 21, no. 1, pp. 67–80, Jan. 2004.
    [24] J. Hagenauer, E. Offer, and L. Papke, "Iterative decoding of binary block and convolutional codes," IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 429–445, Mar. 1996.
    [25] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding of linear codes for minimizing symbol error rate," IEEE Trans. Inform. Theory, vol. IT–20, pp. 284–287, Mar. 1974.
    [26] C. Berrou, A. Glavieux and P. Thitimajshima, "Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1," in Proc. IEEE International Conference on Communications, Geneva, Switzerland, May 1993, vol. 2, pp. 1064–1070.
    [27] R. V. Hogg, J. McKean, and A. T. Craig, Introduction to Mathematical Statistics. Essex, England: Pearson Education Limited, 2014.
    [28] A. Papoulis, and S. Unnikrishna Pillai, Probability, Random Variables, and
    Stochastic Processes. Singapore: McGraw-Hill Education (Asia), 2002.
    [29] S. J. Leon, Linear Algebra with Applications. Upper Saddle River, New Jersey, USA: Pearson Education, Inc., 2006.
    [30] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore, USA: Johns
    Hopkins University Press, 1996.
    [31] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Englewood Cliffs, New Jersey, USA: Prentice Hall, 1989.
    [32] S. Le Goff, A. Glavieux and C. Berrou, "Turbo-codes and high spectral efficiency modulation," in Proc. IEEE International Conference on Communications, New Orleans, USA, May 1994, vol. 2, pp. 645–649.
    [33] E. Viterbo and J. Boutros, "A universal lattice code decoder for fading channels," IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1639–1642, Jul. 1999.
    [34] R. Bose, Information Theory, Coding and Cryptography. Singapore: McGraw-Hill Education (Asia), 2003.
    [35] J. G. Proakis and M. Salehi, Digital Communications. New York, USA: McGraw-Hill, 2008.
    [36] P. Robertson, E. Villebrun, and P. Hoeher, "A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain," in Proc. IEEE International Conference on Communications, Seattle, USA, Jun. 1995, vol. 2, pp. 1009–1013.
    [37] S. ten Brink, "Convergence behavior of iteratively decoded parallel concatenated codes," IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–1737, Oct. 2001.
    [38] S. ten Brink and G. Kramer, "Design of repeat-accumulate codes for iterative detection and decoding," IEEE Trans. Signal Process., vol. 51, no. 11, pp. 2764–2772, Nov. 2003.

    無法下載圖示 全文公開日期 2020/08/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2020/08/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE