簡易檢索 / 詳目顯示

研究生: 曾子維
Zi-Wei - Zeng
論文名稱: 交聯式流體化床之循環穩定性評估與計算流體力學模擬應用於化學迴路燃燒程序之研究
Stability of Flowing Condition of Specific Circulating Fluidized Bed Reactor and Computational Fluid Dynamics for Chemical Looping Combustion
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 顧洋
Young Ku
曾堯宣
Yao-Hsuan Tseng
李豪業
Hao-Yeh Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 157
中文關鍵詞: 交聯式流體化床鐵鋁載氧體系統穩定性計算流體力學方法
外文關鍵詞: Circulating fluidized bed, Fe2O3/Al2O3 oxygen carrier, stability, CFD.
相關次數: 點閱:206下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用特定1kw級交聯式流體化床冷模,做為化學迴路程序反應器研究,該冷模已由天然鐵礦載氧體驗證流場擁有良好之循環與穩定操作性。但有別於礦石載氧體,人工合成載氧體因物理與化學性質差異,亦須置入冷模進行驗證。實驗中,以空氣做為氣相,平均粒徑0.253 mm的合成型鐵鋁載氧體為固相,參照操作鐵礦載氧體之操作變數,測試氣流操作條件,並透過系統之壓力分布、上升管壓力差擾動、與多組試驗平均值及標準差,判定系統之穩定性與最佳操作條件,並量測系統之氣體隔絕效果與載氧體磨耗性。固體循環量,係利用固體追蹤粒子與理論公式測定,並以理論計算對應燃料流量所需之最小載氧體需求量。本研究另透過計算流體力學方法,建立一套計算反應器內部氣-固二相流流場方法,將流場可視化並與實驗結果比較,以建立計算方法,預測反應器內之流場現象。
    結果顯示,實驗之合成型鐵鋁載氧體,透過操作策略,同樣具有良好之循環效果、穩定性以及氣體隔絕效果,其固體循環亦足以提供燃料所需之氧氣,唯燃料氣體因設計之固體料封同樣無法完全隔絕,造成少量損失。然而,與相同反應器填料體積與粒徑大小之鐵礦載氧體操作條件比較,得知反應器於不同材料之相對最小氣泡化流量與材料之填料重量成正比之關係,可作為未來其他載氧體填料之基礎流量操作參考。最後,因熱模系統幾何設計限制,冷模系統幾何外型亦同步進行修正,並以鐵鋁載氧體進行有效地驗證,同樣具有良好之系統操作性。
    計算流體力學方面,目前已建立出一套預測系統流場是否具備循環效果之方法,但由於現有之氣固拖曳力模型與理想化之限制,計算結果雖能有效模擬流場內之固體循環效果,但系統之壓力場與固體循環量部分則過度預測,未來應利用合適之自定義拖曳力模型或將忽略之能量損失代入計算,以達更佳之預測效果。


    In this study, a specific circulating fluidized bed cold flow model was adopted as the chemical looping combustion reactor, which was verified by iron ore as bed material. Due to the differences of physical and chemical properties between natural and synthetic materials, a series of tests was performed in which the synthetic Fe2O3/Al2O3 was used as oxygen carrier. The hydrodynamics and stability of system were observed by the pressure drop and standard deviation of material's system pressure investigation. The attrition and gas leakage effect were measured after the optimum operating condition was defined. The solid circulation rate was also measured and calculated by tracking particles and theory. In the other hand, a computational fluid dynamics (CFD) method was built requirements in the gas-solid flow prediction inside the reactor.
    The results were shown that Fe2O3/Al2O3 oxygen carrier was valid of the stable circulating condition, gas leakage effect, and provided a sufficient solid circulation rate to completely covert the fuel in theory. However, due to the simplify design of the seal between fuel reactor and cyclone, the small amount of fuel was loss from the fuel reactor to the cyclone. Furthermore, the minimum bubbling flow rate was proportional to the packing weight, when the particle size and packing volume were the same of the materials. Finally, the cold flow model was modified due to the restriction of hot model, but also verified by the Fe2O3/Al2O3 oxygen carrier with better results.
    Currently, the CFD method has been established to predict the flow field of the reactor, but the pressure distribution and solid circulation rate were over predicted caused by the present drag model or the neglect of the energy loss in the system. Thus, the user defined drag model might be imported, to get more accurate prediction.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1前言 1 1.2化學迴路燃燒程序之優勢與發展方向 4 1.3 研究動機 7 第二章 文獻回顧 8 2.1化學迴路燃燒程序與載氧體材料 8 2.2 交聯式床型反應器與機制 13 2.2.1 氣-固流體化床固體顆粒之類似流體行為 13 2.2.2 流體化型態 14 2.2.3 流體化床顆粒類型 18 2.2.4 B類粒子之流體化速度及流體化型態區分 23 2.2.5 交聯式流體化床與其他床型之比較 25 2.3交聯式流體化床系統 27 2.3.1 冷態模型設計 28 2.3.2 壓力差量測 33 2.3.3固體循環量之調整與量測 35 2.3.4氣體隔絕效率 37 2.3.5 交聯式流體化床熱態模型 40 2.4 計算流體力學於交聯式流體化床冷態模型之模擬 42 2.4.1 歐拉-歐拉模型計算條件 44 第三章 研究方法 51 3.1 實驗規劃 51 3.2 實驗藥品 52 3.3 實驗儀器 53 3.4 實驗步驟 56 3.4.1 載氧體製備 56 3.4.2 載氧體物理性質分析 57 3.4.4 計算流體力學冷態模型模擬 60 第四章 結果與討論 65 4.1 應用於循環式流體化床之載氧體特性分析 65 4.2 第一代交聯式流體化床冷態模型操作範圍與隔絕效果 68 4.2.1操作穩定性與氣流量 70 4.2.2固體循環量 95 4.2.3氣體隔絕效果 97 4.2.4最大燃料處理能力 99 4.3 第二代交聯式流體化床冷態模型操作範圍與隔絕效果 103 4.3.1系統操作穩定性與氣流量 104 4.3.2固體循環量 112 4.3.3氣體隔絕效果 114 4.3.4最大燃料處理能力 116 4.3.5 流量與載氧體滯留時間之影響 120 4.3.6 載氧體於系統內之磨耗率 124 4.4 CFD計算第一代交聯式流體化床系統內流場之模擬 126 4.4.1 第一代冷態模型計算之固體流體化狀態 128 4.4.2 第一代冷態模型計算之壓力場狀態 132 4.4.3 第一代冷態模型計算之固體循環量 136 第五章 結論 137 參考文獻 140

    [1] O. Edenhofer, R. Pichs-Madruga, Y. Sokona, J. C. Minx, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. Stechow, and T. Zwickel, Climate Change 2014
    Mitigation of Climate Change, Cambridge University Press, (2014) 4 – 30.
    [2] 我國燃料燃燒二氧化碳排放統計, 經濟部能源局 (2015) 7 – 21.
    [3] 火力發電概況, 台灣電力公司 (2015).
    http://www.taipower.com.tw/content/new_info/new_info-b12.aspx?LinkID=6
    [4] F. Li, H. R. Kim, D. Sridhar, F. Wang, L. Zeng, J. Chen, and L.S. Fan, Syngas Chemical Looping Gasification Process: Oxygen Carrier Particle Selection and Performance, Energy & Fuels, 23 (2009) 4182 – 4189.
    [5] J. Adanez, A. Abad, F. Garcı´a-Labiano, P, Gayan, and L. F. de Diego, Progress in Chemical-Looping Combustion and Reforming technologies, Progress in Energy and Combustion Science, 38 (2012) 215 – 282.
    [6] J. Ada´nez, L. F. de Diego, F. Garcı´a-Labiano, P. Gaya´n, and A. Abad, Selection of Oxygen Carriers for Chemical Looping Combustion, Energy & Fuels, 18 (2004) 371 – 377.
    [7] H. Jin and M. Ishida, Reactivity Study on Natural-Gas-Fueled Chemical Looping
    Combustion by a Fixed-Bed Reactor, Industrial & Engineering Chemistry Research, 41 (2002) 4004 – 4007.
    [8] D. Q. Chen, L. H. Shen, J. Xiao, T. Song, H. M. Gu, and S. W. Zhang, Experimental investigation of hematite oxygen carrier decorated with NiO for chemical-looping combustion of coal, Journal of Fuel Chemistry and Technology, 40 (2012) 267– 272.
    [9] S. Penthor, M. Stollhof, T. Pröll, and H. Hofbauer, Detailed fluid dynamic investigations of a novel fuel reactor concept for chemical looping combustion of solid fuels, Powder Technology, 287 (2016) 61– 69.
    [10] S. Bayham, O. McGiveron, A. Tong, E. Chung, M. Kathe, D. Wang, L. Zeng,
    and L. S. Fan, Parametric and dynamic studies of an iron-based 25-kW th coal direct chemical looping unit using sub-bituminous coal, Applied Energy, 145 (2015) 354 – 363.
    [11] 邱炳嶔, Fe2O3/Al2O3載氧體應用於化學迴圈程序移動床燃料反應器之評估研究, 台灣科技大學化工所博士論文, (2014).
    [12] 劉祐誠, 以合成氣為燃料評估Fe2TiO5載氧體在化學迴圈程序的應用, 台灣科技大學化工所碩士論文, (2011).
    [13] 吳鉉智, 以Fe2O3載氧體於移動床燃料反應器應用化學迴圈程序處理不同燃料之可行性分析, 台灣科技大學化工所碩士論文, (2012).
    [14] 徐維懋, 鎳鐵氧化物尖晶石結構載氧體之材料特性與惰性擔體之選用應用於化學迴圈性能評估, 台灣科技大學機械所碩士論文, (2012).
    [15] 黃薇臻, 電弧爐收集之集塵灰運用於化學迴圈燃燒程序的可行性評估, 台灣科技大學機械所碩士論文, (2013).
    [16] 羅孟竹, 鐵鈦複合載氧體應用於化學迴圈燃燒與產氫之探討, 台灣科技大學化工所碩士論文, (2014).
    [17] 張書懷, 富鐵氧化物之集塵灰運用於化學迴圈燃燒程序之反應性評估, 台灣科技大學機械所碩士論文, (2014).
    [18] 楊仁毅, 金屬改質天然鐵礦應用於流體化床式化學迴圈程序之研究, 台灣科技大學化工所碩士論文, (2014).
    [19] 高宏智, 金屬改質鐵礦載氧體應用於煤炭直接進料之化學迴圈燃燒程序之研究, 台灣科技大學化工所碩士論文, (2014).
    [20] 黃翊軒, 鐵系載氧體應用於化學迴圈產氫移動床蒸汽反應器之評估研究, 台灣科技大學化工所碩士論文, (2015).
    [21] 許家銓, 稻殼灰燼製備鐵系載氧體利用於化學迴路燃燒程序與交聯式流體化床設計之研究, 台灣科技大學化工所碩士論文, (2015).
    [22] 游任鈞, 鎂摻雜改質程序對於鐵鋁載氧體運用於化學迴路燃燒程序之可行性評估, 台灣科技大學機械所碩士論文, (2015).
    [23] 陳勁安, 鐵銅複合載氧體應用於化學迴圈燃燒與產氫程序之探討, 台灣科技大學化工所碩士論文, (2015).
    [24] L. S. Fan, Chemical Looping Systems for Fossil Energy Conversions, Wiley, (2010).
    [25] B. Kronberger , A. Lyngfelt, G. Lo1ffler, and H. Hofbauer, Design and Fluid Dynamic Analysis of a Bench-Scale Combustion System with CO 2 Separation - Chemical-Looping Combustion, Industrial & Engineering Chemistry Research, 44 (2005) 546 – 556.
    [26] D. Kunii, O. Levenspiel, and H. Brenner, Fluidization Engineering, Butterworth-Heinemann, (1991).
    [27] 錢建篙, 流體化床技術, 高立圖書, (1992).
    [28] D. Geldart, Types of gas fluidization, Powder Technology, 7 (1973) 285 – 292.
    [29] D. Geldart, The Effect of Particle Size and Size Distribution on the Behaviour of Gas-Fluidised Beds, Powder Technology, 6 (1972) 201 – 215.
    [30] D. Kunii and O. Levenspiel, Circulating fluidized-bed reactors, Chemical Engineering Science, 52 (1997) 2471 – 2482.
    [31] D. Geldart, Gas fluidization technology, Wiley, (1987)
    [32] S. Ergun, Fluid flow through packed columns, Chemical Engineering Progress, 48 (1952) 89 – 94.
    [33] K.S Lim, J. X. Zhu, and J.R. Grace, Hydrodynamics of Gas-Solid Fluidization, International Journal of Multiphase Flow, 21 (1995) 141 – 193.
    [34] M.J. FernaÂndez and A. Lyngfelt, Concentration of sulphur compounds in the combustion chamber of a circulating fluidized-bed boiler, Fuel, 80 (2001) 321 – 326.
    [35] J. C. Schmid, T. Pröll, C. Pfeifer, and H. Hofbauer, Improvement of Gas-Solid Interaction in Dual Circulating Fluidized Bed Systems, 9th European Conference on Industrial Furnaces and Boilers, (2011) 1 – 13.
    [36] K. Goransson, U. Soderlind, P. Engstrand, and W. Zhang, An experimental study on catalytic bed materials in a biomass dual fluidised bed gasifier, Renewable Energy, 81 (2015) 251 – 261.
    [37] E. Johansson, A. Lyngfelt, T. Mattisson, and F. Johnsson, Gas leakage measurements in a cold model of an interconnected fluidized bed for chemical-looping combustion, Powder Technology, 134 (2003) 210 – 217.
    [38] E. Johansson, T. Mattisson, A. Lyngfelt, and H. Thunman, Combustion of Syngas and Natural Gas in a 300 W Chemical-Looping Combustor, Chemical Engineering Research and Design, 84 (2006) 819 – 827.
    [39] H. J. Ge, W. J. Guo, L. H. Shen, T. Song, and J. Xiao, Experimental investigation on biomass gasification using chemical looping in a batch reactor and a continuous dual reactor, Chemical Engineering Journal, 286 (2016) 689 – 700.
    [40] X. Niu, L. H. Shen, H. M. Gu, S. X. Jiang, and J. Xiao, Characteristics of hematite and fly ash during chemical looping combustion of sewage sludge, Chemical Engineering Journal, 268 (2015) 236 – 244.
    [41] A. Abad, R. Pérez-Vega, L. F. de Diego, F. García-Labiano, P. Gayán, and J. Adánez, Design and operation of a 50 kWth Chemical Looping Combustion (CLC)
    unit for solid fuels, Applied Energy, 157 (2015) 295 – 303.
    [42] A. Abad, J. Adánez, P. Gayán, L. F. de Diego, F. García-Labiano, and G. Sprachmann, Conceptual design of a 100 MWth CLC unit for solid fuel combustion, Applied Energy, 157 (2015) 462 – 474.
    [43] S. Shrestha, B. Si-Ali, and M. D. B. Hamid, Cold flow model of dual fluidized bed: A review, Renewable and Sustainable Energy Reviews, 53 (2016) 1529 – 1548.
    [44] J. Werther, Fluidized bed reactors, Wiley, (2001).
    [45] J. H. Wu, L. H. Shen, J. Xiao, and H. Y. Lu, Hydrodynamics of interconnected fluidized beds for chemical-looping combustion, CIESC Journal, 58 (2007) 2753 – 2758.
    [46] T. Song, T. X. Shen, L. H. Shen, J. Xiao, H. M. Gu, and S. W. Zhang, Evaluation of hematite oxygen carrier in chemical-looping combustion of coal, Fuel, 104 (2013) 244 – 252.
    [47] S. Pannala, M. Syamlal, and T. J. O'Brien, Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice, IGI Global, (2010).
    [48] M. Syamlal, W. Rogers, and T. J. O'Brien, MFIX Documentation Theory Guide, U.S. Department of Energy Office of Fossil Energy, (1993).
    [49] Z. Y. Deng, R. Xiao, B. S. Jin, Q. L. Song, and H. Huang, Multiphase CFD Modeling for a Chemical Looping Combustion Process (Fuel Reactor), Chem. Eng. Technol, 31 (2008) 1754 – 1766.
    [50] Z. Y. Deng, R. Xiao, B. S. Jin, and Q. L. Song, Numerical simulation of chemical looping combustion process with CaSO4 oxygen carrier, International Journal of Greenhouse Gas Control, 3 (2009) 368 – 375.
    [51] A. B. Harichandan and T. Shamim, CFD analysis of bubble hydrodynamics in a fuel reactor for a hydrogen-fueled chemical looping combustion system, Energy Conversion and Management, 86 (2014) 1010 – 1022.
    [52] J. Jung and I. K. Gamwo, Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling, Powder Technology, 183 (2008) 401 – 409.
    [53] H. Kruggel-Emden, S. Rickelt, F. Stepanek, and A. Munjiza, Development and testing of an interconnected multiphase CFD-model for chemical looping combustion, Chemical Engineering Science, 65 (2010) 4732 – 4745.
    [54] N. Zhang, B. N. Lu, W. Wang, and J. H. Li, Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed, Particuology, 6 (2008) 529 –539.
    [55] H. Kruggel-Emden, F. Stepanek, and A. Munjiza, A Study on the Role of Reaction Modeling in Multi-phase CFD-based Simulations of Chemical Looping Combustion, Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, 66 (2011) 313 – 331.
    [56] O. Gryczka, S. Heinrich, N.G. Deen, M. van Sint Annaland, J.A.M. Kuipers, M. Jacob, and L. Mぴorl, Characterization and CFD-modeling of the hydrodynamics of a prismatic spouted bed apparatus, Chemical Engineering Science, 64 (2009) 3352 – 3375.
    [57] X. J. Wang, B. S. Jin, Y. Zhang, W. Q. Zhong, and S.Y. Yin, Multiphase Computational Fluid Dynamics (CFD) Modeling of Chemical Looping Combustion Using a CuO/Al2 O 3 Oxygen Carrier:Effect of Operating Conditions on Coal Gas Combustion, Energy Fuels, 25 (2011) 3815 – 3824.
    [58] C. H. Geng, W. Q. Zhong, Y. J. Shao, D. L. Chen, B. S. Jin, Computational study of solid circulation in chemical-looping combustion reactor model, Powder Technology, 276 (2015) 144 – 155.
    [59] C. Loha, H. Chattopadhyay, and P. K. Chatterjee, Effect of coefficient of restitution in Euler–Euler CFD simulation of fluidized-bed hydrodynamics, Particuology, 15 (2014) 170 – 177.
    [60] C. Loha, H. Chattopadhyay, and P. K. Chatterjee, Euler-Euler CFD modeling of fluidized bed:Influence of specularity coefficient on hydrodynamic behavior, Particuology, 11 (2013) 673 – 680.
    [61] K. Mahalatkar, J. Kuhlman, E. D. Huckaby, and T. O’Brien, Computational fluid dynamic simulations of chemical looping fuel reactors utilizing gaseous fuels, Chemical Engineering Science, 66 (2011) 469 – 479.
    [62] X. Z. Chen, D. P. Shi, X. Gao, and Z. H. Luo, A fundamental CFD study of the gas–solid flow field in fluidized bed polymerization reactors, Powder Technology, 205 (2011) 276 – 288.
    [63] J. Chang, G. Wang, J. S. Gao, K. Zhang, H. G. Chen, and Y. P. Yang, CFD modeling of particle–particle heat transfer in dense gas-solid fluidized beds of binary mixture, Powder Technology, 217 (2012) 50 – 60.
    [64] D. Lee, M. W. Seo, T. D.B. Nguyen, W. C. Cho, and S. D. Kim, Solid circulation characteristics of the three-reactor chemical-looping process for hydrogen production, International journal of hydrogen energy, 39 (2014) 14546 – 14556.
    [65] A. Sharma, S. B. Wang, V. Pareek, H. Yang, and D. K. Zhang, CFD modeling of mixing/segregation behavior of biomass and biochar particles in a bubbling fluidized bed, Chemical Engineering Science, 106 (2014) 264 – 274.
    [66] G. Lumay, F. Boschini, K. Traina, S. Bontempi, J. C. Remy, R. Cloots, and N. Vandewalle, Measuring the flowing properties of powders and grains, Powder Technology, 224 (2012) 19 – 27.
    [67] S. Wang, L. M. Yan, F. X. Zhao, H. L. Lu, L. Y. Sun, and Q. H. Zhang, Numerical Simulation of Hydrogen Production via Chemical Looping Reforming in Interconnected Fluidized Bed Reactor, Industrial & Engineering Chemistry Research, 53 (2014) 4182 – 4191.

    QR CODE