簡易檢索 / 詳目顯示

研究生: 林雅雯
Ya-wun Lin
論文名稱: PEG-co-PVP/SiO2混成凝膠之合成及其應用
Preparation and Application of PEG-co-PVP/SiO2 Composite gels
指導教授: 蘇舜恭
Shuenn-Kung Su
口試委員: 黃國賢
Huang, Kuo-Shien
邱士軒
Shih-Hsuan Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 100
中文關鍵詞: 聚乙二醇正矽酸乙酯混成凝膠複合體脫色
外文關鍵詞: Polyethylene glycol, Tetraethyl orthosilicate, composite gels, complex, decolorization
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文利用不同比例之聚乙二醇(Polyethylene glycol, PEG)與N-乙烯基吡咯烷酮(N-Vinyl-2-pyrrolidone, NVP)在不同比例下共聚合,然後加入正矽酸乙酯(Tetraethyl orthosilicate , TEOS)共混後得一系列PEG-co-PVP/SiO2系混成凝膠。產物內容包含PEG/PVP共聚物及PEG-co-PVP/SiO2系混成凝膠,分別經由相關儀器及檢測,一方面探討共聚物與混成凝膠應用於染料廢水脫色處理之可行性;另方面檢測共聚物與混成凝膠分別與染料間之相互作用;經由實驗結果顯示,PEG/PVP共聚物在酸性染液(C.I.Acid Red 299)中之Zeta電位隨PEG用量增加而減少,但粒徑卻相反,而對染液廢水之脫色效果隨之增加,亦即以PP11具有最佳之脫色效果。其次,在PEG-co-PVP/SiO2系混成凝膠方面,無論在直接染液(C.I.Direct Blue 146)或酸性染液(C.I.Acid Red 299)中,其Zeta電位則隨PVP用量之增加而減少,但粒徑卻相反,而對染液廢水之脫色效果則隨之增加,以PT89混成凝膠之脫色效果最佳,PT11則最差。另外,一系列之PT11~PT89混成凝膠對染料(C.I.Acid Red 299)廢水之脫色效果顯然比染料(C.I.Direct Blue 146)來的好。無論共聚物或混成凝膠對染液廢水之脫色效果皆隨吸附劑濃度及脫色時間之增加而提升,且共聚物及混成凝膠皆能與染料形成複合體。最後,PEG/PVP共聚物與其混成凝膠等兩種吸附劑對酸性染液(C.I.Acid Red 299)脫色效果恰成反比之順序,前者以PP11最好,後者以PT89最佳。


In this paper, the copolymer of polyethylene glycol (PEG) and N-Vinyl-2-pyrrolidone (NVP) was prepared and then mixed with tetraethyl orthosilicate (TEOS) to obtain a series of PEG-co-PVP/SiO2 composite gels. The products include PEG/PVP copolymer and PEG-co-PVP/SiO2 composite gels which were detected by relevant instruments respectively. This experiment discusses the decolorization feasibility by applying copolymer and composite gel in dye wastewater; on the other hand, it detects the interaction between copolymer and dye or between composite gel and dye. The experimental result shows the Zeta potential of PEG/PVP copolymer in acid dyes (C.I. Acid Red 299) decreases with the increase of PEG dosage, but grain size is on the contrary, while its effect of decolorization on dye wastewater increases. That is, PP11 has the best decolorization effect. Then, the Zeta potential of PEG-co-PVP/SiO2 composite gels in direct dyes (C.I. Direct Blue 146) or acid dyes (C.I. Acid Red 299) decreases with the increase of PVP dosage, but grain size is on the contrary, while its decolorization effect on dye wastewater increases. The decolorization effect of PT89 composite gel is the best, but that of PT11 is the worst. In addition, the decolorization effect of a series of PT11-PT89 composite gels on dye (C.I. Acid Red 299) wastewater is obviously better than dye (C.I. Direct Blue 146). The decolorization effect of both copolymer and composite gels on dye wastewater increases with the increase of sorbent concentration and decolorization time. Moreover, both copolymer and composite gels are able to form complex with dyes. Finally, the decolorization effect of two sorbents PEG/PVP copolymer and their composite gels on acid dyes (C.I. Acid Red 299) are in reverse order. PP11 in the former is the best while PT89 in the latter is the best.

摘 要……………………………………………………………………I Abstract…………………………………………………………………III 致謝……………………………………………………………………V 目 錄……………………………………………………………………VI 圖 目 錄………………………………………………………………XII 表 目 錄……………………………………………………………XIV 第一章 緒 論……………………………………………………………1 1.1 前言………………………………………………………………1 1.2 文獻探討…………………………………………………………2 1.2.1 絮凝劑…………………………………………………2 1.2.2 廢水處理方法………………………………………………4 1.2.2.1 概述………………………………………………………4 1.2.2.2 印染廢水的種類…………………………………………5 1.2.2.3 印染廢水的特點…………………………………………7 1.2.2.4 印染廢水常用之處理方法………………………………9 1.2.2.5 絮凝劑之分類……………………………………………12 1.3 研究目的…………………………………………………………15 第二章 理 論…………………………………………………………16 2.1 絮凝………………………………………………………………16 2.1.1 絮凝原理………………………………………………………16 2.1.1.1 雙電層原理………………………………………………18 2.1.1.2 吸附電中和原理…………………………………………20 2.1.1.3 吸附架橋作用原理………………………………………22 2.1.2 影響印染廢水絮凝之因素……………………………………23 2.1.2.1 絮凝劑之影響……………………………………………23 2.1.2.2 廢水性質之影響…………………………………………27 2.1.2.3 其它因素之影響…………………………………………28 2.2 脫色基理…………………………………………………………29 2.1.1 有機高分子與染料脫色之作用………………………………29 2.1.2 酸性染料脫色基理……………………………………………31 2.1.3 影響脫色的因素………………………………………………32 2.1.3.1 溫度對於脫色的影響……………………………………32 第三章PEG/PVP 共聚物之製備及其應用研究……………………33 3.1 前言………………………………………………………………33 3.2 實驗………………………………………………………………36 3.2.1 實驗用試藥……………………………………………………36 3.2.1.1 合成原料…………………………………………………36 3.2.1.2 試藥………………………………………………………36 3.2.1.3 染料………………………………………………………37 3.2.2 主要實驗設備…………………………………………………37 3.2.2.1 實驗儀器…………………………………………………37 3.2.2.2 分析及檢測儀器…………………………………………37 3.2.3 實驗方法………………………………………………………38 3.2.3.1 PEG/PVP 共聚物之製備………………………………38 3.2.3.2 PEG/PVP 共聚物之分析………………………………38 3.2.3.3 PEG/PVP 共聚物之基本性質測定……………………38 3.2.3.3.1 粒徑及Zeta 電位之測定……………………………38 3.2.3.3.2 共聚物與染料之交互作用……………………………39 3.2.3.4 PEG/PVP 共聚物之應用性質測定……………………39 3.2.3.4.1 染液脫色試驗…………………………………………39 3.3 結果與討論………………………………………………………41 3.3.1 合成與IR分析…………………………………………………41 3.3.1.1 合成………………………………………………………41 3.3.1.2 FT-IR分析………………………………………………41 3.3.2 基本性質………………………………………………………46 3.3.2.1 PEG/PVP共聚物與染料相互作用之粒徑及Zeta電位…46 3.3.2.2 PEG/PVP共聚物與染料之相互作用……………………49 3.3.3 應用性質………………………………………………………51 3.3.3.1 PEG/PVP共聚物應用於染液脫色………………………51 3.4 小結………………………………………………………………53 第四章PEG-co-PVP/SiO2混成凝膠之製備及其應用研究…………54 4.1 前言………………………………………………………………54 4.2 實驗………………………………………………………………57 4.2.1 實驗用試藥……………………………………………………57 4.2.1.1 合成原料…………………………………………………57 4.2.1.2 試藥………………………………………………………57 4.2.1.3 染料………………………………………………………58 4.2.2 主要實驗設備…………………………………………………59 4.2.2.1 實驗儀器…………………………………………………59 4.2.2.2 分析及檢測儀器…………………………………………59 4.2.3 實驗方法………………………………………………………59 4.2.3.1 PEG/PVP共聚物之製備…………………………………59 4.2.3.1.1 PEG-co-PVP/SiO2混成凝膠之製備…………………60 4.2.3.1.2 不同濃度之TEOS混成凝膠之製備…………………60 4.2.3.2 混成凝膠之FT-IR分析…………………………………60 4.2.3.3 混成凝膠之基本性質測定………………………………60 4.2.3.3.1 混成凝膠與染料之交互作用…………………………61 4.2.3.3.2 混成凝膠與染料相互作用之粒徑及Zeta電位………61 4.2.3.4 混成凝膠之應用性質測定………………………………61 4.2.3.4.1 染液脫色試驗…………………………………………61 4.3 結果與討論………………………………………………………63 4.3.1 合成與IR分析…………………………………………………63 4.3.1.1 合成………………………………………………………63 4.3.1.2 FT-IR之分析……………………………………………64 4.3.2 基本性質………………………………………………………68 4.3.2.1 混成凝膠與染料(C.I Direct Blue 146)之相互作用……68 4.3.2.2 混成凝膠與染料(C.I Acid Red 299)之相互作用………70 4.3.2.3 混成凝膠與染料(C.I Direct Blue 146)相互作用之粒徑及 Zeta電位…………………………………………………72 4.3.2.4 混成凝膠與染料(C.I Acid Red 299)相互作用之粒徑及 Zeta電位…………………………………………………74 4.3.2.5 不同濃度之TEOS所製成混成凝膠其染料相互作用之 粒徑及Zeta電位…………………………………………77 4.3.3 應用性質………………………………………………………82 4.3.3.1 混成凝膠應用於染液(C.I Direct Blue 146)脫色………82 4.3.3.2 混成凝膠應用於染液(C.I Acid Red 299)脫色…………85 4.3.3.3 混成凝膠對兩種染料脫色之比較……………………87 4.3.3.4 不同濃度之TEOS所製成混成凝膠應用於染液脫色…87 4.4 小結………………………………………………………………89 第五章 結論……………………………………………………………90 參考文獻………………………………………………………………92

[1]Naira,L.S.,Laurencin,C.T.,Biodegradable Polymers as Biomaterials:Polym. Sci. 32 , 762–798 (2007)
[2]Martina, L.M.,Hutmacher, D.W.,Biodegradable Polymers Applied in Tissue engineering Research: a review
[3]劉小平,康思琦,尹庚明.印染廢水的環境污染與消耗生產.五邑大學學報(自然科學版),18(3):64-68,(2004)
[4]戴日成,張統,郭黃等,印染廢水水質特徵及處理技術綜述,給水排水,6(10):33-37
[5]馮玉琦, 我國水環境的現狀及存在問題及治理方略[J]. 農業與技術, 23:12 (2003)
[6]Naumczyk, J., Electrochemica l treatment of textile wastewa ter, Water Science and Technology[J], 34: 17. (1996)
[7]Uzal, N.,Yilmaz, L.,Yetis, U.,Mierofiltration:a pretreatment altemative for indigo dyeing textile wastewater [J].Desalination,199:515-517(2006)
[8]Wong, Y.C., Szeto, Y.S., Cheung, W.H.,A Dsorp Tion of Acid Dtes on Chitosan-equilibrium isothe rm analyses,Process Biochem.39(6):693-702(2004)
[9]孫德帥,楊振楠,郭慶杰,粉煤灰對染料的吸附脫色[J]非金屬礦,32:79-84. (2009)
[10]Li, J.T., Song, Y.L. and Chen, H., Removal of C.I. acid brown 75 from aqueous solution by kaolinite[J],Toxicol.Eniron.Chem,91,1069-1077. (2009)
[11]B. Von open,W.Kordel,W.Klein,Chemosphere,22285-304. (1991)
[12]胡筱敏,混凝理論與應用,北京:科學出版社,(2007)
[13]閰偉,混凝-水解酸化-CASS-氣浮法處理印染廢水的研究11-13(2009)
[14]Lyklema, J.,Fundamentals of Interface and Colloid Science:Solid—Fluid Interface【M】.London:Academic Press,(1995)
[15]岳欽艷,陽離子型有機高分子水處理劑—聚環氧氯丙烷胺的研究,22~23 ,(2007)
[16]M.J.Collins.,A.N.Bishop.,P.Farrimond.,Geochim.Cosmochim.Ac.59,237-239
(1995)
[17]Amuda, O. S., & Amoo, I. A. Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J Hazard Mater,141(3), 778-783. (2007)
[18]Noll, Kenneth, E.,Adsorption Technology for Air and Water Pollution Control, Lewis Publishers(1992)
[19]Frank, H. P.,Barkin, S.,Eirich, F. R .,The interaction of polyvinylpyrrolidone with some azo dyes (1957)
[20]王豔,高寶玉,于慧等,PAN DCD用於染料廢水的脫色研究,環境化學,14(6):53l∼535(1995)
[21]Takagishi, T.,Kozuka, H.,Kuroki, N.,Binding of methyl orange and its homologs by polyion complexes consisting of piperdinium cationic polymer and various polyanions in aqueous solution.J Polym Sci: Polym Chem Ed,21:447~445(1983)
[22]Takagishi, T.,Yoshikawa, K.,Hamano, H., et al. Specific interaction between polyethlenimine and azo dyes carrying hydroxyl groups. J Poly Sci: Polym Chem Ed, 23:37~47( 1985)
[23]Takagishi, T.,Sugimoto, T.,Hayashi, A., et al. Interaction of crosslinked polyethyleneimine with a homologous series of methyl orange derivatives in aqueous solution. J Poly Sci:Polym Chem Ed, 21:2311~2322(1983)
[24]Karadag, E., Saraydn, D., Guven, O., Removal of some dyes from aqueos solutions by acrylamide/itaconic acid hydrogels[J].Water,air,and soil pollution, (106):369-378(1998)
[25]Waly, A., Abdel-mohdy F A., Aly A S.,Synthesis and characterization of cellulose ion exchanger ΙΙ.Pilot scale andutilization in dye-heavy metal removal[J].Journal of applied polymer science, (68):2151-2157. (1998)
[26]黃家董,聚丙烯醯胺類絮凝劑在工業廢水處理中的應用[J].化工環保,3(2):67-77(1983)
[27]曹文忠,顧松青,合成高分子絮凝劑的物理化學性質和應用技術研究[J].輕金屬,(5):8-13(1996)
[28]Silva, S.P., Sousa, S., J. Rodrigues, et al. Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains, Sep. Purif.Technol., ,40:309-315 (2004)
[29]Rivard, C., Biodegradable plastics: Further research needed to meet environmental mandate, Journal of Environmental Health , Vol. 53, Issue 4, 24-26 (1991)
[30]Jiao, J., Xiao, M., Shu, D., Li, L., Meng, Y.Z., Preparation and characterization of biodegradable foams from calcium carbonate reinforced poly(propylene carbonate) composites, Journal of Applied Polymer Science , Vol. 102, Issue 6, 5240-5247 (2006)
[31]Wang, X.L., Du, F.G., Jiao, J., Meng, Y.Z., Li, R.K.Y., Preparation and properties of biodegradable polymeric blends from poly(propylene carbonate) and poly(ethylene-co-vinyl alcohol), Journal of Biomedical Materials Research - Part B Applied Biomaterials , Vol. 83, Issue 2, 373-379 (2007)
[32]Ge, X.C., Li, X.H., Zhu, Q., Li, L., Meng, Y.Z., Preparation and properties of biodegradable poly(propylene carbonate)/starch composites, Polymer Engineering and Science , Vol. 44, Issue 11, 2134-2140 (2004)
[33]Inui, O., Teramura, Y., Iwata, H. , Retention dynamics of amphiphilic polymers PEG-lipids and PVA-Alkyl on the cell surface, ACS applied materials & interfaces , Vol. 2, Issue 5, 1514-1520 (2010)
[34]Zhao, A., Zhou, Q., Chen, T., Weng, J., Zhou, S., Amphiphilic PEG-based ether-anhydride terpolymers: Synthesis, characterization, and micellization, Journal of Applied Polymer Science , Vol. 118, Issue 6, 3576-3585 (2010)
[35]Sawant, R.R., Torchilin, V.P., Polymeric micelles: polyethylene glycol-phosphatidylethanolamine (PEG-PE)-based micelles as an example, Methods in molecular biology, Vol. 624, 131-149 (2010)
[36]Mangold, C. , Wurm, F. , Obermeier, B. , Frey, H., "Functional poly(ethylene glycol)": PEG-based random copolymers with 1,2-diol side chains and terminal amino functionality, Macromolecules , Vol. 43, Issue 20, 8511-8518 (2010)
[37]Naguib, H.F., Abdel Aziz, M.S., Sherif, S.M., Saad, G.R., Synthesis and thermal characterization of poly(ester-ether urethane)s based on PHB and PCL-PEG-PCL blocks, Journal of Polymer Research , 1-11 (2010)
[38]Zhang, C., Bai, Y., Sun, Y., Gu, J., Xu, Y., Preparation of hydrophilic HDPE porous membranes via thermally induced phase separation by blending of amphiphilic PE-b-PEG copolymer, Journal of Membrane Science , Vol. 365, Issue 1-2, 216-224 (2010)
[39]Kitagawa, F., Kubota, K., Sueyoshi, K., Otsuka, K., One-step preparation of amino-PEG modified poly(methyl methacrylate) microchips for electrophoretic separation of biomolecules, Journal of Pharmaceutical and Biomedical Analysis , Vol. 53, Issue 5, 1272-1277 (2010)
[40]McMillin, D.W., Ooi, M., Delmore, J., Negri, J., Hayden, P., Mitsiades, N., Jakubikova, J., Maira, S.-M., Garcia-Echeverria, C., Schlossman, R., Munshi, N.C., Richardson, P.G., Anderson, K.C., Mitsiades, C.S., Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235, Cancer Research, Vol. 69, Issue 14, 5835-5842 (2009)
[41]Schwarzer, M., Faerber, G., Rueckauer, T., Blum, D., Pytel, G., Mohr, F.W., Doenst, T., The metabolic modulators, Etomoxir and NVP-LAB121, fail to reverse pressure overload induced heart failure in vivo, Basic Research in Cardiology , Vol. 104, Issue 5, 547-557 (2009)
[42]Lim, D.W., Park, T.G, Poly(DMAEMA-NVP)-b-PEG-galactose as an in vitro gene delivery vestor for hepatocytes, American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, Vol. 41, Issue 1, 1008-1009 (2000)
[43]Son, Y.K., Kim, J.-H., Jeon, Y.S., Chung, D.J., Preparation and properties of PEG modified PPVP hydrogel, Macromolecular Research, Vol. 15, Issue 6, 527-532 (2007)
[44]Ravichandran, P., Shantha, K.L., Panduranga Rao, K., Preparation, swelling characteristics and evaluation of hydrogels for stomach specific drug delivery, International Journal of Pharmaceutics , Vol. 154, Issue 1, 89-94 (1997)
[45]Chao, Y. C., Su, S. K., Lin, Y. W., Hsu, W. T., & Huang, K. S. Preparation and Application of PEG/PVP Copolymers J Polym Environ, 21:160–165(2013)
[46]Ming J., Zhao Y. J., Zhang Y., Zhong H., Li R. Q., Decoloration of Dye Wastewater Using Magaesium Hydroxide, Technology of Water treatment, 26, 4, 245-248 (2000)
[47]Philip W. Labschangne, Maya J. John, Rotimi E. Sadiku, Investigation of the degree of homogeneity and hydrogen bonding in PEG/PVP blends preared in supercritical CO2: Comparison with ethanol-cast blends and physical mixtures, The Journal of Supercritical Fluids, 54, 81-88 (2010)
[48]Labuschagne, P. W., John, M. J., & Sadiku, R. E. (2010). Investigation of the degree of homogeneity and hydrogen bonding in PEG/PVP blends prepared in supercritical CO2: Comparison with ethanol-cast blends and physical mixtures.The Journal of Supercritical Fluids, 54(1), 81-88.
[49]Lai, C. C., Chen, K. M., Dyeing Properties of Modified Gemini Surfactants on a Disperse Dye-Polyester System, Textile Research Journal, 78, 5, 382-389 (2008)
[50]Sergey, V. S., Nikolay, O. M. P., Christian, R., A New Application of Solvatochromic Pyridinium-N-Phenolate Betaine Dyes: Examining the Electrophilicity of Lanthanide Shift Reagents, Tetrahedron Letters, 51, 4347-4349 (2010)
[51]Safavi, A., Abdollahi, H., Maleki, N., Zeinali, S., Interaction of Anionic Dyes and Cationic Surfactants with Ionic Liquid Character, Journal of Colloid and Interface Science, 322, 274-280 (2008)
[52]Razali, M. A. A., Ahmad, Z., Ahmad, M. S. B., & Ariffin, A., Treatment of pulp and paper mill wastewater with various molecular weight of polyDADMAC induced flocculation. Chemical Engineering Journal, 166(2),529-535. (2011)
[53]Ofir, E., Oren, Y., Adin, A., Electroflocculation: the Effect of Zeta-Potential on Particle Size, Desalination, 204, 33–38 (2007)
[54]Wanwisa, K., Satit, P., Thomas, R., Thaned, P., Chitosan–Magnesium Aluminum Silicate Composite Dispersions: Characterization of Rheology, Flocculate Size and Zeta Potential, International Journal of Pharmaceutics, 351, 227-235 (2008)
[55]Sis, H., Birinci, M., Effect of Nonionic and Ionic Surfactants on Zeta Potential and Dispersion Properties of Carbon Black Powders, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 341, 60-67 (2009)
[56]Wang, X., Gu, X., Lin, D., Dong, F., Wan, X., Treatment of acid rose dye containing wastewater by ozonizing-biological aerated filter, Dyes and Pigments, 74, 736-740 (2007)
[57]Hong, X., Dandan, M., Chen, W., Pretreatment of Concentrated and Saliferous Wastewater From Dye Manufacturing by Electrochemical Oxidation, Energy Procedia 11, 4520-4527 (2011)
[58]Masoud, A., Mokhtar, A., Niyaz, M. M., Ahmad A., Dye removal from colored textile wastewater using acrylic grafted nanomembrane, Desalination, 267, 107-113 (2011)
[59]Charumathi, D., Nilanjana, D., Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilised dead C. tropicalis, Desalination , 285,22-30 (2012)
[60]Zhu, X., Ni, J., Wei, J., Xing, X., Li, H., Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode, Journal of Hazardous Materials, 189, 127-133 (2011)
[61]Tim, R., Geoff, M., Roger, M., Poonam, N., Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresource Technology, 77, 247-255 (2001)
[62]Inui, O., Teramura, Y., Iwata, H., Retention Dynamics of Amphiphilic Polymers PEG-Lipids and PVA-Alkyl on the Cell Surface, ACS Applied Materials & Interfaces , 2, 5, 1514-1520 (2010)
[63]Zhao, A., Zhou, Q., Chen, T., Weng, J., Zhou, S., Amphiphilic PEG-Based Ether-Anhydride Terpolymers: Synthesis, Characterization, and Micellization, Journal of Applied Polymer Science , 118, 6, 3576-3585 (2010)
[64]Sawant, R. R., Torchilin, V. P., Polymeric Micelles: Polyethylene Glycol-Phosphatidylethanolamine (PEG-PE)-Based Micelles as an Example, Methods in Molecular Biology, 624, 131-149 (2010)
[65]Kitagawa, F., Kubota, K., Sueyoshi, K., Otsuka, K., One-Step Preparation of Amino-PEG Modified Poly(methyl methacrylate) Microchips for Electrophoretic Separation of Biomolecules, Journal of Pharmaceutical and Biomedical Analysis , 53, 5, 1272-1277 (2010)
[66]McMillin, D.W., Ooi, M., Delmore, J., Negri, J., Hayden, P., Mitsiades, N., Jakubikova, J., Maira, S. M., Garcia-Echeverria, C., Schlossman, R., Munshi, N. C., Richardson, P. G., Anderson, K. C., Mitsiades, C. S., Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235, Cancer Research, 69, 14, 5835-5842 (2009)
[67]Schwarzer, M., Faerber, G., Rueckauer, T., Blum, D., Pytel, G., Mohr, F. W., Doenst, T., The metabolic modulators, Etomoxir and NVP-LAB121, fail to reverse pressure overload induced heart failure in vivo, Basic Research in Cardiology , 104, 5, 547-557 (2009)
[68]Wang, F.,Liu, J.,Luo, Z.,Zhang, Q.,Chen, J., Yuan, J.,The Dynamic Laser Scattering(DLS)Investigation on the Hydrolytic Polycondensation of Tetraethylorthosilicate(TEOS) 20,6 144-146(2006)
[69]Chen, J., Yu, L., Qi, H., Li, C., TEOS Sol-Gel Processing CoFe2O4/SiO2 Nanocomposites Synthesis Mechanism, Journal of Changchun Normal University-Natural Science, 27, 5, 26-28 (2008)
[70]Wu, C., Jeng, J., Chia, J., Ding, S., Multi-nuclear liquid state NMR investigation of the effects of pH and addition of polyethyleneglycol on the long-term hydrolysis and condensation of tetraethoxysilane, Journal of Colloid and Interface Science, 353, 124-130 (2011)
[71]Ouissem, T., Lan, T., Omar, J., Aomar, H., Synthesis via sol-gel process and characterization of novel organic-inorganic coatings, Journal of Non-Crystalline Solids, 357, 3910-3916 (2011)
[72]Chen, K., Zhang, T., Zhao, Y., Yang, Y., Hydrolysis with TEOS, Journal of Lanzhou University of Technology, 37, 3, 74-76 (2011)
[73]Hu, L., Shi, W., UV-cured organic-inorganic hybrid nanocomposite initiated by trimethoxysilane-modified fragmental photoinitiator, Composites: Part A, 42, 631-638 (2011)
[74]Sis, H., Birinci, M., Effect of Nonionic and Ionic Surfactants on Zeta Potential and Dispersion Properties of Carbon Black Powders, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 341, 60-67 (2009)
[75]Ofir, E., Oren, Y., Adin, A., Electroflocculation: the Effect of Zeta-Potential on Particle Size, Desalination, 204, 33–38 (2007)
[76]Wanwisa, K., Satit, P., Thomas R., Thaned, P., Chitosan–Magnesium Aluminum Silicate Composite Dispersions: Characterization of Rheology, Flocculate Size and Zeta Potential, International Journal of Pharmaceutics, 351, 227-235 (2008)
[77]Lai, C. C., Chen, K. M., Dyeing Properties of Modified Gemini Surfactants on a Disperse Dye-Polyester System, Textile Research Journal, 78, 5, 382-389 (2008)
[78]Sergey, V. S., Nikolay, O. M. P., Christian, R., A New Application of Solvatochromic Pyridinium-N-Phenolate Betaine Dyes: Examining the Electrophilicity of Lanthanide Shift Reagents, Tetrahedron Letters, 51, 4347-4349 (2010)
[79]Safavi, A., Abdollahi, H., Maleki, N., Zeinali, S., Interaction of Anionic Dyes and Cationic Surfactants with Ionic Liquid Character, Journal of Colloid and Interface Science, 322, 274-280 (2008)
[80]Yongchun, D., Enpu, W., Decoloration of Direct Dyeing Wastewater and its Reuse, Industrial Water Treatment, 23, 8,39-42 (2003)
[81]Xu, Y., Wu, D., Sun, Y., Chen, W., Yuan, H., Deng, F., Wu, Z., Effect of polyvinylpyrrolidone on the ammonia-catalyzed sol-gel process of TEOS: Study by in situ 29Si NMR, scattering, and rheology, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 305,97-104 (2007)

無法下載圖示 全文公開日期 2019/06/10 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE