簡易檢索 / 詳目顯示

研究生: 陳安妤
An-Yu Chen
論文名稱: 以噬菌體輔助自主連續定向演化方法
Methods for Phage Assisted Autonomous Continuous Directed Evolution-PAACDE
指導教授: 蔡伸隆
Shen-Long Tsai
口試委員: 李振綱
葉怡均
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 120
中文關鍵詞: 定向演化噬菌體濃差追蹤連續系統
外文關鍵詞: Directed Evolution, M13 phage, Chemotaxis, Continuous System
相關次數: 點閱:152下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 定向演化(Directed Evolution)為合成生物學中一個強而有力的工具,它可以在未知許多中間演化細節的狀態下,成功利用基因工程建構出高穩定性的系統。為了創造更多的生物變異性,並且欲量身訂做符合不同需求的單一變體(變異的範圍可以是配體、酶、工作途徑或甚至整個生物體),此系統包含了一系列的方法及
    理論。
    在本研究中,我們以David Liu 在2011 年建所立的噬菌體輔助連續進化系統(PACE)為基礎進一步作修改。雖然實驗室規模的演化已經產生了許多具有特殊功能的生物小分子,但光是完成突變,基因表達,篩選或選擇一個循環,就需要數天或更長的時間,而且因著人為干擾,複雜的過程和無法精確控制的篩選。我們藉由修改M13KO7 絲狀噬菌體生命週期,以大幅度加速實驗室演化化實驗,並採用低人為干預和優化選擇,稱為噬菌體輔助自主連續定向進化-PAACDE。 藉由使用PAACDE,我們建構了識別特殊啟動子的T7RNA 聚合酶(RNAP)變體,用ATP 代替GTP 啟動轉錄本,並用CTP 啟動轉錄本。 這些過程僅僅是通過連續的細胞與細胞間溝通和進行半固態培養盤上競爭。


    Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of engineering even the most highly conserved biological processes. It encompasses a range of methodologies to create variation in a population and to select individual variants with the desired function-be it a ligand, enzyme, pathway or even whole organisms.
    In this study, we based on the platform of Phage Assisted Continuous Evolution
    System(PACE) created by David Liu in 2011. However, laboratory evolution has
    generated many biomolecules with desired properties, but a single round of mutation,
    gene expression, screening or selection, and replication typically requires days or longer with frequent human intervention, complex process, and uncontrollable selection. We build up a modified filamentous bacteriophage life cycle to dramatically accelerate laboratory evolution experiments with low human intervention and optimized selection called Phage Assisted Autonomous Continuous Directed Evolution-PAACDE. Using PAACDE, we evolved T7 RNA polymerase (RNAP) variants that recognize a distinct promoter, initiate transcripts with ATP instead of GTP, and initiate transcripts with CTP. Those process are performed just on an agar plate with continuous cell-cell communication amd racing.

    總目錄 摘要 ................................................................................................................................... i Abstract ............................................................................................................................. ii 致謝 ................................................................................................................................. iii 總目錄 .............................................................................................................................. 1 表目錄 .............................................................................................................................. 4 圖目錄 .............................................................................................................................. 5 第一章 緒論 .................................................................................................................... 9 1.1 研究背景 ........................................................................................................... 9 1.2 研究動機與目的 ............................................................................................... 9 1.3 研究內容 ......................................................................................................... 10 第二章 文獻回顧 .......................................................................................................... 12 2.1 定向演化 ......................................................................................................... 12 2.1.1 胞外定向演化 ...................................................................................... 13 2.1.2 胞內定向演化 ...................................................................................... 15 2.2 噬菌體輔助連續定向演化PACE .................................................................... 16 2.3 噬菌體之簡介 ................................................................................................. 17 2.3.1 pIII 蛋白簡介 ........................................................................................ 20 2.4 誘變 ................................................................................................................. 21 2.4.1 PBAD 啟動子(PBAD promoter) ................................................................. 23 2.4.2 dnaQ926 蛋白 ........................................................................................ 23 2.4.3 DAM 蛋白 ............................................................................................. 24 2.4.4 seqA 蛋白質結構域 ............................................................................. 25 2.4.5 cda1 胞苷脫氨酶 ................................................................................... 25 2.4.6 ugi 抑制蛋白 ......................................................................................... 26 2.4.7 emrR 轉錄抑制子 .................................................................................. 26 第三章 材料與方法 ...................................................................................................... 28 3.1 儀器與材料 ..................................................................................................... 28 3.2 實驗流程 Scheme ........................................................................................... 32 3.3 質體純化法 ..................................................................................................... 33 3.4 聚合酶鏈反應 ................................................................................................. 34 3.5 瓊脂凝膠電泳與回收 ..................................................................................... 38 3.6 限制酶酶切作用 ............................................................................................. 40 3.7 核酸接合與轉殖法 ......................................................................................... 40 3.8 電穿孔勝任細胞製備及電穿孔轉殖作用 ..................................................... 42 3.9 噬菌體融合蛋白表面表達及回收 ................................................................. 45 2 3.11 噬菌體滴度測試 ............................................................................................ 46 3.12 SDS-PAGE 凝膠電泳 ..................................................................................... 48 3.12 藍/白篩-遺傳篩選技術 ................................................................................. 50 3.13 P1 噬菌體基因剃除技術 .............................................................................. 52 3.13.1 P1 噬菌體製備 .................................................................................... 52 3.13.2 P1 transduction .................................................................................... 54 3.13.3 抗生素基因片段移除(建議) .............................................................. 55 3.14 半固態盤製備 ............................................................................................... 57 第四章 結果與討論 ...................................................................................................... 58 4.1 噬質體建立 ..................................................................................................... 58 4.2 質體建立 ......................................................................................................... 62 4.2.1 質體 pET24a-pUC18ori-Amp .............................................................. 63 4.2.2 質體 pET24a-pUC18ori-Amp-CheZ .................................................... 65 4.2.3 質體 pET24a-pUC18ori-Amp-gIII ....................................................... 66 4.2.4 質體 pET24a-pUC18ori-Amp-CheZ-gIII ............................................. 67 4.2.5 質體 pET24a-pUC18ori-Amp-GFP-gIII .............................................. 69 4.2.6 質體 pET24a-pUC18ori-Amp-GFP-CheZ-gIII .................................... 72 4.2.7 質體 pET24a-pUC18ori-Amp-GFP-gIII-CheZ .................................... 75 4.2.8 質體 pET24a-pUC18ori-Amp-CheZ-GFP-gIII .................................... 78 4.2.9 質體 pET24a-pUC18ori-Amp-CheZ-gIII-GFP .................................... 80 4.3 滴度值分析 ..................................................................................................... 83 4.3.1 噬質體gIII 基因移除 .......................................................................... 83 4.3.2 工作質體gIII 表達情形 ...................................................................... 85 4.4 藍/白篩檢測 .................................................................................................... 87 4.4.1 噬質體LacZa 序列確認 ...................................................................... 87 4.4.2 噬菌體感染後LacZa 表達 .................................................................. 88 4.5 SDS-PAGE ........................................................................................................ 90 4.6 GFP 綠螢光蛋白表達 ...................................................................................... 93 4.6.1 噬質體(SP-Selection Phagemid) T7 RNAP 蛋白確認 ........................ 93 4.6.2 工作質體(AP-Accessory Plasmid) GFP 蛋白確認 ............................. 94 4.7 剔除CheZ 基因菌株 ....................................................................................... 96 4.7.1 Taq PCR 確認CheZ 基因移除 ............................................................. 96 4.7.2 Agar 盤上有無CheZ 基因表徵 ............................................................ 97 4.8 半固態盤 ......................................................................................................... 99 4.8.1 CheZ 對於IPTG 之趨向性 ................................................................... 99 4.8.2 濃差盤游動測試 ................................................................................ 103 4.8.3 菌株游動基準值測試 ........................................................................ 105 4.8.4 噬菌體輔助傳導測試 ........................................................................ 107 3 第五章 結論 ................................................................................................................ 110 參考文獻 ...................................................................................................................... 111

    1. Tizei, P. A.; Csibra, E.; Torres, L.; Pinheiro, V. B., Selection platforms for directed
    evolution in synthetic biology. Biochemical Society Transactions 2016, 44 (4), 1165-
    1175.
    2. Widersten, M., Protein engineering for development of new hydrolytic
    biocatalysts. Current opinion in chemical biology 2014, 21, 42-47.
    3. Dickinson, B. C.; Leconte, A. M.; Allen, B.; Esvelt, K. M.; Liu, D. R.,
    Experimental interrogation of the path dependence and stochasticity of protein
    evolution using phage-assisted continuous evolution. Proceedings of the National
    Academy of Sciences 2013, 110 (22), 9007-9012.
    4. Dickinson, B. C.; Packer, M. S.; Badran, A. H.; Liu, D. R., A system for the
    continuous directed evolution of proteases rapidly reveals drug-resistance mutations.
    Nature communications 2014, 5, 5352.
    5. Packer, M. S.; Liu, D. R., Methods for the directed evolution of proteins. Nature
    Reviews Genetics 2015, 16 (7), 379-394.
    6. Brustad, E. M.; Arnold, F. H., Optimizing non-natural protein function with
    directed evolution. Current opinion in chemical biology 2011, 15 (2), 201-210.
    7. Lane, M. D.; Seelig, B., Advances in the directed evolution of proteins. Current
    opinion in chemical biology 2014, 22, 129-136.
    8. Tuerk, C.; Gold, L., Systematic evolution of ligands by exponential enrichment:
    RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249 (4968), 505-
    510.
    9. Rosenbaum, D. M.; Liu, D. R., Efficient and sequence-specific DNA-templated
    polymerization of peptide nucleic acid aldehydes. Journal of the American Chemical
    Society 2003, 125 (46), 13924-13925.
    10. Brudno, Y.; Birnbaum, M. E.; Kleiner, R. E.; Liu, D. R., An in vitro translation,
    selection and amplification system for peptide nucleic acids. Nature chemical biology
    2010, 6 (2), 148-155.
    11. Murphy, K. C., Use of bacteriophage λ recombination functions to promote gene
    replacement in Escherichia coli. Journal of bacteriology 1998, 180 (8), 2063-2071.
    12. Badran, A. H.; Liu, D. R., In vivo continuous directed evolution. Current opinion
    in chemical biology 2015, 24, 1-10.
    13. Esvelt, K. M.; Carlson, J. C.; Liu, D. R., A system for the continuous directed
    evolution of biomolecules. Nature 2011, 472 (7344), 499-503.
    14. Hoesl, M. G.; Oehm, S.; Durkin, P.; Darmon, E.; Peil, L.; Aerni, H. R.; Rappsilber,
    J.; Rinehart, J.; Leach, D.; Söll, D., Chemical evolution of a bacterial proteome.
    112
    Angewandte Chemie International Edition 2015, 54 (34), 10030-10034.
    15. Marlière, P.; Patrouix, J.; Döring, V.; Herdewijn, P.; Tricot, S.; Cruveiller, S.;
    Bouzon, M.; Mutzel, R., Chemical evolution of a bacterium’s genome. Angewandte
    Chemie International Edition 2011, 50 (31), 7109-7114.
    16. Merril, C. R.; Biswas, B.; Carlton, R.; Jensen, N. C.; Creed, G. J.; Zullo, S.; Adhya,
    S., Long-circulating bacteriophage as antibacterial agents. Proceedings of the National
    Academy of Sciences 1996, 93 (8), 3188-3192.
    17. Hoogenboom, H. R.; de Bruıne, A. P.; Hufton, S. E.; Hoet, R. M.; Arends, J.-W.;
    Roovers, R. C., Antibody phage display technology and its applications.
    Immunotechnology 1998, 4 (1), 1-20.
    18. Brigati, J.; Williams, D. D.; Sorokulova, I. B.; Nanduri, V.; Chen, I.-H.;
    Turnbough, C. L.; Petrenko, V. A., Diagnostic probes for Bacillus anthracis spores
    selected from a landscape phage library. Clinical chemistry 2004, 50 (10), 1899-1906.
    19. Mao, C.; Liu, A.; Cao, B., Virus‐Based Chemical and Biological Sensing.
    Angewandte Chemie International Edition 2009, 48 (37), 6790-6810.
    20. Liu, A.; Abbineni, G.; Mao, C., Nanocomposite Films Assembled from Genetically
    Engineered Filamentous Viruses and Gold Nanoparticles: Nanoarchitecture‐and
    Humidity‐Tunable Surface Plasmon Resonance Spectra. Advanced Materials 2009, 21
    (9), 1001-1005.
    21. Barrow, P. A.; Soothill, J. S., Bacteriophage therapy and prophylaxis: rediscovery
    and renewed assessment of potential. Trends in microbiology 1997, 5 (7), 268-271.
    22. Smith, G. P.; Scott, J. K., [15] Libraries of peptides and proteins displayed on
    filamentous phage. Methods in enzymology 1993, 217, 228-257.
    23. Russell, S. J., Peptide–displaying phages for targeted gene delivery? Nature
    medicine 1996, 2 (3), 276-277.
    24. Qi, H.; Lu, H.; Qiu, H.-J.; Petrenko, V.; Liu, A., Phagemid vectors for phage
    display: properties, characteristics and construction. Journal of molecular biology 2012,
    417 (3), 129-143.
    25. Smith, G. P., Filamentous fusion phage: novel expression vectors that display
    cloned antigens on the virion surface. Science 1985, 228, 1315-1318.
    26. Yang, W.-J.; Lai, J.-F.; Peng, K.-C.; Chiang, H.-J.; Weng, C.-N.; Shiuan, D.,
    Epitope mapping of Mycoplasma hyopneumoniae using phage displayed peptide
    libraries and the immune responses of the selected phagotopes. Journal of
    immunological methods 2005, 304 (1), 15-29.
    27. Rodriguez, R. L.; Denhardt, D. T., Vectors: a survey of molecular cloning vectors
    and their uses. Butterworth-Heinemann: 2014.
    28. Basu, S.; Gerchman, Y.; Collins, C. H.; Arnold, F. H.; Weiss, R., A synthetic
    multicellular system for programmed pattern formation. Nature 2005, 434 (7037), 1130-
    113
    1134.
    29. Tabor, J. J.; Salis, H. M.; Simpson, Z. B.; Chevalier, A. A.; Levskaya, A.; Marcotte,
    E. M.; Voigt, C. A.; Ellington, A. D., A synthetic genetic edge detection program. Cell
    2009, 137 (7), 1272-1281.
    30. Collins, C. H.; Arnold, F. H.; Leadbetter, J. R., Directed evolution of Vibrio
    fischeri LuxR for increased sensitivity to a broad spectrum of acyl‐homoserine lactones.
    Molecular microbiology 2005, 55 (3), 712-723.
    31. Chai, Y.; Winans, S. C., Site‐directed mutagenesis of a LuxR‐type quorum‐sensing
    transcription factor: alteration of autoinducer specificity. Molecular microbiology 2004,
    51 (3), 765-776.
    32. Collins, C. H.; Leadbetter, J. R.; Arnold, F. H., Dual selection enhances the
    signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR.
    Nature biotechnology 2006, 24 (6), 708-712.
    33. Ortiz, M. E.; Endy, D., Engineered cell-cell communication via DNA messaging.
    Journal of biological engineering 2012, 6 (1), 16.
    34. Rakonjac, J.; Model, P., Roles of pIII in filamentous phage assembly. Journal of
    molecular biology 1998, 282 (1), 25-41.
    35. Bennett, N. J.; Rakonjac, J., Unlocking of the filamentous bacteriophage virion
    during infection is mediated by the C domain of pIII. Journal of molecular biology
    2006, 356 (2), 266-273.
    36. Koivunen, E.; Wang, B.; Ruoslahti, E., Phage libraries displaying cyclic peptides
    with different ring sizes: ligand specificities of the RGD-directed integrins. Nature
    Biotechnology 1995, 13 (3), 265-270.
    37. Pershad, K.; Kay, B. K., Generating thermal stable variants of protein domains
    through phage display. Methods 2013, 60 (1), 38-45.
    38. Iannolo, G.; Minenkova, O.; Petruzzelli, R.; Cesareni, G., Modifying filamentous
    phage capsid: limits in the size of the major capsid protein. Journal of molecular
    biology 1995, 248 (4), 835-844.
    39. Badran, A. H.; Liu, D. R., Development of potent in vivo mutagenesis plasmids
    with broad mutational spectra. Nature communications 2015, 6, 8425.
    40. Wang, H. H.; Isaacs, F. J.; Carr, P. A.; Sun, Z. Z.; Xu, G.; Forest, C. R.; Church, G.
    M., Programming cells by multiplex genome engineering and accelerated evolution.
    Nature 2009, 460 (7257), 894-898.
    41. Jiang, W.; Bikard, D.; Cox, D.; Zhang, F.; Marraffini, L. A., RNA-guided editing of
    bacterial genomes using CRISPR-Cas systems. Nature biotechnology 2013, 31 (3), 233-
    239.
    42. Carlson, J. C.; Badran, A. H.; Guggiana-Nilo, D. A.; Liu, D. R., Negative selection
    and stringency modulation in phage-assisted continuous evolution. Nature chemical
    114
    biology 2014, 10 (3), 216-222.
    43. Schleif, R., AraC protein, regulation of the l-arabinose operon in Escherichia coli,
    and the light switch mechanism of AraC action. FEMS microbiology reviews 2010, 34
    (5), 779-796.
    44. Schleif, R., AraC protein: a love–hate relationship. Bioessays 2003, 25 (3), 274-
    282.
    45. Reed, W. L.; Schleif, R. F., Hemiplegic mutations in AraC protein. Journal of
    molecular biology 1999, 294 (2), 417-425.
    46. Lobell, R. B.; Schleif, R. F., DNA looping and unlooping by AraC protein.
    Science(Washington) 1990, 250 (4980), 528-532.
    47. Soisson, S. M.; MacDougall-Shackleton, B.; Schleif, R.; Wolberger, C., Structural
    basis for ligand-regulated oligomerization of AraC. Science 1997, 276 (5311), 421-425.
    48. Dunn, T. M.; Schleif, R., Deletion analysis of the Escherichia coli ara PC and
    PBAD promoters. Journal of molecular biology 1984, 180 (1), 201-204.
    49. Guzman, L.-M.; Belin, D.; Carson, M. J.; Beckwith, J., Tight regulation,
    modulation, and high-level expression by vectors containing the arabinose PBAD
    promoter. Journal of bacteriology 1995, 177 (14), 4121-4130.
    50. Echols, H.; Goodman, M. F., Fidelity mechanisms in DNA replication. Annual
    review of biochemistry 1991, 60 (1), 477-511.
    51. Kornberg, A.; Baker, T., Biosynthesis of DNA precursors. DNA replication 1992,
    2, 68-69.
    52. Modrich, P., Mechanisms and biological effects of mismatch repair. Annual review
    of genetics 1991, 25 (1), 229-253.
    53. Fijalkowska, I. J.; Schaaper, R. M., Mutants in the Exo I motif of Escherichia coli
    dnaQ: defective proofreading and inviability due to error catastrophe. Proceedings of
    the National Academy of Sciences 1996, 93 (7), 2856-2861.
    54. Marinus, M. G.; Morris, N. R., Isolation of deoxyribonucleic acid methylase
    mutants of Escherichia coli K-12. Journal of bacteriology 1973, 114 (3), 1143-1150.
    55. Geier, G. E.; Modrich, P., Recognition sequence of the dam methylase of
    Escherichia coli K12 and mode of cleavage of Dpn I endonuclease. Journal of
    Biological Chemistry 1979, 254 (4), 1408-1413.
    56. Barras, F.; Marinus, M. G., The great GATC: DNA methylation in E. coli. Trends
    in Genetics 1989, 5, 139-143.
    57. Løbner-Olesen, A.; Skovgaard, O.; Marinus, M. G., Dam methylation:
    coordinating cellular processes. Current opinion in microbiology 2005, 8 (2), 154-160.
    58. Schaaper, R. M., Base selection, proofreading, and mismatch repair during DNA
    replication in Escherichia coli. Journal of Biological Chemistry 1993, 268 (32), 23762-
    23765.
    115
    59. Slater, S.; Wold, S.; Lu, M.; Boye, E.; Skarstad, K.; Kleckner, N., E. coli SeqA
    protein binds oriC in two different methyl-modulated reactions appropriate to its roles in
    DNA replication initiation and origin sequestration. Cell 1995, 82 (6), 927-936.
    60. Lee, H.; Kang, S.; Bae, S.-H.; Choi, B.-S.; Hwang, D. S., SeqA protein aggregation
    is necessary for SeqA function. Journal of Biological Chemistry 2001, 276 (37), 34600-
    34606.
    61. Słomińska, M.; Węgrzyn, A.; Konopa, G.; Skarstad, K.; Węgrzyn, G., SeqA, the
    Escherichia coli origin sequestration protein, is also a specific transcription factor.
    Molecular microbiology 2001, 40 (6), 1371-1379.
    62. Waldminghaus, T.; Skarstad, K., The Escherichia coli SeqA protein. Plasmid 2009,
    61 (3), 141-150.
    63. Lewis, C. A.; Crayle, J.; Zhou, S.; Swanstrom, R.; Wolfenden, R., Cytosine
    deamination and the precipitous decline of spontaneous mutation during Earth's history.
    Proceedings of the National Academy of Sciences 2016, 113 (29), 8194-8199.
    64. Lomovskaya, O.; Lewis, K.; Matin, A., EmrR is a negative regulator of the
    Escherichia coli multidrug resistance pump EmrAB. Journal of bacteriology 1995, 177
    (9), 2328-2334.
    65. Tittsler, R. P.; Sandholzer, L. A., The use of semi-solid agar for the detection of
    bacterial motility. Journal of Bacteriology 1936, 31 (6), 575.
    66. Knox, R.; Skinner, G., Semi-solid agar media for culture and drug sensitivity tests
    of tubercle bacilli from sputum. Journal of clinical pathology 1957, 10 (4), 307.
    67. Packer, M. S.; Rees, H. A.; Liu, D. R., Phage-assisted continuous evolution of
    proteases with altered substrate specificity. Nature communications 2017, 8, 956.
    68. Raskin, C. A.; Diaz, G.; Joho, K.; McAllister, W. T., Substitution of a single
    bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results
    in a switch in promoter specificity. Journal of molecular biology 1992, 228 (2), 506-
    515.
    69. Psarros, M.; Heber, S.; Sick, M.; Thoppae, G.; Harshman, K.; Sick, B., RACE:
    remote analysis computation for gene expression data. Nucleic Acids Research 2005, 33
    (suppl_2), W638-W643.
    70. Imburgio, D.; Rong, M.; Ma, K.; McAllister, W. T., Studies of promoter
    recognition and start site selection by T7 RNA polymerase using a comprehensive
    collection of promoter variants. Biochemistry 2000, 39 (34), 10419-10430.
    71. Lin, A.; Jimenez, J.; Derr, J.; Vera, P.; Manapat, M. L.; Esvelt, K. M.; Villanueva,
    L.; Liu, D. R.; Chen, I. A., Inhibition of bacterial conjugation by phage M13 and its
    protein g3p: quantitative analysis and model. PloS one 2011, 6 (5), e19991.
    72. Badran, A. H.; Guzov, V. M.; Huai, Q.; Kemp, M. M.; Vishwanath, P.; Kain, W.;
    Nance, A. M.; Evdokimov, A.; Moshiri, F.; Turner, K. H., Continuous evolution of
    116
    Bacillus thuringiensis toxins overcomes insect resistance. Nature 2016, 533 (7601), 58-
    63.
    73. Bryson, D. I.; Fan, C.; Guo, L.-T.; Miller, C.; Söll, D.; Liu, D. R., Continuous
    directed evolution of aminoacyl-tRNA synthetases. Nature chemical biology 2017, 13
    (12), 1253.
    74. Hubbard, B. P.; Badran, A. H.; Zuris, J. A.; Guilinger, J. P.; Davis, K. M.; Chen, L.;
    Tsai, S. Q.; Sander, J. D.; Joung, J. K.; Liu, D. R., Continuous directed evolution of
    DNA-binding proteins to improve TALEN specificity. Nature methods 2015, 12 (10),
    939-942.
    75. Drexler, K. E.; Randall, J.; Corchnoy, S.; Kawczak, A.; Steve, M. L., Productive
    nanosystems: A technology roadmap. 2007.

    QR CODE