簡易檢索 / 詳目顯示

研究生: 吳致中
Chih-Chung Wu
論文名稱: 以微波促進水/溶熱法合成硒化銅銦前驅物及其薄膜之電泳沉積
The copper indium selenide precursor synthesized by microwave-assisted hydro-/solvo-thermal method and its film fabricated by electrophoresis deposition
指導教授: 蕭敬業
Ching-Yeh Shiau
口試委員: 黃炳照
Bing-Joe Hwang
邱秋燕
Chiu-Yen Chiu
李志甫
Jyh-Fu Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 128
中文關鍵詞: 水/溶熱法硒化銅銦黃銅礦電泳沉積微波加熱乙二胺
外文關鍵詞: electrophoresis deposition, hydro-/solvo-thermal, chalcopyrite, CuInSe2, microwave, ethylenediamine
相關次數: 點閱:264下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要分為硒化銅銦前驅物粒子合成及電泳沉積製備硒化銅銦薄膜之兩個方向進行研究。在前驅物粒子合成之研究中,嘗試以微波促進水/溶熱法進行粒子合成,其中溶熱法以乙二胺作為溶劑。研究中發現,以微波方式進行水/溶熱為熱源均可進行短時間快速均勻之合成。其中溶熱法可縮短純相硒化銅銦黃銅礦結構之合成時間至30分鐘,只需要傳統加熱方式之20至40分之一的合成時間,並藉由適當的前處理,控制其表面形態由二維片狀形態形成一維方向之柱狀結構,但由於形態上的限制,較不適合作為塗佈薄膜所需的漿料粒子來源。
另一方面,以微波促進水熱法證實可合成新穎硒化銅銦前驅物,研究中以合成溫度180度及反應時間30分鐘的水熱反應,且不需額外作pH值的調控下,所合成之前驅物不僅具有均勻的表面形態,亦擁有良好的組成比例,此外由於以水為溶劑,故此方式具有成本低及易取得的特性,且為環境友善的綠色製程。此前驅物經過500度氫氣還原後,則可取得純相硒化銅銦黃銅礦結構之奈米粒子。
在以電泳沉積技術製備硒化銅銦薄膜之製程中,發現具有快速成膜的特性,並可精準地控制所沉積之薄膜厚度。研究結果發現,以所合成之新穎前驅物粒子作為電泳法之粉體來源,製備出之薄膜並未十分緻密,且前驅物薄膜經由500至600度不同溫度下還原過後,其微結構未獲得改善,歸因於還原過程中,因氧原子與氫氣反應所生成的水,離開薄膜所造成,此現象可作為日後薄膜製備改善之依據。此外,本研究亦藉由拉曼光譜及X射線光電子能譜鑑定還原過後之薄膜,其結果顯示此前驅物還原後即可穩定地呈現純相之黃銅礦結構,並不會出現硒化銅及氧化銦等二次相的產生。


The objective of the presented study is to fabricate uniform, dense CuInSe2 thin film for next-generation solar cells by employing electrophoresis deposition technique (EPD). The study can be divided into two parts, including synthesis of CuInSe2 particles and preparation of CuInSe2 thin films by using EPD technique. First, the viability of microwave-assisted solvo- and hydro-thermal method in the preparation of CuInSe2 materials is investigated. For microwave-assisted solvo-thermal method, pure chalcopyrite structure of the materials was achieved within 30 min with ethylenediamine as solvent, indicating the success in synthesis of CuInSe2 materials. The results showed great improvement for synthesis of CuInSe2 since materials can only be synthesized with at least 20-fold time with conventional heating. The morphologies of the synthesized CuInSe2 materials can be controlled with appropriate pretreatment, however, it is not suitable for the subsequent EPD technique.
Therefore, low cost and environmental friendly microwave-assisted hydrothermal method was employed instead of solvothermal one for possible use in thin film fabrication by EPD. It was found that stoichiometric CuInSe2 precursors are able to be synthesized with uniform morphology at the condition of 180 oC for 30 mins. Reduction of the process time is also observed as well. Further the chalcopyrite CuInSe2 particles can be obtained by the post reduction process at 500℃ in H2.
On the other hand, deposition of the CuInSe2 thin film by EPD technique was performed with the hydrothermal-derived CuInSe2 precursors. The technique possesses the characteristics of short processing time and precise control in film thickness. Nevertheless, the prepared thin films are porous even after reduction at 600 oC. The fact may result from the loss of oxygen during reduction process as well as the originally porous nature for the precursor thin film. The behavior can be the guide for the future improvement. Besides, the reduced CuInSe2 thin film was analyzed by Raman and XPS, in which only chalcopyrite structure was shown without any impurities.

第一章 緒論….……....……………………………………………………..1 1.1 前言….………………………………………………….………………1 1.2 太陽能電池簡介............................................................................1 1.2.1 太陽能電池基本原理......................................................2 1.2.2 太陽能電池種類及效率....................................................4 1.2.2.1 單晶太陽能電池........................................................4 1.2.2.2 薄膜型太陽能電池......................................................6 1.3 研究動機與方向...........................................................11 第二章 文獻回顧..............................................................13 2.1 硒化銅銦鎵吸收層薄膜製備技術.............................................13 2.1.1 共蒸鍍沉積硒化銅銦鎵吸收層.............................................14 2.1.2 二階段法(硒化法)製備硒化銅銦鎵薄膜.....................................16 2.1.3 電鍍法沉積硒化銅銦鎵薄膜...............................................18 2.1.4 硒化銅銦鎵漿料塗佈技術.................................................20 2.2 漿料製程之奈米粒子製備...................................................22 2.2.1 固態法合成硒化銅銦粉體.................................................23 2.2.2 單一來源熱裂解法合成硒化銅銦粉體.......................................24 2.2.3 水熱/溶熱法合成硒化銅銦粉體............................................26 2.3 微波輔助加熱促進硒化銅銦奈米粒子合成.....................................31 2.4 電泳技術於太陽能電池上的應用.............................................33 第三章 實驗方法和儀器設備....................................................37 3.1 儀器設備.................................................................37 3.2 實驗藥品.................................................................39 3.3 實驗方法.................................................................40 3.3.1 微波促進溶熱法合成硒化銅銦粉體.........................................40 3.3.1.1 微波促進溶熱法合成硒化銅銦粉體(未經過前處理).........................40 3.3.1.2 微波促進溶熱法合成硒化銅銦粉體(經過前處理)...........................41 3.3.2 微波促進水熱法合成硒化銅銦粉體.........................................43 3.3.3 電泳沉積製備硒化銅銦薄膜...............................................45 3.4 材料特性分析與儀器原理...................................................47 3.4.1 X光繞射(XRD)檢測材料結晶結構...........................................47 3.4.2 掃描式電子顯微鏡(SEM)材料表面形態分析..................................48 3.4.3 能量分散光譜(EDX)元素組成分析..........................................49 3.4.4 感應耦合電漿原子發射光譜(ICP)元素組成分析..............................50 3.4.5 穿透式電子顯微鏡(TEM)穿透形態分析......................................51 3.4.6 拉曼光譜(Raman spectra)鑑定............................................52 3.4.7 X射線光電子能譜(XPS)之鑑定.............................................54 第四章 實驗結果..............................................................55 4.1 微波促進溶熱法合成硒化銅銦粉體...........................................55 4.1.1 X光晶體結構分析........................................................55 4.1.2 掃描式電子顯微鏡(SEM)表面形態分析......................................58 4.1.3 能量分散光譜(EDX)元素組成分析..........................................61 4.1.4 穿透式電子顯微鏡(TEM)穿透形態分析......................................64 4.1.5 拉曼光譜(Raman spectra)鑑定............................................65 4.2 微波促進水熱法合成硒化銅銦前驅物粉體.....................................67 4.2.1 X光繞射(XRD)晶體結構分析...............................................67 4.2.2 掃描式電子顯微鏡(SEM)表面形態分析......................................69 4.2.3感應耦合電漿原子發射光譜(ICP)及能量分散光譜(EDX)分析....................74 4.3 電泳沉積製備硒化銅銦薄膜.................................................80 4.2.1 X光繞射(XRD)晶體結構分析...............................................80 4.3.2 掃描式電子顯微鏡(SEM)表面形態分析......................................82 4.3.2.1 電泳條件對薄膜厚度之分析.............................................82 4.3.2.2 還原及硒化過後之電泳薄膜表面形態分析.................................88 4.3.4 能量分散光譜(EDX)元素組成分析..........................................95 4.2.5 拉曼光譜(Raman spectra)之鑑定..........................................99 4.3.6 X射線光電子能譜(XPS)之鑑定............................................100 第五章 綜合討論.............................................................105 5.1 微波促進溶熱法合成硒化銅銦粉體之探討....................................105 5.1.1 微波加熱時間及前熱處理對硒化銅銦粉體表面形態之影響....................105 5.2 微波促進水熱法合成硒化銅銦前驅物粉體之探討..............................109 5.2.1硒化銅銦前驅物水熱法合成條件之探討.....................................109 5.2.2 硒化銅銦前驅物粉體還原後之鑑定........................................110 5.2.3 以水為溶劑合成硒化銅銦及其前驅物之文獻比較............................112 5.3 電泳沉積硒化銅銦前驅物薄膜之探討........................................114 第六章 結論.................................................................118 第七章 未來方向.............................................................120 第八章 參考文獻.............................................................121

【1】 A. E. Becquerel. “Mémoire sur les effets électriques produits sous l'influence des rayons solaires”. Comptes Rendus, 9, (1839), 561.
【2】 莊嘉琛編譯, “太陽能工程:太陽電池篇”, 全華科技, (2006).
【3】 J. Zhao, A. Wang, M. A. Green, “24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates”, Sol. Energy Mater. Sol. Cells, 66 (2001), 27.
【4】 L. Kazmerski, D. Gwinner, A. Hicks, “Reported timeline of solar cell energy conversion efficiencies” National Renewable Energy Laboratory, (2007).
【5】 P. R. Gale, R. W. McClelland, D. B. Dingle, J. V. Cormley, R. M. Burgess, N. P. Kim, R. A. Mickelsen, B. F. Stanbery, “High-efficiency GaAs/CuInSe2 and AlGaAs/CuInSe2 thin-film tandem solar cells”, Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May (1990), 53.
【6】 R. R. King, R. A. Sherif, D. C. Law, J. T. Yen, M. Haddad, Z. M. Fetzer, K. M. Edmondson, G. S. Kinsey, H. Yoon, M. Joshi, S. Mesropian, H. L. Cotal, D. D. Krut, J. H. Ermer, N. H. Karam. “New horizons in III-V multijunction terrestrial concentrator cell research”. 21st Euro. Conf. Photovoltaic Solar Energy Conference, Dresden, September, (2006).
【7】 D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Appl. Phys. Lett., 31, (1977), 292.
【8】 J. Meier, J. Spitaznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, A. Shah, “Potential of amorphous and microcrystalline silicon solar cells”, Thin Solid Films, 451-452, (2004), 518.
【9】 A. Luaue and S. Hegedus, “Hand book of photovoltaic Science and Engineering”, (2004).
【10】 X. Wu, J. C. Keane, R. G. Dhere, C DeHart, A. Duda, T. A. Gessert, S. Asher, D. H. Levi, P. Sheldon, “16.5% efficient CdS/CdTe polycrystalline thin film solar cell”, Conference Proc. 17th Euro. Conf. Photovoltaic Solar Energy Conference, Munich. October 22, (2001), 955.
【11】 R. W. Miles, G. Zoppi, I. Forbes, “Inorganic photovoltaic cells”, Materialstoday, 10, (2007), 20.
【12】 H. Hahn et al.,” Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur”, Z. Anorg. Allg. Chem., 271, (1953), 153.
【13】 J. Shay, J. Wernick, “Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Application”, Pergamon Press, Oxford, (1974).
【14】 B. Tell, J. Shay, H. Kasper,” Optical and Electrical Properties of AgGaS2 and AgGaSe2”, Phys. Rev. B, 4, (1971), 4455.
【15】 B. Tell, J. Shay, H. Kasper,”Room-Temperature Electrical Properties of Ten I-III-VI2 Semiconductors”, J. Appl. Phys., 43, (1972), 2469.
【16】 W. Chen et al., Proc. 19th IEEE Photovoltaic Specialist Conf., (1987), 1445.
【17】 R. Potter,” Enhanced photocurrent ZnO/CdS/CuInSe2 solar cells”, Sol. Cells, 16, (1986), 521.
【18】 J. Hedstrom et al.,” ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance”, Proc. 23rd IEEE Photovoltaic Specialist Conf., (1993), 364.
【19】 A. M. Gabor et al.,” Band-gap engineering in Cu(In,Ga)Se2 thin films grown from (In,Ga)2Se3 precursors”, Sol. Energy Mater. Sol. Cells, 41-42, (1996), 247.
【20】 D. Tarrant, J. Ermer,” I-III-VI2 multinary solar cells based on CuInSe2”, Proc. 23rd IEEE Photovoltaic Specialist Conf., (1993), 372.
【21】 ”Record Makes Thin-Film Solar Cell Competitive with Silicon Efficiency”, National Renewable Energy Laboratory Newsroom, March 24, (2008).
【22】 D. Mattox, “Handbook of Physical Vapor Deposition (PVD) Processing”, Noyes Publ., Park Ridge, NJ, (1998).
【23】 S. Jackson, B. Baron, R. Rocheleau, T. Russell, Am. Inst. Chem. Eng. J., 33, (1987), 711.
【24】 S. Grindle, C. Smith, S. Mittleman,” Preparation and properties of CuInS2 thin films produced by exposing sputtered Cu-In films to an H2S atmosphere”, Appl. Phys. Lett., 35, (1979) , 24.
【25】 T. Chu, S. Chu, S. Lin, J Yue, J. Electrochem., 131, (1984) , 2182.
【26】 Tanaka et al., Proc. 17th Euro. Conf. Photovoltaic Solar Energy Conversion, (2001), 989.
【27】 V. K. Kapur, B. M. Basol, E. S. Tseng,”Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells”, Solar Cells, 21, (1987) , 65.
【28】 H. Sato et al.,” Fabrication of high efficiency CuIn(Ga)Se2 thin film solar cell by of high efficiency selenization with H2Se”, Proc. 23rd IEEE Photovoltaic Specialist Conf., (1993), 521.
【29】 J. Kessler, H. Dittrich, F. Grunwald, H. Schock, Proc. 10th Euro. Conf. Photovoltaic Solar Energy Conversion, (1991) , 879.
【30】 H. Oumous et al., Proc. 9th Euro. Conf. Photovoltaic Solar Energy Conversion, (1992) , 153.
【31】 F. Karg et al.,” Novel rapid-thermal-processing for CIS thin-film solar cells”, Proc. 23rd IEEE Photovoltaic Specialist Conf., (1993), 441.
【32】 G. D. Mooney et al.,” Formation of CuInSe2 thin films by rapid thermal recrystallization”, Appl. Phys. Lett., 58, (1991) , 2678.
【33】 S. Verma, N. Orbey, R. Birkmire, T. Russell,“ Chemical reaction analysis of copper indium selenization“, Prog. Photovolt., 4, (1996), 341.
【34】 N. Orbey, G. Norsworthy, R. Birkmire, T. Russell,” Reaction analysis of the formation of CuInSe2 films in a physical vapor deposition reactor”, Prog. Photovolt., 6, (1998) , 79–86.
【35】 C. Jensen, D. Tarrant, J. Ermer, G. Pollock,” The role of gallium in CuInSe2 solar cells fabricated by a two-stage method”, Proc. 23rd IEEE Photovoltaic Specialist Conf., (1993) , 577.
【36】 M. Marudachalam et al.,” Preparation of homogeneous Cu(InGa)Se2 films by selenization of metal precursors in H2Se atmosphere ”, Appl. Phys. Lett., 67, 3978–3980, (1995)
【37】 R. N. Bhattacharya, “Solution growth and electrodeposited CuInSe2 thin film”, J. Electrochem. Soc., 130, (1983), 2040.
【38】 V. K. Kapur, B. M. Basol, E. S. Tseng,”Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells”, Solar Cells, 21, (1987) , 65.
【39】 D. Lincot et al.,” Chalcopyrite thin film solar cells by electrodeposition”, Solar Energy, 77, (2004), 725.
【40】 V. K. Kapur, A. Bansal, P. Le, O. I. Asensio,” Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks”, Thin Solid Films, 431–432, (2003) , 53.
【41】 T. Arita, N. Suyama, Y. Kita, et al.” CuInSe2 films prepared by screen printing and sintering method”, Proc. 20th IEEE Photovoltaic Specialists Conf., IEEE, NY, 1650, (1988).
【42】 G. Norsworthy, C. R. Leidholm, A. Halani, V. K. Kapur, R. Roe, B. M. Basol, R. Matson, “CIS film growth by metallic ink coating and selenization”, Sol. Energy Mater. Sol. Cells, 60, (2000) 127.
【43】 B. M. Basol, “Low cost techniques for the preparation of Cu(In,Ga)(Se,S)2 absorber layers”, Thin Solid Films, 361-362, (2000), 514.
【44】 N. Yamamoto, S. Ishida, and H. Horinaka, “Solid state growth of CuInSe2 and CuInTe2”, Japan. J. Appl. Phys., 28, (1989), 1780.
【45】 T. Wada, and H. Kinoshita, “Rapid exothermic synthesis of chalcopyrite-type CuInSe2”, J. Phys. Chem. Solids, 66, (2005), 1987.
【46】 T. Wada, and H. Kinoshita, “Preparation of CuIn(S,Se)2 by mechanochemical process”, Thin Solid Films, 480-481, (2005), 92.
【47】 W. Hirpo, S. Dhingra, A. C. Sutorik, M. G. Kanatzidis, “ Synthesis of mixed copper-indium chalcogenolates. Single-source precursors for the photovoltaic materials CuInQ2 (Q = S, Se)”, J. Am. Chem. Soc., 115, (1993), 1597.
【48】 K. K. Banger, J. A. Hollingsworth, J. D. Harris, J. Cowen, W. E. Buhro, and A. F. Hepp, “Ternary single-source precursors for polycrystalline thin-film solar cells”, Appl. Organometal. Chem., 16, (2002), 617.
【49】 S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, and A. F. Hepp, “Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low temperature pyrolysis of molecular single-source precursors”, Chem. Mater., 15, (2003), 3142.
【50】 Y. Jin, C. An, K. Tang, L. Huang, G. Shen, “Hydrothermal synthesis and characterization of CuIn2.0Se3.5 nanocrystallites”, Materials Letters, 57, (2003), 4267.
【51】 B. Li, Y. Xie, J. Huang, Y. Qian, ”Synthesis by a solvothermal route and characterization of CuInSe2 nanowhiskers and nanoparticles”, Adv. Mater., 17, (1999), 1456.
【52】 Y. H. Yang, and Y. T. Chen, “Solvothermal Preparation and Spectroscopic Characterization of Copper Indium Diselenide Nanorods”, J. Phys. Chem. B, 110, (2006), 17370.
【53】 L. Zhang, J. Liang, S. Peng, Y. Shi, J. Chen, “Solvothermal synthesis and optical characterization of chalcopyrite CuInSe2 microspheres”, Mater. Chem. Phys., 106, (2007), 296.
【54】 W. L. Lu, Y. S. Fu, B. H. Tseng, “Preparation and characterization of CuInSe2 nano-particles”, J. Phys. Chem. Solids, 69, (2008), 637.
【55】 C. J. Carmalt, D. E. Morrison, I. P. Parkin,” Solid-state and solution phase metathetical synthesis of copper indium chalcogenides”, J. Mater. Chem., 8, (1998), 2209.
【56】 S. Ahn, K. Kim, Y. G. Chun, K. H. Yoon,” Nucleation and growth of Cu(In,Ga)Se2 nanoparticles in low temperature colloidal process”, Thin Solid Films ,515, (2007) ,4036.
【57】 D. Michael, P. Mingos, and D. R. Baghurst, “Applications of microwave dielectric heating effects to synthetic problems in chemistry”, Chem. Soc. Rev., 20, (1991), 1.
【58】 C. Gabriel, S. Gabriel, E. H. Grant, B. S. J. Halstead, and D. Michael, P. Mingos, “Dielectric parameters relevant to microwave dielectric heating”, Chem. Soc. Rev., 27, (1998), 213.
【59】 C. C. Landry, and A. R. Barron, “Synthesis of polycrystalline chalcopyrite semiconductors by microwave irradiation”, Science 260,(1993),1653.
【60】 H. Grisaru, O. Palchik, and A. Gedanken, “Microwave-assisted polyol synthesis of CuInTe2 and CuInSe2 nanoparticles”, Inorg. Chem., 42, (2003), 7148.
【61】 F. F. Reuss, Mem.Soc.Imperiale Naturalistes de Moscow, 2, (1809) , 327.
【62】 E. W. Williams et al., “The electrophoresis of thin film CdS/Cu2S solar cells”, Solar Cells, 1, (1979/80), 357.
【63】 L. Grinis, S. Dor, A. Ofir, A. Zaban, “Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells”, J. Photochem. Photobio. A: Chem., 198, (2008), 52.
【64】 G. S. Kim, H. K. Seo, V. P. Godble, Y. S. Kim, O. B. Yang, and H. S. Shin, “Electrophoretic deposition of titanate nanotubes form commercial titania nanoparticles: Application to dye-sensitized solar cells”, Electrochem. Commun., 8, (2006), 961.
【65】 C. X. Qiu, and I. Shih, “Investigation of electrodeposited CuInSe2 films”, Can. J. Phys., 65, (1987), 1011.
【66】 I. Shih, S. K. Zhang, and C. X. Qiu, “Preparation of CuInSe2 films by an electrophoretic deposition technique”, Solar Cells, 16, (1986), 283.
【67】 P. C. Pande, S. Bocking , R. W. Miles, M. J. Carter, and R. Hill, “Laser induced recrystallisation of electrophoretically deposited CdTe and CuInSe2 films”, Solid State Phenomena, 55, (1997), 146.
【68】 陳靖允, CuInSe2特性研究及CuGaSe2奈米粉體之合成, 國立中山大學/材料科學研究所碩士論文, (2006).
【69】 H. Matsushita, S. Endo, T. Irie, "Raman-Scattering Properties of I-III-VI2 Group Chalcopyrite Semiconductors", Jpn. J. Appl. Phys., 31, (1992), 18.
【70】 S. Roy, P. Guha, S. N. Kundu, H. Hanzawa, S. Chaudhuri, A. K. Pal, "Characterization of Cu(In,Ga)Se2 films by Raman scattering", Mater. Chem. Phys., 73, (2002), 24.
【71】 F. Chen, M. Liu, “Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrates using an electrophoretic deposition (EPD) process”, J. Eur. Ceram. Soc., 21, (2001), 127.
【72】 T. Polcar, M. Evaristo, M. Stueber, and A. Cavaleiro, “Synthesis and structural properties of Mo-Se-C sputtered coatings”, Surf. Coat. Technol., 202, (2008), 2418.
【73】 M. Valdes, M. A. Frontini, M. Vazquez, and A. Goossens, “Low- cost 3D nanocomposite solar cells obtained by electrodeposition of CuInSe2”, Appl. Surf. Sci., 254, (2007), 303.
【74】 H. Zhong, Y. Li, M. Ye, Z. Zhu, Y. Zhou, C. Yang, and Y. Li, “A facile route to synthesize chalcopyrite CuInSe2 nanocrystals in non-coordinating solvent”, Nanotechnology, 18, (2007), 025602.
【75】 J. Yang, Z. Jin, T. Liu, C. Li, Y. Shi, “An investigation into effect of cationic precursor solutions on formation of CuInSe2 thin films by SILAR method”, Sol. Energy Mater. Sol. Cells, 92, (2008), 621.
【76】 I. M. Dharmadasa, R. P. Burton, and M. Simmonds, “Electrodeposition of CuInSe2 layers using a two-electrode system for applications in multi-layer graded bandgap solar cells”, Sol. Energy Mater. Sol. Cells, 90, (2006), 2191.
【77】 K. Otte, G. Lippold, D. Hirsch, A. Schindler, and F. Bigl, ”XPS and raman investigations of nitrogen ion etching for depth profiling of CuInSe2 and CuGaSe2”, Thin Solid Films, 361-362, (2000), 498.
【78】 J. Llanos, A. Buljan, C. Mujica, and R. Ramirez, “Electron transfer and electronic structure of KCuFeS2”, J. Alloys Compd., 234, (1996), 40.
【79】 L. D. Partain, R. A. Schneider, L. F. Donaghey, and P. S. McLeod, “Surface chemistry of CuxS and CuxS-CdS determined from x-ray photoelectron spectroscopy”, J. Appl. Phys., 57, (1985), 5056.
【80】 A. W. C. Lin, N. R. Armstrong, and T. Kuwana, “X-ray Photoelectron/Auger Electron Spectroscopic Studies of Tin and Indium Metal Foils and Oxides”, Anal. Chem., 49, (1977), 1228.
【81】 B. Gates, B. Mayers, B. Cattle, and Y. Xia, “Synthesis and Characterization of Uniform Nanowires of Trigonal Selenium”, Adv. Funct. Mater., 12, (2002), 219.
【82】 B. T. Mayers, K. Liu, D. Sunderland, and Y. Xia, “Sonochemical Synthesis of Trigonal Selenium Nanowires”, Chem. Mater., 15, (2003), 3852.
【83】 X. Li, Y. Li, S. Li, W. Zhou, H. Chu, W. Chen, I. L. Li and Z. Tang, “Single crystalline trigonal selenium nanotubes and nanowires synthesized by sonochemical process”, Cryst. Growth Des., 5, (2005), 911.
【84】 H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, “Selenium nanotubes synthesized by a novel solution phase approach”, J. Phys. Chem. B, 108, (2004), 1179.
【85】 M. Chen, L. Gao, “Selenium nanotube synthesized via a facile template-free hydrothermal method”, Chem. Phys. Lett., 417, (2006), 132.
【86】 B. Mayers, B. Gates, and Y. Xia, “One-dimensional nanostructures of chalcogens and chalcogenides”, Int. J. of Nanotechnology, 1, (2004), 86.
【87】 G. Xi, K. Xiong, Q. Zhao, R. Zhangm, H. Zhang, and Y. Qian, “Nucleation-Dissolution-Recrystallization: A New Growth Mechanism for t-Selenium Nanotubes”, Cryst. Growth Des., 6, (2006), 577.
【88】 B. Gates, B. Mayers, A. Grossman, and Y. Xia, “A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports”, Adv. Mater., 14, (2002), 1749.
【89】 B. Gates, Y. Yin, and Y. Xia, “A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm”, J. Am. Chem. Soc., 122, (2000), 12582.
【90】 B. Paterson and W. T. A. Harrison, “Synthesis and crystal structure of In(OH)(SeO3)”, Z. Anorg. Allg. Chem., 633, (2007), 158.
【91】 R. N. Bhattacharya, R. Noufi, and L. Wang, “Production of films and powders for semiconductor device applications”, United States Patent 5731031, (1998).
【92】 H. M. Pathan, C. D. Lokhande, D. P. Amalnerkar, and T. Seth, ”Modified chemical deposition and physico-chemical properties of copper(I) selenide thin films”, Appl. Surf. Sci., 211, (2003), 48.
【93】 H. M. Pathan, S. S. Kulkarni, R. S. Mane, and C. D. Lokhande, ”Preparation and characterization of indium selenide thin films from a chemical route”, Mater. Chem. Phys., 93, (2005), 16.
【94】 C. Eberspacher, and K. L. Pauls, “Method for forming solar cell materials from particulars”, United States Patent 6268014 B1, (2001).

無法下載圖示 全文公開日期 2013/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE