簡易檢索 / 詳目顯示

研究生: 賴盟依
Meng-Yi Lai
論文名稱: 以銅鋅錫硫作為對電極於染料敏化太陽能電池之研究
The study of using Cu2ZnSnS4 structure as counter electrode for Dye-Sensitized Solar Cells
指導教授: 戴龑
Yian Tai
口試委員: 楊重光
Chung-Kuang Yang
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 119
中文關鍵詞: 銅鋅錫硫溶劑熱法光觸媒染料敏化太陽能電池
外文關鍵詞: CZTS, Solvothermal approach, Photocatalyst, Dye-sensitized solar Cells
相關次數: 點閱:296下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用銅鋅錫硫四元半導體材料取代一般常用之白金對電極應用於染料敏化太陽能電池之 中,討論將該材料製備成太陽能電池元件後其元件效率,進而提出使用單面照光以及雙面照光進行元件數據分析,了解該半導體材料於此系統中所觸動之機制。並探討元件以銅鋅錫硫四元半導體材料取代後,其結構、品質與特性等對於不同電解液濃度之各種表現。
最後發現該半導體材料應用於染料敏化太陽能電池可貢獻其光觸媒光催化之特性,大幅影響其光電流,表現增幅達24.75%,接著也證明了該元件的穩定性是可靠的,因此該材料確實為可取代成本高之昂貴白金,成為良好對電極材料。


In this work, we have synthesized Cu2ZnSnS4 (CZTS) nanocrystal by solvothermal method and it is used as a counter electrode in the place the Platinum in dye-sensitized solar cells (DSSCs). CZTS is one of the promising materials to replace the platinum due to the earth abundant, low cost and non-toxic material. The synthesized CZTS nanocrystals were characterized by XRD, Raman, XPS, UV-vis spectra, FE-SEM and TEM. The obtained results were compared with reported results and listed out the advantages of our results. In addition, it’s confirmed that CZTS nanocrystals could be acted as photocatalyst in DSSCs.
In this work, we have used both single-side and double-side illumination to measure the performance of DSSC devices. The result of short-circuit current density for double-side was increased about 24.75% when compared to the single-side illumination. Also we studied the different concentration of electrolyte that contain I- and I3- to find out the photocatalytic activity of CZTS nanocrystal. Finally, we have standardized the concentration of electrolyte which can provide the highest short-circuit current density and also proved the stability of CZTS nanocrystal as counter electrode in DSSCs.

第一章 緒論 1 1-1前言 1 1-2 無機太陽能電池 4 1-3有機太陽能電池 . 8 第二章. 相關理論與文獻回顧 10 2-1. 太陽能電池相關係數 10 2-1-1. 太陽能電池參數 11 2-1-2 太陽能電池之等效電路圖 13 2-1-3 太陽光光譜分析 15 2-2 染料敏化太陽能電池介紹 17 2-2-1 染料敏化太陽能電池工作原理與轉換效率 17 2-2-2.染料敏化太陽能電池中電子電洞對分離 18 2-2-3 染料敏化太陽能電池中對應電極材料介紹20 2-3 銅鋅錫硫半導體材料介紹 26 2-4 光觸媒36 第三章 實驗方法與步驟 40 3-1. 實驗材料及藥品40 3-2. 實驗器材及儀器42 3-3. 銅鋅錫硫四元化合物製備44 3-4. 染料敏化太陽能電池元件製備與組裝 46 3-5. 樣品分析及量測48 第四章 實驗結果與討論 60 4-1. 銅鋅錫硫四元化合物薄膜特性之分析60 4-1-1. 場發式掃描式電子顯微鏡分析銅鋅錫硫表面型態結構60 4-1-2. 穿透式電子顯微鏡之選區繞射分析銅鋅錫硫 63 4-1-3. 溶劑熱法合成銅鋅錫硫之X-ray繞射分析 63 4-1-4. 拉曼震動光譜儀分析溶劑熱法合成之銅鋅錫硫 64 4-1-5. 紫外-可見光光譜儀65 4-1-6. 電子能譜儀對溶劑熱法合成之銅鋅錫硫特性分析65 4-2. 以銅鋅錫硫作為對電極應用於染料敏化太陽能元件之光電分析67 4-2-1. 太陽能電池之元件光伏數據表現67 4-2-2. 入射單色光子-電子轉化效率對於不同對電極元件之特性分析 71 4-2-3. 銅鋅錫硫對電極材料之穩定度分析72 4-3. 對電極對於電解液之催化活性73 4-3-1. 太陽能電池元件之光伏數據表現 75 4-3-2. 不同濃度元件之入射單色光子-電子轉化效率之分析87 4-3-3. 元件之X射線電子能譜分析 88 4-3-4. 以電化學阻抗分析不同濃度之元件91 第五章. 結論與未來展望 95 參考文獻96

1.global fossil fuel production and forecast
2. USEIAdministration, International Energy Outlook.U.S. Department of Energy, Washington, DC, 2013
3. Valerie C. Coffey. Better Materials Mean Better Solar Cells. (2013)
4. Gordon B. Haxel, Sara Boore, and Susan Mayfield from USGS. Rare Earth Elements—Critical Resources for High Technology. (2002).
5. Solar Cell Operating Characteristics. solar power technology and economics
6. Organic Solar Cell Architectures.
7. Choi, H., Kim, H., Hwang, S., Choi, W. & Jeon, M. Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode.Sol. Energy Mater. Sol. Cells ,95, 323–325 (2011).
8. Wu, Y. & Zhu, W. Organic sensitizers from D–π–A to D–A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem. Soc. Rev. 42, 2039–2058 (2013).
9. Cahen, D., Hodes, G., Grätzel, M., Guillemoles, J. F. & Riess, I. Nature of Photovoltaic Action in Dye-Sensitized Solar Cells. J. Phys. Chem. B 104, 2053–2059 (2000).
10. Wei, T.-C., Wan, C.-C., Wang, Y.-Y., Chen, C. & Shiu, H. Immobilization of Poly(N-vinyl-2-pyrrolidone)-Capped Platinum Nanoclusters on Indium−Tin Oxide Glass and Its Application in Dye-Sensitized Solar Cells. J. Phys. Chem. C 111,4847–4853 (2007).
11. Hauch, A. & Georg, A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta 46, 3457–3466 (2001). 97
12. Roy-Mayhew, J. D., Bozym, D. J., Punckt, C. & Aksay, I. A. Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. ACS Nano 4, 6203–6211 (2010).
13. Wang, H. & Hu, Y. H. Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ. Sci. 5, 8182–8188 (2012).
14. Zhang, D. W. et al. Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49, 5382–5388 (2011).
15. Wang, G., Zhuo, S. & Xing, W. Graphene/polyaniline nanocomposite as counter electrode of dye-sensitized solar cells. Mater. Lett. 69, 27–29 (2012).
16. Lee, K. S., Lee, Y., Lee, J. Y., Ahn, J.-H. & Park, J. H. Flexible and Platinum-Free Dye-Sensitized Solar Cells with Conducting-Polymer-Coated Graphene Counter Electrodes. ChemSusChem 5, 379–382 (2012).
17. Hong, W., Xu, Y., Lu, G., Li, C. & Shi, G. Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 10, 1555–1558 (2008).
18. Wu, M. et al. Economical Pt-Free Catalysts for Counter Electrodes of Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 134, 3419–3428 (2012).
19. Wang, H. et al. In situ growth of oriented polyaniline nanowires array for efficient cathode of Co(III)/Co(II) mediated dye-sensitized solar cell. J. Mater. Chem. A 1,97–104 (2012).
20. Guo, F. et al. Facile preparation of nanofibrous polyaniline thin film as counter electrodes for dye sensitized solar cells. J. Renew. Sustain. Energy 4, 023109 (2012).
21. Park, S. H. et al. The application of camphorsulfonic acid doped polyaniline films prepared on TCO-free glass for counter electrode of bifacial dye-sensitized solar cells. J. Photochem. Photobiol. Chem. 245, 1–8 (2012).
22. Huang, K.-C. et al. A counter electrode based on hollow spherical particles of 98
polyaniline for a dye-sensitized solar cell. J. Mater. Chem. 22, 14727 (2012).23. Bu, C., Tai, Q., Liu, Y., Guo, S. & Zhao, X. A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell. J. Power Sources 221, 78–83 (2013).
24. Jeon, S. S., Kim, C., Ko, J. & Im, S. S. Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells. J. Mater. Chem. 21,8146–8151 (2011).
25. Luo, J. et al. Enhancement of the efficiency of dye-sensitized solar cell with multiwall carbon nanotubes/polythiophene composite counter electrodes prepared by electrodeposition. Solid State Sci. 14, 145–149 (2012).
26. Balis, N., Makris, T., Dracopoulos, V., Stergiopoulos, T. & Lianos, P. Quasi-SolidState Dye-Sensitized Solar Cells made with poly(3,4-ethylenedioxythiophene)-functionalized counter-electrodes. J. Power Sources 203, 302–307 (2012).
27. Hou, S. et al. Flexible, metal-free composite counter electrodes for efficient fibershaped dye-sensitized solar cells. J. Power Sources 215, 164–169 (2012).
28. Ahmad, S. et al. Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids. J. Mater. Chem. 20, 1654–1658 (2010).
29. Kung, C.-W., Cheng, Y.-H., Chen, H.-W., Vittal, R. & Ho, K.-C. Hollow microflower arrays of PEDOT and their application for the counter electrode of a dye-sensitized solar cell. J. Mater. Chem. A 1, 10693 (2013).
30. Kim, J.-Y., Lee, K. J., Kang, S. H., Shin, J. & Sung, Y.-E. Enhanced Photovoltaic Properties of a Cobalt Bipyridyl Redox Electrolyte in Dye-Sensitized Solar Cells Employing Vertically Aligned TiO2 Nanotube Electrodes. J. Phys. Chem. C 115, 19979–19985 (2011).
31. Lee, K.-M. et al. Highly porous PProDOT-Et2 film as counter electrode for plastic dye-sensitized solar cells. Phys. Chem. Chem. Phys. 11, 3375–3379 (2009). 99
32. Xu, M. et al. Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic–organic hybrids. Sens. Actuators B Chem. 146, 8–13 (2010).
33. Muto, T., Ikegami, M. & Miyasaka, T. Polythiophene-Based Mesoporous Counter Electrodes for Plastic Dye-Sensitized Solar Cells. J. Electrochem. Soc. 157, B1195–B1200 (2010).
34. Chang, J. & Waclawik, E. R. Colloidal semiconductor nanocrystals: controlled synthesis and surface chemistry in organic media. RSC Adv. 4, 23505–23527 (2014).
35. Chen, S. et al. Erratum: Wurtzite-derived polytypes of kesterite and stannite
quaternary chalcogenide semiconductors [Phys. Rev. B \textbf{82} , 195203 (2010)]. Phys. Rev. B 83, 159904 (2011).
36. Song, X. et al. A Review on Development Prospect of CZTS Based Thin Film Solar
Cells. Int. J. Photoenergy 2014, e613173 (2014).
37. Walsh, A., Chen, S., Wei, S.-H. & Gong, X.-G. Kesterite Thin-Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4. Adv. Energy Mater. 2, 400–409 (2012).
38. Chen, S., Walsh, A., Gong, X.-G. & Wei, S.-H. Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers. Adv. Mater. 25, 1522–1539 (2013).
39. Sun, Y. et al. Novel non-hydrazine solution processing of earth-abundant Cu2ZnSn(S,Se)4 absorbers for thin-film solar cells. J. Mater. Chem. A 1, 6880–6887 (2013).
40. In-situ formed ternary-based hybrid ink for the fabrication of Cu 2ZnSn(S,Se)4 solar cell absorbers.
41. Dudchak, I. V. & Piskach, L. V. Phase equilibria in the Cu2SnSe3–SnSe2–ZnSe system. J. Alloys Compd. 351, 145–150 (2003).
42. Olekseyuk, I. D., Dudchak, I. V. & Piskach, L. V. Phase equilibria in the Cu2S–100
ZnS–SnS2 system. J. Alloys Compd. 368, 135–143 (2004).
43. Fernandes, P. A., Salomé, P. M. P., da Cunha, A. F. & Schubert, B.-A. Cu2ZnSnS4 solar cells prepared with sulphurized dc-sputtered stacked metallic precursors. Thin Solid Films 519, 7382–7385 (2011).
44. Katagiri, H. et al. Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique. Appl. Phys. Express 1,041201 (2008).
45. Liu, F. et al. In situ growth of Cu2ZnSnS4 thin films by reactive magnetron cosputtering. Sol. Energy Mater. Sol. Cells 94, 2431–2434 (2010).
46. Kohno, H., Yagi, K. & Niioka, H. Graphene/Graphite-Coated SiC Nanowires Grown by Metal–Organic Chemical Vapor Deposition in One Step. Jpn. J. Appl. Phys. 50, 018001 (2011).
47. Tanaka, T. et al. Preparation of Cu2ZnSnS4 thin films by hybrid sputtering. J. Phys. Chem. Solids 66, 1978–1981 (2005).
48. Wang, Y. & Gong, H. Low Temperature Synthesized Quaternary Chalcogenide Cu2ZnSnS4 from Nano-Crystallite Binary Sulfides. J. Electrochem. Soc. 158, H800–H803 (2011).
49. Thermodynamics and Kinetics of Adsorption of Diclofenac on Magnetic Multiwalled Carbon Nanotubes in an Aqueous Solution.
50. Araki, H. et al. Preparation of Cu2ZnSnS4 thin films by sulfurization of stacked metallic layers. Thin Solid Films 517, 1457–1460 (2008).
51. Katagiri, H. et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E B evaporated precursors. Sol. Energy Mater. Sol. Cells 49, 07–414 (1997).
52. Schubert, B.-A. et al. Cu2ZnSnS4 thin film solar cells by fast coevaporation. Prog. Photovolt. Res. Appl. 19, 93–96 (2011). 101
53. Shin, B. et al. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovolt. Res. Appl. 21, 72–76 (2013).
54. Kim, H. et al. Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices. Thin Solid Films 377–378, 798–802 (2000).
55. Moriya, K., Tanaka, K. & Uchiki, H. Fabrication of Cu2ZnSnS4 Thin-Film Solar Cell Prepared by Pulsed Laser Deposition. Jpn. J. Appl. Phys. 46, 5780 (2007).
56. Moriya, K., Tanaka, K. & Uchiki, H. Cu2ZnSnS4 Thin Films Annealed in H2S
Atmosphere for Solar Cell Absorber Prepared by Pulsed Laser Deposition. Jpn. J.
Appl. Phys. 47, 602 (2008).
57. Sun, L. et al. Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by Pulsed Laser Deposition method. Sol. Energy Mater. Sol. Cells 95, 2907–2913 (2011).
58. Ramasamy, K., Malik, M. A. & O’Brien, P. The chemical vapor deposition of Cu2ZnSnS4 thin films. Chem. Sci. 2, 1170 (2011).
59. Washio, T. et al. 6% Efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD. J. Mater. Chem. 22, 4021–4024 (2012).
60. Byrappa, K. & Yoshimura, M. in \iHandbook of Hydrothermal Technology (ed. Yoshimura, K. B.) 161–197 (William Andrew Publishing, 2001).
61. Hoffman, J. D., Davis, G. T. & Jr, J. I. L. in \iTreatise on Solid State Chemistry (ed. Hannay, N. B.) 497–614 (Springer US, 1976).
62. Lothe, J. & Pound, G. M. Reconsiderations of Nucleation Theory. J. Chem. Phys.36, 2080–2085 (1962).
63. Zhong, R., Cong, H. & Hou, P. Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes. Carbon 41, 848–851 (2003).
64. Du, Y.-F. et al. Solvothermal synthesis and characterization of quaternary 102 Cu2ZnSnSe4 particles. Mater. Sci. Semicond. Process. 15, 214–217 (2012).
65. Yan, Z., Wei, A., Zhao, Y., Liu, J. & Chen, X. Growth of Cu2ZnSnS4 thin films on transparent conducting glass substrates by the solvothermal method. Mater. Lett.111, 120–122 (2013).
66. Zhou, Y.-L., Zhou, W.-H., Du, Y.-F., Li, M. & Wu, S.-X. Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method. Mater. Lett.65, 1535–1537 (2011).
67. Xu, F. & Sun, L. Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells. Energy Environ. Sci. 4, 818–841 (2011).
68. Byrappa, K. & Yoshimura, M. in \iHandbook of Hydrothermal Technology (ed.Yoshimura, K. B.) 1–52 (William Andrew Publishing, 2001).
69. Theory of X-Ray Photoelectron Spectroscopy
70. D2 PHASER 2nd Gen Flyer
71. 5.4 Ultraviolet (UV) Spectroscopy. \ichemwiki.ucdavis.edu /Chapter_5._Spectroscopy/5.4_Ultraviolet_(UV)_Spectroscopy>72. Han, L., Koide, N., Chiba, Y. & Mitate, T. Modeling of an equivalent circuit for dye-sensitized solar cells. Appl. Phys. Lett. 84, 2433–2435 (2004).
73. Dai, P. et al. Porous copper zinc tin sulfide thin film as photocathode for double
junction photoelectrochemical solar cells. Chem. Commun. 48, 3006 (2012)

QR CODE