簡易檢索 / 詳目顯示

研究生: 黎美蓮
Livy Laysandra
論文名稱: 彈性且自修復嵌段共聚物{(丙烯酸正丁酯)-co-[N-(羥甲基)丙烯醯胺]}之合成設計
Synthesis of Elastic and Self-Healing Copolymer Poly{(n-butyl acrylate)-co-[N-(hydroxymethyl)acrylamide]}
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 江偉宏
Wei-Hung Chiang
賴育英
Yu-Ying Lai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 121
中文關鍵詞: 丙烯酸正丁酯N-(羥甲基)丙烯酰胺自修復彈性體自交聯劑NGQDpH傳感
外文關鍵詞: n-butyl acrylate, N-(hydroxymethyl)acrylamide, self-healing, elastomer, self-crosslinker, NGQDs, pH sensing
相關次數: 點閱:293下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

1. 彈性且自修復嵌段共聚物{(丙烯酸正丁酯)- 共-[N-(羥甲基)丙烯醯胺]}之合成設(第1章:自修復和彈性材料是許多機械應用中的主要考慮因素之一例如可穿戴電子設備,其中與疲勞相關的變化和小裂縫是持續的威脅,可能導致結構性機器故障。在這裡,我們提出了一種簡單的策略來合成通過易自由基聚合法製備的聚丙烯酸正丁酯-共聚[N-(羥甲基)丙烯酰胺](PBAx-co-PNMAy)的透明橡膠狀共聚物。設計的共聚物基於聚丙烯酸正丁酯(PBA)作為柔軟和疏水的鏈段,並結合聚(N-(羥甲基)丙烯酰胺,PNMA)作為自交聯劑,由於存在羥基和羥基而具有自愈功能。胺基。通過控制單體比例和改變自交聯反應條件,已經獲得了一系列具有各種機械性能的共聚物。塊狀固態PBA0.8-co-PNMA0.2在沒有任何干預的情況下,在環境條件下的可拉伸性達到191%,最大應力為571kPa,自我修復效率達到90%。由於PBA在共聚物體系中具有疏水性,因此即使在水下也可以引發自我修復。此外,可以製造具有相同的自愈和機械性能的微米級薄膜,並使用偽自由式拉伸試驗機檢查薄膜形式共聚物的行為。這項工作提供了對具有彈性,自交聯和自愈特性的材料的未來設計的見解,這些特性可以根據所需的應用進行調整。

2. 嵌入人體健康監測中的透明,彈性和自愈共聚物基體中的發光NGQD在人類汗液pH檢測中的應用(第2章):能夠自發自我修復的發光納米複合薄膜的設計和開發正迅速發展,因為它們在需要柔性和長壽命的基於皮膚的可穿戴醫療保健應用中具有巨大潛力。除其他外,從人類汗液中檢測pH值已成為一種監視人類健康狀況的簡便方法。在這裡,製備摻入由聚{(丙烯酸正丁酯)-共-[N-(羥甲基)丙烯酰胺]}(PBA0.8-co-PNMA0.2 組成的透明共聚物中的摻氮石墨烯量子點(NGQD)的製備)被報告。由於存在富氧和富胺官能團,NGQD提供了雙重功能,即發光源和納米交聯劑。就這一點而言,由於大量的相互作用位點,可以在PBA0.8-co-PNMA0.2 和NGQD之間形成物理和化學相互作用,從而提高了穩定性和在紫外光下的強發射性,高機械強度,優異的性能。在室溫下具有良好的彈性性能的自修復性能。破裂的納米複合膜在水下24小時後可達到非常高的癒合效率,最高可達100%。重要的是,可以用比光潔的NGQD(pH 3-10)高14.64倍的靈敏度,從製成的納米複合膜中建立基於比率的基於光致發光的pH傳感器,從而能夠以良好的準確性和可重複使用多次來檢測實際人類汗液中的pH。


1. Synthesis of Elastic and Self-Healing Copolymer Poly{(n-butyl acrylate)-co-[N-(hydroxymethyl)acrylamide]} (Chapter 1): Self-healing and elastic materials are one of the main considerations in many mechanical applications such as wearable electronic devices, where fatigue-related changes and small cracks are constant threats that can cause structural machine failure. Here, we propose a simple strategy to synthesize a transparent-rubber-like copolymer of poly(n-butyl acrylate)-co-poly[N-(hydroxymethyl)acrylamide] (PBAx-co-PNMAy) prepared by easy radical polymerization method. The designed copolymer is based on poly(n-butyl acrylate, PBA) as soft and hydrophobic segments, combined with poly(N-(hydroxymethyl)acrylamide, PNMA) as self-crosslinker and self-healing function due to the existence of hydroxyl and amine groups. By controlling the monomer ratios and varying the self-crosslinking reaction condition, a series of copolymers with various mechanical properties have been obtained. PBA0.8-co-PNMA0.2 in bulk solid state form shows the stretchability reaching 191 %, the maximum stress of 571 kPa, and the self-healing efficiency reaching 90 % in ambient conditions without any intervention. Owing to the hydrophobic nature of PBA in the copolymer system, self-healing can be triggered even underwater. Furthermore, a micro-scale film bestowed with identical self-healing and mechanical properties can be fabricated and the behavior of copolymer in thin-film form was inspected using Pseudo free-standing tensile tester machine. This work provides insight into the future design of material with elastic, self- crosslinking, and self-healing properties which are adjustable depending on the desired applications.

2. Luminescent NGQDs Embedded in Transparent, Elastic, and Self-Healable Copolymer Matrix in Personal Health Monitoring Application for pH Detection in Human’s Sweat (Chapter 2): Design and development of luminescent nanocomposite film capable of self-healing spontaneously are being developed rapidly because of their great potential in skin-based wearable healthcare applications which require flexibility and long usage lifetime. Among others, pH detection from human sweat emerges as a simple and facile way to monitor the health status of human being. Here, the preparation of nitrogen-doped graphene quantum dots (NGQDs) blended into transparent copolymer consisting of poly{(n-butyl acrylate)-co-[N-(hydroxymethyl)acrylamide]} (PBA0.8-co-PNMA0.2) is reported. With the presence of oxygen- and amine-rich functional groups, the NGQDs provide dual-functions as the luminescence source and nano-crosslinker. In this regard, physical and chemical interactions can be formed between PBA0.8-co-PNMA0.2 and NGQDs due to abundant interactive sites, and consequently give result to the improvement of stability and strong emission under UV light, high mechanical strength, excellent self-healing property with good elastic behavior at room temperature. The fractured nanocomposite film can achieve very high healing efficiency up to 100% after 24 h underwater. Importantly, a ratiometric photoluminescence based pH sensor can be established from the fabricated nanocomposite film with 14.64 times more sensitive than the pristine NGQDs (pH 3-10), thus enabling pH detection in real human sweat with good accuracy and repeatable usage for several times.

Contents Abstract 2 Acknowledgement 5 Contents 7 List of Figures 10 List of Tables 16 Chapter 1. Synthesis of Elastic and Self-Healing Copolymer Poly{(n-butyl acrylate)-co-[N-(hydroxymethyl)acrylamide]} 17 1-1. Introduction 17 1-2. Literature Review 20 1-2-1. Extrinsic self-healing mechanism 20 1-2-2. Intrinsic self-healing mechanism 23 1-3. Experimental Section 28 1-3-1. Chemicals 28 1-3-2. Synthesis PBAx-co-PNMAy 28 1-3-3. Characterizations 30 1-3-4. Self-healing test 31 1-3-5. Hysteresis test 32 1-3-6. Swelling test 32 1-4. Results and Discussion 34 1-4-1. Synthesis and characterization of the copolymer 34 1-4-2. Crosslinkable copolymer studies 36 1-4-3. Mechanical properties of copolymer in bulk solid state form 41 1-4-4. Self-healing copolymer studies in bulk solid state form 44 1-4-5. Hysteresis and elastic copolymer behavior studies in bulk solid state form 52 1-4-6. Mechanical properties of copolymer in micro-scale thin film form 54 1-5. Conclusions 58 Chapter 2. Luminescent NGQDs Embedded in Transparent, Elastic, and Self-Healable Copolymer Matrix in Personal Health Monitoring Application for pH Detection in Human’s Sweat 59 2-1. Introduction 59 2-2. Literature review 64 2-2-1. Photoluminescence Properties 64 2-2-2. pH Effect 65 2-3. Experimental section 67 2-3-1. Chemicals 67 2-3-2. Synthesis Procedures 67 2-3-2-1. Synthesis of PBA0.8-co-PNMA0.2 67 2-3-2-2. Synthesis of NGQDs 68 2-3-2-3. The preparation of NGQDs/PBA0.8-co-PNMA0.2 film 69 2-3-3. Characterization 69 2-3-4. Mechanical and Self-healing test 70 2-3-5. pH sensing experiment 70 2-4. Results and Discussion 72 2-4-1. Characterization PBA0.8-co-PNMA0.2 72 2-4-2. Characterization NGQDs 73 2-4-3. Characterization NGQDs/PBA0.8-co-PNMA0.2 Nanocomposite Film 76 2-4-4. The Mechanical, Self-recoverability, and Self-healing properties 81 2-4-5. pH sensing studies 92 2-5. Conclusions 102 References 103

(1) Peng, Y.; Yang, Y.; Wu, Q.; Wang, S.; Huang, G.; Wu, J. Strong and Tough Self-Healing Elastomers Enabled by Dual Reversible Networks Formed by Ionic Interactions and Dynamic Covalent Bonds. Polymer. 2018, 157, 172–179.
(2) Li, L.; Li, Y.; Cao, L.; Yang, C. Enhanced Chromium (VI) Adsorption Using Nanosized Chitosan Fibers Tailored by Electrospinning. Carbohydr. Polym. 2015, 125, 206–213.
(3) Imato, K.; Takahara, A.; Otsuka, H. Self-Healing of a Cross-Linked Polymer with Dynamic Covalent Linkages at Mild Temperature and Evaluation at Macroscopic and Molecular Levels. Macromolecules 2015, 48, 5632–5639.
(4) Stukalin, E. B.; Cai, L. H.; Kumar, N. A.; Leibler, L.; Rubinstein, M. Self-Healing of Unentangled Polymer Networks with Reversible Bonds. Macromolecules 2013, 46 (18), 7525–7541.
(5) Esmaeely Neisiany, R.; Lee, J. K. Y.; Nouri Khorasani, S.; Bagheri, R.; Ramakrishna, S. Facile Strategy toward Fabrication of Highly Responsive Self-Healing Carbon/Epoxy Composites via Incorporation of Healing Agents Encapsulated in Poly(Methyl Methacrylate) Nanofiber Shell. J. Ind. Eng. Chem. 2018, 59, 456–466.
(6) Ahangaran, F.; Hayaty, M.; Navarchian, A. H.; Pei, Y. Development of Self-Healing Epoxy Composites via Incorporation of Microencapsulated Epoxy and Mercaptan in Poly (Methyl Methacrylate) Shell. Polym. Test. 2019, 73, 395–403.
(7) Scheltjens, G.; Diaz, M. M.; Brancart, J.; Assche, G. Van; Mele, B. Van. A Self-Healing Polymer Network Based on Reversible Covalent Bonding. React. Funct. Polym. 2013, 73 (2), 413–420.
(8) Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Mechanically Robust, Self-Healable, and Highly Stretchable “Living” Crosslinked Polyurethane Based on a Reversible C-C Bond. Adv. Funct. Mater. 2018, 28, 1706050.
(9) Formoso, E.; Asua, J. M.; Matxain, J. M.; Ruipe´rez, F. The Role of Non-Covalent Interactions in the Self-Healing Mechanism of Disulfide-Based Polymers. Phys.Chem.Chem.Phys 2017, 19, 18461–18470.
(10) Yang, Y.; Urban, M. W. Self-Healing Polymeric Materials. R. Soc. Chem. 2013, 42, 7446.
(11) Du, P.; Liu, X.; Zheng, Z.; Wang, X.; Joncheray, T.; Zhang, Y. Synthesis and Characterization of Linear Self-Healing Polyurethane Based on Thermally Reversible Diels–Alder Reaction. RSC Adv. 2013, 3, 15475–15482.
(12) Kuang, X.; Liu, G.; Dong, X.; Liu, X.; Xu, J.; Wang, D. Facile Fabrication of Fast Recyclable and Multiple Self‐healing Epoxy Materials through Diels‐alder Adduct Cross‐linker. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 2094–2103.
(13) Kim, S.-M.; Jeon, H.; Shin, S.-H.; Park, S.-A.; Jegal, J.; Hwang, S. Y.; Oh, D. X.; Park, J. Superior Toughness and Fast Self‐Healing at Room Temperature Engineered by Transparent Elastomers. Adv. Mater. 2018, 30, 1705145.
(14) Ying, H.; Zhang, Y.; Cheng, J. Dynamic Urea Bond for the Design of Reversible and Self-Healing Polymers. Nat. Commun. 2014, 5, 3218.
(15) Liu, J.; Soo, C.; Tan, Y.; Yu, Z.; Lan, Y.; Abell, C.; Scherman, O. A. Biomimetic Supramolecular Polymer Networks Exhibiting Both Toughness and Self-Recovery. Adv. Mater. 2017, 29, 1604951.
(16) Lin, Y.; Li, G. An Intermolecular Quadruple Hydrogen-Bonding Strategy to Fabricate Self-Healing and Highly Deformable Polyurethane Hydrogels. J. Mater. Chem. B 2014, 2, 6878–6885.
(17) Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. Bin; Akasaki, T.; Sato, K.; Haque, A.; Nakajima, T.; Gong, J. P. Physical Hydrogels Composed of Polyampholytes Demonstrate High Toughness and Viscoelasticity. Nat. Mater. 2013, 12, 932–937.
(18) Song, Y.; Liu, Y.; Qi, T.; Li, G. L. Towards Dynamic but Supertough Healable Polymers through Biomimetic Hierarchical Hydrogen-Bonding Interactions. Angewandte Chemie - International Edition. 2018, pp 13838–13842.
(19) Wang, Y.; Jiang, D.; Zhang, L.; Li, B.; Sun, C.; Yan, H.; Wu, Z.; Liu, H.; Zhang, J.; Fan, J.; et al. Hydrogen Bonding Derived Self-Healing Polymer Composites Reinforced with Amidation Carbon Fibers. Nanotechnology 2020, 31, 025704.
(20) Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Noncovalent Synthesis Using Hydrogen Bonding Leonard. Angew. Chemie Int. Ed. 2001, 40, 2382–2426.
(21) West, A. Intermolecular Forces and Solvation. In Interface Science and Technology; 2017.
(22) Kang, J.; Son, D.; Wang, G. J. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y.; et al. Tough and Water-Insensitive Self-Healing Elastomer for Robust Electronic Skin. Adv. Mater. 2018, 30, 1706846.
(23) Dutta, A.; Maity, S.; Das, R. K. A Highly Stretchable, Tough, Self-Healing, and Thermoprocessable Polyacrylamide–Chitosan Supramolecular Hydrogel. Macromolecular Materials and Engineering. 2018, p 1800322.
(24) Ahn, B. K.; Lee, D. W.; Israelachvili, J. N.; Waite, J. H. Surface-Initiated Self-Healing of Polymers in Aqueous Media. Nat. Mater. 2014, 13, 867–872.
(25) Xia, N. N.; Rong, M. Z.; Zhang, M. Q. Stabilization of Catechol-Boronic Ester Bonds for Underwater Self-Healing and Recycling of Lipophilic Bulk Polymer in Wider PH Range. J. Mater. Chem. A 2016, 4, 14122–14131.
(26) Deng, C. C.; Brooks, W. L. A.; Abboud, K. A.; Sumerlin, B. S. Boronic Acid-Based Hydrogels Undergo Self-Healing at Neutral and Acidic PH. ACS Macro Lett. 2015, 4, 220–224.
(27) Yamamoto, S.; Uchiyama, S.; Miyashita, T.; Mitsuishi, M. Multimodal Underwater Adsorption of Oxide Nanoparticles on Catechol-Based Polymer Nanosheets. Nanoscale 2016, 8, 5912–5919.
(28) Kim, C.; Ejima, H.; Yoshie, N. Non-Swellable Self-Healing Polymer with Long-Term Stability under Seawater. RSC Adv. 2017, 7, 19288–19295.
(29) Mansfeld, U.; Pietsch, C.; Hoogenboom, R.; Becer, C. R.; Schubert, U. S. Clickable Initiators, Monomers and Polymers in Controlled Radical Polymerizations – a Prospective Combination in Polymer Science. Polym. Chem. 2010, 1, 1560–1598.
(30) Wang, J. T.; Chiu, Y. C.; Sun, H. S.; Yoshida, K.; Chen, Y.; Satoh, T.; Kakuchi, T.; Chen, W. C. Synthesis of Multifunctional Poly(1-Pyrenemethyl Methacrylate)-b-Poly(N-Isopropylacrylamide)-b-Poly(N-Methylolacrylamide)s and Their Electrospun Nanofibers for Metal Ion Sensory Applications. Polym. Chem. 2015, 6 (12), 2327–2336.
(31) White, S. R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brow, E. N.; Viswanathan, S. Autonomic Healing of Polymer Composites. Nature 2001, 409, 1804–1807.
(32) Guadagno, L.; Raimondo, M.; Naddeo, C.; Longo, P.; Mariconda, A.; Ponte, V.; Melillo, D.; Industriale, I. Self-Healing Materials for Structural Applications. Polym. Eng. Sci. 2014, 54, 777–784.
(33) Raimondo, M.; Guadagno, L. Healing Efficiency of Epoxy‐based Materials for Structural Applications. AIP Conf. Proc 2012, 1459, 223–225.
(34) Bekas, D. G.; Tsirka, K.; Baltzis, D.; Paipetis, A. S. Self-Healing Materials : A Review of Advances in Materials , Evaluation , Characterization and Monitoring Techniques. Compos. Part B 2016, 87, 92–119.
(35) Trask, R. S.; Williams, G. J.; Bond, I. P. Bioinspired Self-Healing of Advanced Composite Structures Using Hollow Glass Fibres. J. R. Soc. Interface 2007, 4, 363–371.
(36) Trask, R. S.; Bond, I. P. Biomimetic Self-Healing of Advanced Composite Structures Using Hollow Glass Fibres. Smart Mater. Struct. 2006, 15, 704–710.
(37) Bleay, S. M.; Loader, C. B.; Hawyes, V. J.; Humberstone, L.; Curtis, P. T. A Smart Repair System for Polymer Matrix Composites. Compos. Part A Appl. Sci. manusfacturing 2001, 32, 1767–1776.
(38) Bode, S.; Bose, R. K.; Matthes, S.; Ehrhardt, M.; Seifert, A.; Schacher, F. H.; Paulus, R. M.; Stumpf, S.; Sandmann, B.; Vitz, J.; et al. Self-Healing Metallopolymers Based on Cadmium Bis(Terpyridine) Complex Containing Polymer Networks. Polym. Chem. 2013, 4, 4966.
(39) Wang, L.; Wang, W.; Di, S.; Yang, X.; Chen, H.; Gong, T.; Zhou, S. Silver-Coordination Polymer Network Combining Antibacterial Action and Shape Memory Capabilities. RSC Adv. 2014, 4, 32276–32282.
(40) Yanagisawa, Y.; Nan, Y.; Okuro, K.; Aida, T. Mechanically Robust, Readily Repairable Polymers via Tailored Noncovalent Cross-Linking. Science. 2018, 359, 72–76.
(41) Wang, C.; Liu, N.; Allen, R.; Tok, J. B.; Wu, Y.; Zhang, F.; Chen, Y.; Bao, Z. A Rapid and Effi Cient Self-Healing Thermo-Reversible Elastomer Crosslinked with Graphene Oxide. Adv. Mater. 2013, 25, 5785–5790.
(42) Ren, Y.; Zhang, Y.; Sun, W.; Gao, F.; Fu, W.; Wu, P.; Liu, W. Methyl Matters : An Autonomic Rapid Self-Healing Supramolecular Poly ( N-Methacryloyl Glycinamide ) Hydrogel. Polymer (Guildf). 2017, 126, 1–8.
(43) Urdl, K.; Kandelbauer, A.; Kern, W.; Müller, U.; Thebault, M.; Zikulnig-rusch, E. Self-Healing of Densely Crosslinked Thermoset Polymers—a Critical Review. Prog. Org. Coatings 2016, 104, 232–249.
(44) Lin, P.; Ma, S.; Wang, X.; Zhou, F. Molecularly Engineered Dual‐Crosslinked Hydrogel with Ultrahigh Mechanical Strength, Toughness, and Good Self‐Recovery.Pdf. Adv. Mater. 2015, 27, 2054–2059.
(45) Lin, S. T.; Fuchise, K.; Chen, Y.; Sakai, R.; Satoh, T.; Kakuchi, T.; Chen, W. C. Synthesis, Thermomorphic Characteristics, and Fluorescent Properties of Poly[2,7-(9,9-Dihexylfluorene)]-block-Poly(N-Isopropylacrylamide)-block-Poly(N-Hydroxyethylacrylamide) Rod-Coil-Coil Triblock Copolymers. Soft Matter 2009, 5 (19), 3761–3770.
(46) Bu, V.; Armes, S. P.; Bilingham, N. C. Synthesis and Aqueous Solution Properties of Near-Monodisperse Tertiary Amine Methacrylate Homopolymers and Diblock Copolymers. Polymer (Guildf). 2001, 42, 5993–6008.
(47) Dziczkowski, J.; Dudipala, V.; Soucek, M. D. Progress in Organic Coatings Investigation of Grafting Sites of Acrylic Monomers onto Alkyd Resins via GHMQC Two-Dimensional NMR : Part 1. Prog. Org. Coatings 2012, 73, 294–307.
(48) Gowda, C. M.; Vasconcelos, F.; Schwartz, E.; Rowan, A. E.; Wijs, A. De; Kentgens, A. P. M. Hydrogen Bonding and Chemical Shift Assignments in Carbazole Functionalized Isocyanides from Solid-State NMR and First-Principles Calculations W. 2011, 13082–13095.
(49) Krishnan, S.; Klein, A.; El-aasser, M. S.; Sudol, E. D. Influence of Chain Transfer Agent on the Cross-Linking of Poly(n-Butyl Methacrylate-Co-N-Methylol Acrylamide ) Latex Particles and Films. Macromolecules 2003, 36, 3511–3518.
(50) Chiu, Y.; Chen, Y.; Kuo, C.; Tung, S.; Kakuchi, T. Synthesis, Morphology, and Sensory Applications of Multifunctional Rod − Coil − Coil Triblock Copolymers and Their Electrospun Nano Fibers. ACS Appl. Mater. Interfaces 2012, 4 (7), 3387-3395.
(51) Özen, A. S.; Proft, F. De; Aviyente, V.; Geerlings, P. Interpretation of Hydrogen Bonding in the Weak and Strong Regions Using Conceptual DFT Descriptors. J. Phys. Chem. A 2006, 110, 5860–5868.
(52) Chen, Y.; Kushner, A. M.; Williams, G. A.; Guan, Z. Multiphase Design of Autonomic Self-Healing Thermoplastic Elastomers. Nat. Chem. 2012, 4, 467–472.
(53) Ni, Q.; Zhang, C.; Fu, Y.; Dai, G.; Kimura, T. Shape Memory Effect and Mechanical Properties of Carbon Nanotube / Shape Memory Polymer Nanocomposites. Compos. Struct. 2007, 81, 176–184.
(54) Chen, H.; Liu, Y.; Ren, B.; Zhang, Y.; Ma, J.; Xu, L.; Chen, Q.; Zheng, J. Super Bulk and Interfacial Toughness of Physically Crosslinked Double‐Network Hydrogels. Adv. Funct. Mater. 2017, 27, 1703086.
(55) Yi, J.; Boyce, M. C.; Lee, G. F.; Balizer, E. Large Deformation Rate-Dependent Stress – Strain Behavior of Polyurea and Polyurethanes. Polymer (Guildf). 2006, 47, 319–329.
(56) Carvalho, W. S. P.; Wei, M.; Ikpo, N.; Gao, Y.; Serpe, M. J. Polymer-Based Technologies for Sensing Applications. Anal. Chem. 2018, 90 (1), 459–479.
(57) Choi, D. H.; Kim, J. S.; Cutting, G. R.; Searson, P. C. Wearable Potentiometric Chloride Sweat Sensor: The Critical Role of the Salt Bridge. Anal. Chem. 2016, 88 (24), 12241–12247.
(58) Schmid-Wendtner, M. H.; Korting, H. C. The PH of the Skin Surface and Its Impact on the Barrier Function. Skin Pharmacol. Physiol. 2006, 19 (6), 296–302.
(59) Gelfond, D.; Heltshe, S.; Ma, C.; Rowe, S. M.; Frederick, C.; Uluer, A.; Sicilian, L.; Konstan, M.; Tullis, E.; Roach, R. N. C.; et al. Impact of CFTR Modulation on Intestinal PH, Motility, and Clinical Outcomes in Patients with Cystic Fibrosis and the G551D Mutation. Clin. Transl. Gastroenterol. 2017, 8 (3), e81-6.
(60) Nikolajek, W. P.; Emrich, H. M. PH of Sweat of Patients with Cystic Fibrosis. Klin. Wochen-schrift 1976, 54, 287–288.
(61) Ritter, K. A.; Lyding, J. W. The Influence of Edge Structure on the Electronic Properties of Graphene Quantum Dots and Nanoribbons. Nat. Mater. 2009, 8 (3), 235–242.
(62) Du, Y.; Guo, S. Chemically Doped Fluorescent Carbon and Graphene Quantum Dots for Bioimaging, Sensor, Catalytic and Photoelectronic Applications. Nanoscale 2016, 8 (5), 2532–2543.
(63) Park, Y.; Yoo, J.; Lim, B.; Kwon, W.; Rhee, S. W. Improving the Functionality of Carbon Nanodots: Doping and Surface Functionalization. J. Mater. Chem. A 2016, 4 (30), 11582–11603.
(64) Ye, X.; Xiang, Y.; Wang, Q.; Li, Z.; Liu, Z. A Red Emissive Two‐Photon Fluorescence Probe Based on Carbon Dots for Intracellular PH Detection. Small 2019, 15, 1901673.
(65) Wu, Z. L.; Gao, M. X.; Wang, T. T.; Wan, X. Y.; Zheng, L. L.; Huang, C. Z. A General Quantitative PH Sensor Developed with Dicyandiamide N-Doped High Quantum Yield Graphene Quantum Dots. Nanoscale 2014, 6, 3868–3874.
(66) Zhang, L.; Hu, P.; Wang, J.; Liu, Q.; Huang, R. Adsorption of Methyl Orange (MO) by Zr (IV)-Immobilized Cross-Linked Chitosan/Bentonite Composite. Int. J. Biol. Macromol. 2015, 81, 818–827.
(67) Kovalchuk, A.; Huang, K.; Xiang, C.; Martí, A. A.; Tour, J. M. Luminescent Polymer Composite Films Containing Coal-Derived Graphene Quantum Dots. ACS Appl. Mater. Interfaces 2015, 7, 26063–26068.
(68) Yu, B.; Kang, S.; Akthakul, A.; Ramadurai, N.; Pilkenton, M.; Patel, A.; Nashat, A.; Anderson, D. G.; Sakamoto, F. H.; Gilchrest, B. A.; et al. An Elastic Second Skin. Nat. Mater. 2016, 15 (August), 911–920.
(69) Yanagisawa, Y.; Nan, Y.; Okuro, K.; Aida, T. Mechanically Robust, Readily Repairable Polymers via Tailored Noncovalent Cross-Linking. Science (80-. ). 2018, 359, 72–76.
(70) Bao, C.; Jiang, Y.-J.; Zhang, H.; Lu, X.; Sun, J. Room‐Temperature Self‐Healing and Recyclable Tough Polymer Composites Using Nitrogen‐Coordinated Boroxines. Adv. Funct. Mater. 2018, 28 (1800560), 1–10.
(71) Liu, J.; Wang, S.; Tang, Z.; Huang, J.; Guo, B.; Huang, G. Bioinspired Engineering of Two Different Types of Sacrificial Bonds into Chemically Cross-Linked Cis-1,4-Polyisoprene toward a High-Performance Elastomer. Macromolecules 2016, 49, 8593–8604.
(72) Tang, M.; Zhang, R.; Li, S.; Zeng, J.; Luo, M.; Xu, Y.-X.; Huang, G. Towards a Supertough Thermoplastic Polyisoprene Elastomer Based on a Biomimic Strategy. Angew. Chemie 2018, 130 (48), 16062–16066.
(73) Chen, J.; Zheng, J.; Gao, Q.; Zhang, J.; Zhang, J.; Omisore, O. M.; Wang, L.; Li, H. Polydimethylsiloxane (PDMS)-Based Flexible Resistive Strain Sensors for Wearable Applications. Appl. Sci. 2018, 8, 345.
(74) Feula, A.; Pethybridge, A.; Giannakopoulos, I.; Tang, X.; Chippindale, A.; Siviour, C. R.; Buckley, C. P.; Hamley, I. W.; Hayes, W. A Thermoreversible Supramolecular Polyurethane with Excellent Healing Ability at 45°C. Macromolecules 2015, 48, 6132–6141.
(75) Kushner, A. M.; Vossler, J. D.; Williams, G. A.; Guan, Z. A Biomimetic Modular Polymer with Tough and Adaptive Properties. J. Am. Chem. Soc. 2009, 131, 8766–8768.
(76) Zhang, Q.; Niu, S.; Wang, L.; Lopez, J.; Chen, S.; Cai, Y.; Du, R.; Liu, Y.; Lai, J. C.; Liu, L.; et al. An Elastic Autonomous Self-Healing Capacitive Sensor Based on a Dynamic Dual Crosslinked Chemical System. Adv. Mater. 2018, 30, 1801435.
(77) Cooke, M. E.; Jones, S. W.; ter Horst, B.; Moiemen, N.; Snow, M.; Chouhan, G.; Hill, L. J.; Esmaeli, M.; Moakes, R. J. A.; Holton, J.; et al. Structuring of Hydrogels across Multiple Length Scales for Biomedical Applications. Adv. Mater. 2018, 30, 1705013.
(78) Liao, M.; Wan, P.; Wen, J.; Gong, M.; Wu, X.; Wang, Y.; Shi, R.; Zhang, L. Wearable, Healable, and Adhesive Epidermal Sensors Assembled from Mussel-Inspired Conductive Hybrid Hydrogel Framework. Advanced Functional Materials. 2017, p 1703852.
(79) Kang, J.; Son, D.; Wang, G. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y.; et al. Tough and Water-Insensitive Self-Healing Elastomer for Robust Electronic Skin. Adv. Mater. 2018, 1706846, 1–8.
(80) Hsieh, H. C.; Hung, C. C.; Watanabe, K.; Chen, J. Y.; Chiu, Y. C.; Isono, T.; Chiang, Y. C.; Reghu, R. R.; Satoh, T.; Chen, W. C. Unraveling the Stress Effects on the Optical Properties of Stretchable Rod-Coil Polyfluorene-Poly(n-Butyl Acrylate) Block Copolymer Thin Films. Polym. Chem. 2018, 9 (27), 3820–3831.
(81) Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J. J. Focusing on Luminescent Graphene Quantum Dots: Current Status and Future Perspectives. Nanoscale 2013, 5 (10), 4015–4039.
(82) Liu, R.; Wu, D.; Feng, X.; Müllen, K. Bottom-up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology. J. Am. Chem. Soc. 2011, 133 (39), 15221–15223.
(83) Ozhukil Valappil, M.; K. Pillai, V.; Alwarappan, S. Spotlighting Graphene Quantum Dots and beyond: Synthesis, Properties and Sensing Applications. Appl. Mater. Today 2017, 9, 350–371.
(84) Tian, P.; Tang, L.; Teng, K. S.; Lau, S. P. Graphene Quantum Dots from Chemistry to Applications. Mater. Today Chem. 2018, 10, 221–258.
(85) Cai, F.; Liu, X.; Liu, S.; Liu, H.; Huang, Y. A Simple One-Pot Synthesis of Highly Fluorescent Nitrogen-Doped Graphene Quantum Dots for the Detection of Cr(VI) in Aqueous Media. RSC Adv. 2014, 4 (94), 52016–52022.
(86) Wang, X.; Sun, G.; Li, N.; Chen, P. Quantum Dots Derived from Two-Dimensional Materials and Their Applications for Catalysis and Energy. Chem. Soc. Rev. 2016, 45 (8), 2239–2262.
(87) Zhu, S.; Shao, J.; Song, Y.; Zhao, X.; Du, J.; Wang, L.; Wang, H.; Zhang, K.; Zhang, J.; Yang, B. Investigating the Surface State of Graphene Quantum Dots. Nanoscale 2015, 7 (17), 7927–7933.
(88) Zhu, S.; Song, Y.; Wang, J.; Wan, H.; Zhang, Y.; Ning, Y.; Yang, B. Photoluminescence Mechanism in Graphene Quantum Dots: Quantum Confinement Effect and Surface/Edge State. Nano Today 2017, 13, 10–14.
(89) Ju, J.; Chen, W. Synthesis of Highly Fluorescent Nitrogen-Doped Graphene Quantum Dots for Sensitive, Label-Free Detection of Fe (III) in Aqueous Media. Biosens. Bioelectron. 2014, 58, 219–225.
(90) Shen, J.; Zhu, Y.; Yang, X.; Li, C. Graphene Quantum Dots: Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photovoltaic Devices. Chem. Commun. 2012, 48 (31), 3686–3699.
(91) Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P. Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications. Adv. Mater. 2019, 31 (21), 1–22.
(92) Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P. Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small 2015, 11 (14), 1620–1636.
(93) Shi, X.; Meng, H.; Sun, Y.; Qu, L.; Lin, Y.; Li, Z.; Du, D. Far‐Red to Near‐Infrared Carbon Dots: Preparation and Applications in Biotechnology. Small 2019, 1901507.
(94) Li, X.; Zhang, S.; Kulinich, S. A.; Liu, Y.; Zeng, H. Engineering Surface States of Carbon Dots to Achieve Controllable Luminescence for Solid-Luminescent Composites and Sensitive Be2+ Detection. Sci. Rep. 2014, 4, 1–8.
(95) Gan, Z.; Xu, H.; Hao, Y. Mechanism for Excitation-Dependent Photoluminescence from Graphene Quantum Dots and Other Graphene Oxide Derivates: Consensus, Debates and Challenges. Nanoscale 2016, 8 (15), 7794–7807.
(96) Liu, M. Optical Properties of Carbon Dots: A Review. Nanoarchitectonics 2020, 1 (1), 1–12.
(97) Yang, J. S.; Martinez, D. A.; Chiang, W. H. Synthesis, Characterization and Applications of Graphene Quantum Dots. Adv. Struct. Mater. 2017, 83, 65–120.
(98) Liu, X.; Yang, C.; Zheng, B.; Dai, J.; Yan, L.; Zhuang, Z.; Du, J.; Guo, Y.; Xiao, D. Green Anhydrous Synthesis of Hydrophilic Carbon Dots on Large-Scale and Their Application for Broad Fluorescent PH Sensing. Sensors Actuators B. Chem. 2018, 255, 572–579.
(99) Jin, S. H.; Kim, D. H.; Jun, G. H.; Hong, S. H.; Jeon, S. Tuning the Photoluminescence of Graphene Quantum Dots through the Charge Transfer Effect of Functional Groups. ACS Nano 2013, 7 (2), 1239–1245.
(100) Dutta Choudhury, S.; Chethodil, J. M.; Gharat, P. M.; Praseetha, P. K.; Pal, H. PH-Elicited Luminescence Functionalities of Carbon Dots: Mechanistic Insights. J. Phys. Chem. Lett. 2017, 8 (7), 1389–1395.
(101) Wang, L.; Li, M.; Li, W.; Han, Y.; Liu, Y.; Li, Z.; Zhang, B.; Pan, D.; Li, M.; Li, W.; et al. Rationally Designed Efficient Dual-Mode Colorimetric/Fluorescence Sensor Based on Carbon Dots for Detection of PH and Cu2+ Ions. ACS Sustain. Chem. Eng. 2018, 6, 12668−12674.
(102) Liu, X.; Yang, C.; Zheng, B.; Dai, J.; Yan, L.; Zhuang, Z.; Du, J.; Guo, Y.; Xiao, D. Green Anhydrous Synthesis of Hydrophilic Carbon Dots on Large-Scale and Their Application for Broad Fluorescent PH Sensing. Sensors Actuators, B Chem. 2018, 255, 572–579.
(103) Hung, C.; Nakahira, S.; Chiu, Y.; Isono, T.; Wu, H.; Watanabe, K.; Chiang, Y.; Takashima, S.; Borsali, R.; Tung, S.; et al. Control over Molecular Architectures of Carbohydrate-Based Block Copolymers for Stretchable Electrical Memory Devices. Macromolecules 2018, 51, 4966–4975.
(104) Ayres, N. Atom Transfer Radical Polymerization: A Robust and Versatile Route for Polymer Synthesis. Polym. Rev. 2011, 51, 132–162.
(105) Yang, J.-S.; Pai, D. Z.; Chiang, W.-H. Microplasma-Enhanced Synthesis of Colloidal Graphene Quantum Dots at Ambient Conditions. Carbon N. Y. 2019, 153, 315–319.
(106) Qu, R.; Zhang, W.; Liu, N.; Zhang, Q.; Liu, Y.; Li, X.; Wei, Y.; Feng, L. Antioil Ag3PO4 Nanoparticle/Polydopamine/Al2O3 Sandwich Structure for Complex Wastewater Treatment: Dynamic Catalysis under Natural Light. ACS Sustain. Chem. Eng. 2018, 6, 8019–8028.
(107) Yang, P.; Zhu, Z.; Zhang, T.; Zhang, W.; Chen, W.; Cao, Y.; Chen, M.; Zhou, X. Orange-Emissive Carbon Quantum Dots: Toward Application in Wound PH Monitoring Based on Colorimetric and Fluorescent Changing. Small 2019, 15, 1902823.
(108) Gao, W.; Ran, C.; Wang, M.; Li, L.; Sun, Z.; Yao, X. The Role of Reduction Extent of Graphene Oxide in Br)/RGO Composites and the Pseudo-Second-Order Kinetics Reaction Nature of the Ag/AgBr System. Phys.Chem.Chem.Phys 2016, 18, 18219.
(109) Hai, X.; Wang, Y.; Hao, X.; Chen, X.; Wang, J. Folic Acid Encapsulated Graphene Quantum Dots for Ratiometric PH Sensing and Specific Multicolor Imaging in Living Cells. Sensors Actuators, B Chem. 2018, 268, 61–69.
(110) Tian, L.; Wang, J.; Wang, K.; Wo, H.; Wang, X.; Zhuang, W.; Li, T.; Du, X. Carbon-Quantum-Dots-Embedded MnO 2 Nano Fl Ower as an Ef Fi Cient Electrocatalyst for Oxygen Evolution in Alkaline Media. Carbon N. Y. 2019, 143, 457–466.
(111) Jiao, Y.; Gong, X.; Han, H.; Gao, Y.; Lu, W.; Liu, Y.; Xian, M.; Shuang, S.; Dong, C. Facile Synthesis of Orange Fluorescence Carbon Dots with Excitation Independent Emission for PH Sensing and Cellular Imaging. Anal. Chim. Acta 2018, 1042, 125–132.
(112) Pandey, V. S.; Verma, S. K.; Behari, K. Graft [ Partially Carboxymethylated Guar Gum-g-Poly N - ( Hydroxymethyl ) Acrylamide ] Copolymer : From Synthesis to Applications. Carbohydr. Polym. 2014, 110, 285–291.
(113) Wang, W.; Zhang, Q. Synthesis of Block Copolymer Poly (n-Butyl Acrylate)-b-Polystyrene by DPE Seeded Emulsion Polymerization with Monodisperse Latex Particles and Morphology of Self-Assembly Film Surface. J. Colloid Interface Sci. 2012, 374, 54–60.
(114) Wang, J. T.; Chiu, Y. C.; Sun, H. S.; Yoshida, K.; Chen, Y.; Satoh, T.; Kakuchi, T.; Chen, W. C. Synthesis of Multifunctional Poly(1-Pyrenemethyl Methacrylate)-b-Poly(N-Isopropylacrylamide)-b-Poly(N-Methylolacrylamide)s and Their Electrospun Nanofibers for Metal Ion Sensory Applications. Polym. Chem. 2015, 6 (12), 2327–2336.
(115) Chen, J.; Liu, M.; Liu, H.; Ma, L. Synthesis, Swelling and Drug Release Behavior of Poly (N,N-Diethylacrylamide-Co-N-Hydroxymethyl Acrylamide) Hydrogel. Mater. Sci. Eng. C 2009, 29 (7), 2116–2123.
(116) Limchoowong, N.; Sricharoen, P.; Areerob, Y.; Nuengmatcha, P.; Sripakdee, T.; Techawongstien, S.; Chanthai, S. Preconcentration and Trace Determination of Copper ( II ) in Thai Food Recipes Using Fe3O4@Chi–GQDs Nanocomposites as a New Magnetic Adsorbent. Food Chem. 2017, 230, 388–397.
(117) Yang, Z.; Peng, H.; Wang, W.; Liu, T. Crystallization Behavior of Poly(Ε‐caprolactone) Layered Double Hydroxide Nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667.
(118) Lewis, C. L.; Stewart, K.; Anthamatten, M. The Influence of Hydrogen Bonding Side-Groups on Viscoelastic Behavior of Linear and Network Polymers. Macromolecules 2014, 47 (2), 729–740.
(119) Li, Q.; Chen, B.; Xing, B. Aggregation Kinetics and Self-Assembly Mechanisms of Graphene Quantum Dots in Aqueous Solutions: Cooperative E Ff Ects of PH and Electrolytes. Environ. Sci. Technol. 2017, 51, 1364–1376.
(120) Chen, S.; Liu, J.; Chen, M.; Chen, X.; Wang, J. Unusual Emission Transformation of Graphene Quantum Dots Induced by Self-Assembled Aggregation. Chem. Commun. 2012, 48, 7637–7639.
(121) Yang, G.; Wan, X.; Liu, Y.; Li, R.; Su, Y.; Zeng, X.; Tang, J. Luminescent Poly(Vinyl Alcohol)/Carbon Quantum Dots Composites with Tunable Water-Induced Shape Memory Behavior in Different PH and Temperature Environments. ACS Appl. Mater. Interfaces 2016, 8 (50), 34744–34754.
(122) Yeh, T. F.; Teng, C. Y.; Chen, S. J.; Teng, H. Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination. Advanced Materials. 2014, 3297–3303.

無法下載圖示 全文公開日期 2025/07/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE