簡易檢索 / 詳目顯示

研究生: 林景祥
Chin-hsiang Lin
論文名稱: 啾聲編碼波形於雙頻組織諧波影像之分析與比較
Chirp-Encoded Excitation for Dual-Frequency Ultrasound Tissue Harmonic Imaging
指導教授: 沈哲州
Che-Chou Shen
口試委員: 李百祺
Pai-Chi Li
廖愛禾
Ai-Ho Liao
鄭耿璽
Geng-Shi Jeng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: 啾聲信號編碼波形雙頻發射組織諧波影像頻域複合超音波影像脈衝壓縮旁瓣信號
外文關鍵詞: frequency compounded, side-lobe
相關次數: 點閱:246下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙頻 ( dual-frequency, DF ) 發射方法包含基頻與二倍頻兩個頻率成分,在雙頻組織諧波影像中 ( tissue harmonic imaging, THI ),可同時獲得激發波形之f0所產生的二次諧波位於2f0,與激發波形之f0、2f0耦合所產生的頻率差 ( frequency-difference ) 位於f0。為了提升訊雜比 ( signal-to-noise ratio, SNR ) 而結合啾聲編碼 ( chirp ) 於雙頻發射方法,在波形設計時需考慮所產生之諧波頻率差位於f0的頻寬。本研究提出兩種雙頻啾聲編碼發射方法 ( 即UD11與UU13 ) 能夠提供足夠的諧波信號頻寬。實驗結果顯示,UU13發射方法於脈衝壓縮時,易受到3f0的干擾而產生明顯的軸向旁瓣信號 ( range side-lobe )。即使UU13發射方法在f0的諧波封包與UD11差不多,但在2f0的諧波封包中,UD11發射方法能夠抑制較多的軸向旁瓣信號。組織仿體與線仿體的B-mode諧波影像也顯示,使用UD11發射方法能夠抑制較多的假影產生。相較於一般雙頻短脈衝發射方法,UD11能夠提升影像SNR約10 dB。綜合整體結果,UD11為雙頻啾聲編碼發射方法的最佳選擇。


    Dual-frequency (DF) transmit waveform comprises of signals at both fundamental frequency (f0) and second harmonic frequency (2f0). With the DF transmit waveform, tissue harmonic imaging can be simultaneously performed not only using the conventional 2f0 second harmonic signal but also the f0 frequency-difference harmonic signal. Nonetheless, when chirp excitation is incorporated into the DF transmit waveform for improvement of harmonic SNR, particular waveform design is required to maintain the bandwidth of the f0 harmonic signal. In this study, two different chirp waveforms (i.e., UD11 and UU13) are proposed to provide the desired signal bandwidth. Experimental results indicate that the UU13 tends to suffer from high range side lobe level due to severe 3f0 interference. Consequently, the 2f0 harmonic envelope of the UD11 is consistently superior to that of the UU13 while the quality of the f0 harmonic envelope remains similar between the two DF transmit waveforms. B-mode harmonic images also show that the UD11 is less susceptible to range side lobe artifacts than the UU13. Compared to a short pulse, the UD11 waveform also improves the image SNR by about 10 dB. Therefore, it is concluded that the UD11 waveform is a better solution for chirp-encoded DF harmonic imaging.

    第一章 緒論 1 1-1 超音波影像系統原理與限制 1 1-2 進階成像技術探討 5 1-2-1 超音波諧波影像 5 1-2-2 影像複合技術 9 1-3 雙頻組織諧波影像 11 1-4 組織諧波訊雜比與編碼波形 13 1-5 研究動機 16 第二章 脈衝壓縮於啾聲編碼波形 17 2-1 雙頻啾聲編碼波形 17 2-2 脈衝壓縮與旁瓣信號 22 第三章 研究方法 26 3-1 激發波形組 26 3-2 諧波影像系統架構 29 3-2-1 諧波量測系統 29 3-2-2 B-mode諧波影像系統 30 3-2-3 諧波信號分析與成像方法 31 3-3 軸向旁瓣信號偵測 33 3-4 影像品質估計 36 第四章 研究結果 38 4-1 水聽筒實驗 38 4-1-1 諧波頻譜 38 4-1-2 諧波封包 41 4-1-3 壓縮品質 45 4-2 B-mode影像 47 4-2-1 線仿體影像 47 4-2-2 組織仿體影像 51 4-2-3 複合影像 56 第五章 討論、結論與未來工作 58 參考文獻 61

    [1] Flax, S. W., and O’Donnell, M., “Phase-Aberration Correction Using Signals from Point Reflectors and Diffuse Scatterers: Basic Principles,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 35, No. 6, pp.758-767 (1988).

    [2] O’Donnell, M., and Flax, S. W., “Phase-Aberration Correction Using Signals from Point Reflectors and Diffuse Scatterers: Measurements,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 35, No. 6, pp.768-774 (1988).

    [3] Ng, G. C., Freiburger, P. D., Walker, W. F., and Trahey, G. E., “A Speckle Target Adaptive Imaging Technique in the Presence of Distributed Aberrations,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 44, No. 1, pp.140-151 (1997).

    [4] Li, P. C., and O’Donnell, M., “Phase Aberration Correction on Two-Dimensional Conformal Arrays,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 42, No. 1, pp.73-82 (1995).

    [5] Krishnan, S., Rigby, K. W., and O’Donnell, M., “Improved Estimation of Phase Aberration Profile,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 44, No. 3, pp.701-713 (1997).

    [6] Cain, C. A., “Ultrasonic Reflection Mode Imaging of the Nonlinear Parameter B/A: I. A Theoretical Basis,” Journal of the Acoustical Society of America, Vol. 80, No. 1, pp. 28–32 (1986).

    [7] Beyer, R. T., and Letcher, S. V., Nonlinear acoustics. New York, NY: Academic Press, 1969.

    [8] Haran, M. E., and Cook, B. D., “Distortion of Finite Amplitude Ultrasound in Lossy Media,” Journal of the Acoustical Society of America, Vol. 73, No. 3, pp. 774–779 (1983).

    [9] Goertz, D. E., Needles, A., Karshafian, R., Brown, A. S., Burns, P. N., and Foster, F. S., “High Frequency Nonlinear B-Scan Imaging of Microbubble Contrast Agents,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 52, No. 1, pp. 65-78 (2005).

    [10] Forsberg, F., Shi, W.T., and Goldberg, B.B., “Subharmonic Imaging of Contrast Agents,” Ultrasonics, Vol. 38, No. 1-8, pp. 93-98 (2000).

    [11] Yanjun, G., Dong, Z., and Xiufen, G., “Subharmonic and Ultraharmonic Emissions Based on the Nonlinear Oscillation of Encapsulated Microbubbles in Ultrasound Contrast Agents,” Chinese Science Bulletin, Vol. 50, No. 18, pp.1975-1975 (2005).

    [12] Biagi, E., Breschi, L., Vannacci, E., and Masotti, L. “Subharmonic Emissions from Microbubbles: Effect of the Driving Pulse Shape,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 53, No. 11, pp. 1274-2182 (2006).

    [13] Basude, R., Wheatley, M. A., “Generation of Ultraharmonics in Surfactant Based Ultrasound Contrast Agent: Use and Advantages,” Ultrasonics, Vol. 39, No. 6, pp. 437-444 (2001).

    [14] Burckhardt, C.B., “Speckle in Ultrasound B-Mode Scans,” IEEE Transactions on Sonics and Ultrasonics, Vol. 25, No. 1, pp. 1-6 (1978).

    [15] O’Donnell, M., and Silverstein, S.D., “Optimum Displacement for Compound Image Generation in Medical Ultrasound,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 35, No. 4, pp. 470-476 (1998).

    [16] Silverstein, S.D., and O’donnell, M., “Speckle Reduction Using Correlated Mixed-Integration Techniques,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 768, pp. 168-172 (1987).

    [17] Li, P. C., and O’Donnell, M., “Elevational Spatial Compounding,” Ultrasonic imaging, Vol. 16, No. 3, pp. 176-189 (1994).

    [18] Magnin, P.A., von Ramm, O.T., and Thurstone, F. L., “Frequency Compounding for Speckle Contrast Reduction in Phase Array Images,” Ultrasonic Imaging, Vol. 4, pp. 267-281 (1982).

    [19] Trahey, G. E., Allison, J. W., Smith, S. W., and von Ramm, O. T., “A Quantitative Approach to Speckle Reduction Via Frequency Compounding,” Ultrasonic Imaging, Vol. 8, No. 3, pp. 151-164 (1986).

    [20] Biagi, E., Breschi, L., Vannacci, E., and Masotti, L., “Multipulse Technique Exploiting the Intermodulation of Ultrasound Waves in a Nonlinear Medium,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 56, No. 3, pp. 520–535 (2009).

    [21] Nowicki, A., Wojcik, J., and Secomski, W., “Harmonic Imaging Using Multitone Nonlinear Coding,” Ultrasound in Medicine and Biology, Vol. 33, No. 7, pp. 1112–1122 (2007).

    [22] Li, P. C., and Shen, C. C., “Effects of Transmit Focusing on Finite Amplitude Distortion Based Second Harmonic Generation,” Ultrasonic Imaging, Vol. 21, No. 14, pp. 243-258 (1999).

    [23] Takeuchi, Y., “Coded Excitation for Harmonic Imaging,” Proceedings of the IEEE Ultrasonics Symposium, Vol. 2, pp. 1433–1436 (1996).

    [24] O’Donnell, M., “Coded Excitation System for Improving the Penetration of Real-Time Phased-Array Imaging Systems,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 39, No. 3, pp. 341–351 (1992).

    [25] Chiao, R. Y., and Hao, X. H., “Coded Excitation for Diagnostic Ultrasound: A System Developer's Perspective,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 52, No. 2, pp. 160–170 (2005).

    [26] Misaridis, T., and Jensen, J. A., “Use of Modulated Excitation Signals in Medical Ultrasound. Part II: Design and Performance for Medical Imaging Applications,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 52, No. 2, pp. 192–207 (2005).

    QR CODE