簡易檢索 / 詳目顯示

研究生: 郭瑋旻
Wen-Men Kuo
論文名稱: 單側式骨外固定器於斷骨復位及軸向動態對位之分析
Analysis of Unilateral External Fixators in Fracture Reduction and Axial Dynamization
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 徐慶琪
none
釋高上
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 103
中文關鍵詞: 齊次轉換矩陣單側式骨外固定器運動鍊方程式自由度軸向動態設計概念準則骨折復位軸向動態對位
外文關鍵詞: External fixator, Fracture reduction, Bone axial dynamization, Homogeneous transformation matrix
相關次數: 點閱:179下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單側式骨外固定器主要包含兩種功能,一種為骨折復位,另一種為提供軸向動態對位。骨折復位可確保斷骨在指定位置,軸向動態對位能提高骨頭癒合率,改善骨痂形成及骨頭重建。同時,外固定器可利用增加自由度之方式,滿足軸向動態對位,但使用過多的鉸接關節,則關節之間的連桿長度亦會增加,影響手術時的操作性。
    本文研究目的是參考Dynafix和Orthofix骨外固定器之設計,並根據文獻所提出達到骨折復位和軸向動態對位之準則,將Orthofix骨外固定器在軸向動態對位調整上之不足,透過在遠端關節下方增加側向自由度,設計出修正型骨外固定器。利用齊次轉換矩陣建構運動鍊方程式,計算各個關節的調整範圍。並在多個數值解中,研究滿足軸向動態對位之機構與關節設計,運用電腦模擬骨外固定器模型,驗證數值解在骨折復位過程與軸向動態對位之準確性。
    分析結果得知,Dynafix、Orthofix、概念型、修正型骨外固定器調整範圍可由齊次轉換矩陣求出,經由電腦模擬方式達到骨折復位。骨外固定器之軸向動態對位,除了要滿足軸向動態設計概念準則外,當骨外固定器在中立狀態,斷骨之相對位置正好是關節運動方向時,亦可滿足軸向動態對位;或骨釘為垂直打入斷骨且垂直於近端伸縮關節之狀態,亦可滿足軸向動態對位。本文亦探討對四種骨外固定器之機構設計、關節自由度數目和排列、數值解分析於臨床上之影響。


    Reduction and axial dynamization of bone fracture are two important functions in application of unilateral external fixator. Fracture reduction is to ensure that the broken bones are in the specified location. Axial dynamization is to enhance bone healing, callus maturation, and bone remodeling. Meanwhile, the external fixator can be used to increase degrees of freedom to benefit the axial dynamization. However, the excessive use of articulated joints affects the surgical operations.
    The purpose of this study is to develop a fixator design while satisfying all criteria of adjustability for reduction and alignment of axial dynamization. The modified external fixator with one more lateral degree of freedom at the distal joint was designed to remedy the disadvantage of Orthofix external fixator for achieving axial dynamization. Homogeneous transformation matrix was utilized to form kinematic chain equations for Dynafix, Orthofix, conceptual, and modified external fixators. The adjustment of each joint was calculated, and the constraints of axial dynamization of institutions and joint design should be met. By using computational modelling, the numerical solutions were verified accurately in both fracture reduction and axial dynamization.
    For four fixators, the adjustment ranges of the joints can be solved by the homogeneous transformation matrix to achieve fracture reduction. However, for the external fixator that does not fulfill the design criteria but achieves axial dynamization, there are some special conditions: (1) the movements of the broken bones and joint are in the same direction; or (2) bone screws should be inserted orthogonally to the broken bone and the telescopic joint should be parallel to proximal broken bone.
    For the mechanism designs of four external fixators, the influence of degrees of freedom of joints on clinical operations is numerically analyzed in this study as well.

    論文摘要 I Abstract II 誌 謝 III 目 錄 IV 符號索引 VII 圖表索引 XIII 第一章 緒論 1 1.1研究動機及目的 1 1.2脛骨之解剖學 3 1.3骨折型態與治療方式簡介 4 1.4單側骨外固定器簡介 5 1.5文獻回顧 7 1.6本文架構 10 第二章 研究方法 13 2.1機器人運動學 13 2.1.1空間座標描述 13 2.1.2順向運動學 14 2.1.3逆向運動學 15 2.1.4球關節之描述 15 2.2齊次轉換矩陣之運算 19 2.3脛骨與骨外固定器之連桿系統 22 2.3.1遠端、近端脛骨參數與齊次轉換矩陣建立 23 2.3.2 Dynafix骨外固定器參數與齊次轉換矩陣建立 26 2.3.3 Orthofix骨外固定器參數與齊次轉換矩陣建立 29 2.3.4概念性骨外固定器參數與齊次轉換矩陣建立 32 2.3.5修正型骨外固定器參數與齊次轉換矩陣建立 35 2.4求解運動鍊方程式 38 2.4.1軸向動態對位之方程式 39 2.5電腦模擬 41 第三章 分析結果 43 3.1復位路徑分析 43 3.2軸向動態對位分析 45 第四章 討論 92 4.1骨外固定器之機構與關節自由度排列討論 92 4.2數值分析結果討論 95 4.3復位路徑分析結果討論 96 第五章 結論與未來展望 97 5.1結論 97 5.2未來展望 98 參考文獻 100 作者簡介 103

    [1] Koo, T. K. K. and Mak, A. F. T., "A knowledge-based computer-aided system for closed diaphyseal fracture reduction.," Clinical Biomechanics, pp. 884-893, (2007)
    [2] Koo, T. K. K., Chao, E. Y. S., and Mak, A. F. T., "Development and validation of a new approach for computer-aided long bone fracture reduction using unilateral external fixator.," Journal of Biomechanics, pp. 2104-2112, (2006)
    [3] Kendoff, D. O., Fragomen, A. T., Pearle, A. D., Citak, M., and Rozbruch, S. R., "Computer Navigation and Fixator-Assisted Femoral Osteotomy for Correction of Malunion After Periprosthetic Femur Fracture," The Journal of Arthroplasty, vol. 25, pp. 333.e13-333.e19, (2010)
    [4] Qin, Y. X., Rubin, C. T., and McLeod, K. J., Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology vol. 16, pp.482-9, (1998)
    [5] Foxworthy, M. and Pringle, R. M., "Dynamization timing and its effect on bone healing when using the Orthofix Dynamic Axial Fixator," Injury, vol. 26, pp. 117-119, (1995)
    [6] Howarda, C. B., Simkina, A., Tiranb, Y., Porata, S., Segala, D., and Mattana, Y., "Do axial dynamic fixators really produce axial dynamization?," Injury, Int. J. Care Injured, pp. 25-30, (1999)
    [7] Karunratanakul, K., Schrooten, J., and Oosterwyck, H. V., "Finite element modelling of a unilateral fixator for bone reconstruction: Importance of contact settings.," Medical Engineering & Physics., vol. 32, pp. 461-467, (2010)
    [8] Viceconti, M., Sudanese, A., Toni, A., and Giunti, A., "A software simulation of tibial fracture reduction with external fixator.," Computer Methods and Programs in Biomedicine, vol. 40, pp. 89-94, (1993)
    [9] 王南翔, "新型單側骨外固定器之機構設計與 運動學整復分析," 碩士, 機械工程系, 國立臺灣科技大學, (2010)
    [10] Ou, Y. J., "Kinematic adjustability of unilateral external fixators for fracture reduction and alignment of axial dynamization," Journal of Biomechanics, vol. 42, pp. 1974-1980, (2009)
    [11] Liu, R. W., Kim, Y. H., Lee, D. C., Inoue, N., Koo, T. K., and Chao, E. Y. S., "Computational simulation of axial dynamization on long bone fractures.," Clinical Biomechanics, pp. 83-90, (2005)
    [12] 宋晏仁、游祥明、古宏海、傅毓秀和林光華, 解剖學,華杏圖書出版社, pp.152-153, (2004)
    [13] 許文賢, "人工椎體支撐器之生物力學分析與機械測試," 博士, 機械工程系, 國立臺灣科技大學, (2009)
    [14] 麥麗敏、王錫崗等, 簡明解剖生理學,匯華圖書出版有限公司, pp.117-121, (2003)
    [15] 黃啟仲、陳偉淦等, 大體解剖學,義軒圖書出版社, pp.601-604, (1988)
    [16] Minns, R. J., Bremble, G. R., and Campbell, J., "The geometrical properties of the human tibia," Journal of Biomechanics, vol. 8, pp. 253-255, (1975)
    [17] 邱家昌, 骨折癒合,生物醫學 第一卷第三期, pp.264-273, (2008)
    [18] 王亦聰, 骨與關節損傷,人民衛生出版社, pp.108-111, (2006)
    [19] Weber, B. G., "The ASIF threaded external fixator in general orthopaedic and trauma surgery of the extremities," In: Weber, B. G., Magerl, F. (Eds), The External Fixator. Springer, New York, pp.6., (1985)
    [20] 宋長耀, "利用齊次轉換矩陣分析骨外固定器之調整範圍與肱骨骨內固定器之固定姿勢," 國立台灣大學醫學工程研究所碩士論文, (2002.6)
    [21] 張曦, 骨折、脫位防治和食療100法,聯廣圖書股份有限公司, pp.65-68, (1999)
    [22] Aro, H. T. and Chao, E. Y. S., "Biomechanics and biology of fracture repair under external fixation," Hand Clinics, vol. 9, pp. 531-542, (1993)
    [23] Hollinger, J. O., "Biomechanical Applications of Synthetic Biodegradable Polymers," CRC Press Inc.Boca Raton, (1995)
    [24] Gardner, T. N., Hardy, J. R. W., Evans, M., Richardson, J. B., and Kenwright, J., "The static and dynamic behaviour of tibial fractures due to unlocking external fixators," Clinical Biomechanics, vol. 11, pp. 425-430, (1996)
    [25] Saldanha, K. A. N., Saleh, M., Bell, M. J., and Fernandes, J. A., "Limb lengthening and correction of deformity in the lower limbs of children with osteogenesis imperfecta," Journal of Bone & Joint Surgery, vol. 86-B, pp. 259-265, (2004)
    [26] Koo, T. K. K., Chao, E. Y. S., and Mak, A. F. T., "Fixation stiffness of Dynafix unilateral external fixator in neutral and non-neutral configurations," Bio-Medical Materials and Engineering, vol. 15, pp. 433-444, (2005)
    [27] Spong, M. W., Hutchinson, S., and Vidyasagar, M., "Robot Modeling and Control," JOHN WILEY & SONS, INC., (2005)
    [28] 林宗鴻, "手腕骨外固定器之機械測試與調整範圍分析," 碩士, 機械工程系, 國立台灣科技大學, (2003)
    [29] Craig, J. J., "Introduction to Robotics: Mechanics and Control," (2005)
    [30] 溫志杰, "骨外固定器及肩關節活動之運動學分析," 國立台灣大學醫學工程研究所碩士論文, (2003.6)
    [31] Bonev, I. A. and Ryu, J., "A geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators. ," Mechanism and Machine Theory., pp. 1-13, (2001)
    [32] Agrawal, S. K. and Sun, L., "Regional structures of free-floating robots: a comparative study of the workspace.," International Journal of Robotics and Automation, pp. 58-64, (1997)
    [33] Ceccarelli, M. and Sorli, M., "The effect of design parameters on the workspace of a Turin parallel robot.," International Journal of Robotics Research, vol. 17, pp. 886-902, (1998)

    QR CODE