簡易檢索 / 詳目顯示

研究生: 陳彥龍
Yan-Long Chen
論文名稱: 應用於工業廠房之改良型通風系統設計與實驗量測研究
An experimental observation and design study on the performance of an improved ventilation system applied in an industrial factory
指導教授: 林怡均
Yi-Jiun Lin
口試委員: 黃振康
ZHEN-KANG HUANG
溫琮毅
CONG-YI WEN
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 145
中文關鍵詞: 複合置換式通風系統蒸發冷卻系統強制對流冷凍空調設備溫度分布量測溫度分層高度
外文關鍵詞: Hybrid Displacement Ventilation System, Evaporative Cooling System, Forced Convection, Air-Conditioning Equipment, Temperature Distribution Measurement, Stratification Height
相關次數: 點閱:343下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究根據實際工業廠房的幾何條件及內部結構,於工業廠房區域內設置對應之改良型通風系統,預期透過改良型通風系統,將廠房內部環境維持在低於 30°C,此溫度為內部實驗設備維持正常運作之條件,使用此機制取代高功率之冷凍空調設備,藉此達到節能之目的。改良型通風系統包括挑高,10.7 公尺高,廠房內部既有的複合置換式通風系統及本研究設置的輔助通風設備與冷凍空調設備。輔助通風設備包括強制對流機制與蒸發冷卻系統。強制對流機制包括風機及循環扇,本研究考量地板面積為 164.8 平方公尺,高度為 3 公尺的氣冷設備房間內部體積 494.5 立方公尺,並假設房間需求換氣率為 6 times/hr 進行需求供風量估算。估算結果顯示,適當的風機之供風量須大於 0.824 m3/s。廠房實際選用 2 台供風量為 1.183 m3/s 之風機,經過估算,若 2 台風機同時開啟,氣冷設備房間之換氣率為 17.2 times/hr,本研究將其設置於供風區,以增加氣冷設備房間內之供風量。為了將氣流有效引入房間並增加氣流混合效果,本研究將循環扇設置於房間供風口及房間內部。由於複合置換式通風系統在高溫氣候條件下,具有供風溫度過高之問題,因此本研究設置包括水霧系統與蒸發冷卻器之蒸發冷卻系統於供風區及氣冷設備房間內,以降低室內供風溫度。當輔助通風設備在嚴酷的高溫氣候環境下無法將室內維持在 30°C 以下時,則使用冷凍空調設備。本研究假設換氣率為 6 times/hr,並考量最炎熱時段的溫、濕度條件分別為 38°C 及 80%,室內目標條件為溫、濕度分別為 25°C 及 60%,計算結果顯示,氣冷設備房間之冷凍空調設備噸數高於公制冷凍噸 16.9 Metric RT,即 65.4 kW,廠房實際選用 2 台美制冷凍頓 10 USRT,即 35.2 kW 之冷凍空調設備。本研究進行實際全尺寸廠房區域內的之溫、濕度實驗量測,觀測改良型通風系統於不同操作配置及氣候條件下之室內溫、濕度分布表現,根據實驗量測結果提出改良型通風系統於不同環境溫、濕度條件下之操作建議。廠房的實驗量測根據測試內容區分為三個階段,第一階段實驗量測進行蒸發冷卻系統之觀測;第二階段實驗進行強制對流機制之觀測;第三階段實驗進行冷凍空調設備之觀測。第一階段的蒸發冷卻系統實驗結果顯示,此機制適合運作於高溫低濕之環境,在相對濕度 80% 以下為適當之使用條件,在嚴酷之高溫氣候條件下則效果有限,因此若室內之溫度高於 34°C,則需考量其他冷卻設備;第二階段的強制對流機制實驗結果顯示,在開啟 2 台風機增加走廊入風量時,同時開啟氣冷設備房間的入風口及設備後方線槽處之循環扇,可更有效率地將走廊之空氣引入房間內,故使用強制對流機制時,需開啟對應的循環扇及風機,以達到最佳之空氣對流及混合效果;第三階段的空調實驗結果顯示,於開啟冷凍空調期間,停止啟用其他的設備,氣冷設備房間的溫度分層高度位為 4 公尺,因此根據此分層高度作為空調開啟及關閉之參考點。根據所有的實驗結果,本研究建議以氣冷設備房間內部 3 公尺高之量測點作為環境監控溫度參考點,當室內環境監控乾球溫度低於 25°C,使用廠房內部既有的複合置換式通風系統。當乾球溫度範圍介於 25°C 至 28°C,僅使用強制對流機制。當乾球溫度範圍介於 28°C 至 34°C,則須依據當時乾球溫度及相對濕度對應之焓值決定;若焓值小於或等於 77.2 kJ/kg (濕球溫度小於或等於 25.2°C),同時使用蒸發冷卻系統及強制對流機制;若焓值大於 77.2 kJ/kg (濕球溫度大於 25.2°C) 則使用空調設備。當乾球溫度大於 34°C,僅開啟空調設備。本研究根據 2023 年 5 月份的外界環境溫、濕度量測資料分別估算使用改良型通風系統與全空調設備的電力能源消耗,並比較兩者初步估算後之電力消耗,以得到使用改良型通風系統之節能效益。初步估算結果顯示,使用改良型通風系統僅需全空調設備機制之 30.3% 電力消耗。本研究根據標準氣象年估算改良型通風系統成本回收時間,結果顯示,改良型通風系統可在使用兩個月後達到成本回收。


This study proposes a corresponding improved ventilation system in a full-scale industrial factory. The improved ventilation system is designed to maintain the indoor temperature below 30°C, which is the required operating condition for the experimental devices inside it. The purposes of this research project include using energy-efficient ventilation strategies to maintain acceptable indoor temperature and reducing the operation time of the traditional air-conditioning equipment, in order to propose a sustainable approach for an industrial factory. The improved ventilation system includes the hybrid displacement ventilation system in this high ceiling, 10.7 m high, factory, along with the auxiliary ventilation equipment and the air-conditioning equipment set up for this study. The auxiliary ventilation equipment includes forced convection devices and an evaporative cooling system. The forced convection devices consist of blowers and circulation fans. For the appropriate forced convection effect, the study considers the volume 494.5 m3 of the room with air-cooled devices, and the ceiling height of 3 m and the cross-sectional area of 164.8 m2 are taken into consideration. The design stage proposes 6 air change rates per hour as the required flow rate for the room with air-cooled devices. The estimation result shows that an appropriate flow rate of the blower is 0.824 m3/s. The factory uses two blowers, and each of them has the flow rate of 1.183 m3/s. If both blowers are simultaneously activated, the air change rate of the room having air-cooled devices reaches 17.2 times/hr. The hybrid displacement ventilation is restricted under the high outdoor temperature conditions. Therefore, the study uses the evaporative cooling system, including the water mist system and evaporative cooler, at the supply air region to reduce the indoor supply air temperature. When the auxiliary ventilation equipment is unable to maintain the indoor temperature below 30°C, the air-conditioning equipment is used. This study assumes an air change rate of 6 times/hr and considers the temperature and humidity conditions design ambient as 38°C and 80%, respectively. The target indoor conditions are set to the temperature and humidity at 25°C and 60%, respectively. The calculation results indicate that the refrigeration capacity required for the air-cooled device room is 16.9 RT in metric ton, equivalent to 65.4 kW. The factory chooses two air-conditioners, each of them has the cooling capacity of 10 USRT, equivalent to 35.2 kW. The study conducted full-scale temperature and humidity measurements within the factory to observe the performance of indoor temperature distribution by using the improving ventilation system under different weather conditions and gave operational suggestions. The experimental measurements were divided into three stages: the first stage used evaporative cooling systems, the second stage used forced convection devices, and the third stage used air-conditioning equipment. The experimental results of the first stage show that the evaporative cooling systems are suitable under the high-temperature and low-humidity conditions, that is below 80% relative humidity, and this approach is limited under the severe high-temperature conditions. Therefore, the air-conditioning equipment is considered if the ambient temperature exceeds 34°C. The experimental results of the second stage show that when two blowers provide the supply airflow through the corridor outside the room, it is more effective to use circulation fans simultaneously at the inlets of the room in order to increase the flow rate into the room. Therefore, when the forced convection devices are utilized, all circulation fans and blowers should be turned on to achieve optimal air convection and mixing inside the room. The experimental results of the third stage indicate that during the air-conditioning operation, the temperature stratification height is consistently about 4 m high. Therefore, the monitoring point for the utilization of air-conditioning equipment is decided based on this stratification height. According to all the experimental results, a monitoring point at a height of 3 m inside the room with air-cooled devices is chosen as the control point for switching different strategies. When the monitored dry bulb temperature is below 25°C, the hybrid displacement system inside the factory is used. When the monitoring temperature falls within the range of 25°C to 28°C, only the forced convection devices are employed. When the monitoring temperature is between 28°C and 34°C, the air enthalpy should be considered. If the air enthalpy is less than or equal to 77.2 kJ/kg (the wet bulb temperature less than or equal to 25.2°C), both the evaporative cooling system and forced convection devices are used. If the air enthalpy is greater than 77.2 kJ/kg (the wet bulb temperature greater than 25.2°C), only the air-conditioning equipment is used. When the monitoring temperature exceeds 34°C, only the air-conditioning equipment is activated. The study estimates the power consumption of respectively using the improved ventilation system and air-conditioning equipment based on the measurement data of the outdoor environment of May 2023 and compares the preliminary results to determine the energy-saving benefits of using the improved ventilation system. The preliminary results show that the improved ventilation system requires only 30.3% of the power consumption of the traditional air-conditioning equipment.This study estimated the cost recovery time of the improved ventilation system based on the typical meteorological year, and the results showed that the cost recovery of the improved ventilation system can be achieved after two months of use.

摘要................................................................................i Abstract..........................................................................iii 誌謝..............................................................................vii 目錄...............................................................................ix 符號索引.........................................................................xiii 表目錄.............................................................................xv 圖目錄...........................................................................xvii 1 緒論..............................................................................1 1.1 研究動機與目的.................................................................1 1.1.1 環境永續之發展進程與指標..................................................1 1.1.2 研究動機................................................................2 1.1.3 研究目的................................................................3 1.2 文獻回顧......................................................................4 1.2.1 通風模式概述.............................................................4 1.2.2 置換式通風..............................................................6 1.2.3 應用於工業廠房之複合置換式通風............................................7 1.3 論文架構.....................................................................11 2 實驗廠房、通風設計、儀器與方法.....................................................13 2.1 實驗廠房.....................................................................13 2.1.1 實驗場所...............................................................13 2.1.1 實驗區域...............................................................13 2.2 改良型通風系統之設計規劃.......................................................18 2.2.1 輔助通風設備............................................................18 2.2.2 冷凍空調設備............................................................22 2.3 實驗儀器.....................................................................24 2.4 實驗方法.....................................................................25 2.4.1 實驗量測方法............................................................25 2.4.2 實驗量測計畫............................................................26 2.4.3 資料分析方法............................................................28 3 實驗結果討論......................................................................31 3.1 第一階段實驗量測..............................................................31 3.1.1 2022 年 9 月 29 至 10 月 5 日實驗量測結果...............................32 3.1.2 2022 年 10 月 6 至 11 日實驗量測結果....................................33 3.2 第二階段實驗量測..............................................................34 3.2.1 Test 1 實驗量測結果.....................................................35 3.2.2 Test 2 實驗量測結果.....................................................36 3.2.3 Test 3 實驗量測結果.....................................................37 3.2.4 Test 4 實驗量測結果.....................................................37 3.2.5 Test 5 實驗量測結果.....................................................38 3.3 第三階段實驗量測..............................................................38 3.3.1 氣冷設備房間............................................................39 3.3.2 水冷設備房間............................................................42 3.4 改良型通風系統之操作建議.......................................................44 3.5 改良型通風系統之節能效益評估...................................................45 3.5.1 節能效益評估............................................................46 3.5.2 改良型通風系統成本回收時間評估...........................................46 4 結論與建議.......................................................................49 4.1 結論.........................................................................49 4.2 建議.........................................................................51 參考文獻...........................................................................53 作者簡歷..........................................................................145

[1] The Global Compact, "Who cares wins: Connecting financial markets to a changing
world," tech. rep., United Nations, 2004.
[2] A. Dahlsrud, "How corporate social responsibility is defined: an analysis of 37
definitions," Corporate social responsibility and environmental management, vol.
15, no. 1, pp. 1-13, 2008.
[3] United Nations, "Transforming our world: the 2030 agenda for sustainable
development," UN Doc. A/RES/70/1 (September 25, 2015), 2015.
[4] 黄荣芳、林错玲、许清閔,工業通風原理與實務 (Industrial Ventilation Principles and
Pruactices).中華環保安全衛生協會,2nd ed,Feb.,2020.
[5] P. F. Linden, "The fuid mechanics of natural ventilation,"Annual review of fluid
mechanics, vol. 31, no. 1, pp. 201-238, 1999.
[6] X. Meng, Y. Wang, X. Xing, and Y. Xu, "Experimental study on the performance of
bybrid buoyancy-driven natural ventilation with a mechanical exhaust system in an
industrial building," Energy and Buildings, vol. 208, p. 109674, 2020.
[7] H. Xing and H. B. Awbi, "Measurement and caleulation of the neutral height in a
room with displacement ventilation." Building and Environment, vol. 37, no. 10,
pp. 961-967,2002.
[8] D.-H. Han, S. Kim, J. H. Choi, Y. S. Kim, H. Chung, H. Jeong, N. Watjanatepin,
C. Ruangpattanawiwat, and S.-H. Choi, "Experimental study on thermal buoyancy-
induced natural ventilation," Enengy and Buildings, vol. 177. pp. 1-11, 2018.
[9] G. Wei, B. Chen, D. Lai, and Q. Chen, "An improved displacement ventilation
system for a machining plant," Atmospheric Environment, vol. 228, p. 117419,
2020.
[10] X. Dou, D. Xie, Z. Wang, P. Xiao, and H. Wang, "Improved buoyaney-driver hybrid
ventilation system for multiple-beat-source industrial buildings,"Case Studies
in Thermal Engineering, vol. 26, p. 101059, 2021.
[11] J. Pu, Y. Yuan, F. Jiang, K. Zheng, and K. Zhao, "Buoyancy-driven natural
ventilation characteristics of thermal corridors in industrial buildings,"
Journal of Building Engincering, vol. 50, p. 104107, 2022.
[12] P. Rohdin and B. Moshfegh, "Nunerical modelling of industrial indoor environ-
ments: A comparison between different turbulence models and supply systems
supported by feld measurements," Building and Environment, vol. 46, no. 11, pp.
2365-2374, 2011.
[13] H.-Q. Wang, C.-H. Huang, D. Liu, F.-Y. Zhao, H.-B. Sun, F.-F. Wang, C. Li G.-X.
Kou, and M.Q. Ye, "Fume transports in a high rise industrial welding hall with
displacement ventilation system and individual ventilation units." Building and
Environment, vol. 52, pp. 119-128, 2012.
[14] ASHRAE, ASHRAE Handbook-Fundamentals, SI ed. American Society of Heating,
Refrigerating, and Air Conditioning Engineers, Inc., 2021.
[15] L. Wang and Z. Zhu, "Research on temperature and humidity decoupling control of
constant temperature and humidity test chamber," in IOP Conference Series:
Materials Science and Engineering, vol. 711, p. 012104, IOP Publishing, 2020.
[16] Y. A. Cengel and M. A. Boles, Thernodynamics: an engineering approach, vol. 5.
MeGraw-Hill, 2006.
[17] W. Ketwong, T. Deethayat, and T. Kiatsiriroat, "Performance enhancement of air
conditioner in hot elimate by condenser cooling with cool air generated by
direet evaporative cooling,"Case Studies in Thermal Engineering. vol. 26. p.
101127, 2021.
[18] P. M. Cuce and S. Riffat, "A state of the art review of evaporative cooling
systems for building applications," Reneuable and Sustainable Energy Retieus,
vol. 54, pp. 1240-1249, 2016.
[19] D. Bishoyi and K. Sudhakar, "Experimental performance of a direct evaporative
cooler in composite climate of india." Energy and Buildings, vol. 153, pp. 190-
200. 2017.
[20] 台灣電力公司,<台灣電力公司電價表>,址:https://www.taipower.com.tw/tc/page.aspx?
mid=238上網日期:2023年8月7日·

QR CODE