簡易檢索 / 詳目顯示

研究生: 劉人豪
Ren-hao Liou
論文名稱: 不同溫度感測機制應用於地板送風系統的影響
The effect of thermostat location on performance of Under-Floor Air Distribution system
指導教授: 林怡均
Yi-jiun Peter Lin
口試委員: 朱佳仁
none
趙修武
none
陳明志
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 156
中文關鍵詞: 地板送風系統室內熱環境垂直溫度場噴流高度溫度分層高 度移除熱量電力消耗
外文關鍵詞: Under-Floor Air Distribution (UFAD) system, indoor thermal environment, vertical temperature distribution, throw height, stratification height, removed heat, power consumption
相關次數: 點閱:230下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討不同溫度感測機制, 當感測器位於不同位置時, 應用於地板
    送風(Under-Floor Air Distribution, UFAD) 系統, 調控室內環境之表
    現。與傳統天花板送風(Ceiling-Based Air Distribution, CBAD) 系統相
    比, 地板送風系統的室內環境有較明顯的溫度分層現象。所有的實驗組別,
    室內有固定的熱負載量。本實驗分為三個系列LR(A)、LR(B) 及LR(C),
    其感測器位置分別位於室內回風處Z = -300 mm、室內高度Z = 1300 mm
    及Z = 1700 mm 處。研究內容包括測量供風口速度與風量, 以及室內
    垂直溫度分佈與空調設備電力消耗。供風口速度與風量測量上, 分別於弱風
    (Q1)、中風(Q2) 及強風(Q3) 的供風選項時, 在供風口有或無散流蓋的
    條件下, 以熱線式風速計測量供風口的速度分佈, 與風罩式風量計測量單一
    與兩個供風口的風量。比較經由平均風速估算的風量值、風罩式風量計測量
    的風量值與廠商提供的風量值, 本研究採用風罩式風量計的測量結果作為
    分析的依據。另外, 在LR(A)、LR(B) 及LR(C) 三個實驗系列, 分別於
    Q1、Q2及Q3的供風選項時, 測量室內溫度的垂直分佈表現及空調系統室外
    機的消耗電功率及總電能。

    風量量測結果顯示, 在使用兩個供風口SA3與SA4時, 採用風罩式
    風量計量測單一風口的實驗結果顯示, 弱風時SA3為0.05 m3/s, SA4為
    0.03 m3/s, 中風時, SA3為0.05 m3/s, SA4為0.03 m3/s, 強風時SA3為
    0.08 m3/s, SA4為0.05 m3/s。同時量測兩個供風口(SA3+SA4) 之總風
    量顯示, 弱風時為0.07 m3/s, 中風時為0.08 m3/s, 強風時為0.12 m3/s。
    根據風量的量測結果, 估算房間的換氣率, 於弱風時為每小時4.1次, 中風
    時為每小時4.7次, 強風時為每小時7.1次。
    根據垂直溫度量測結果顯示, 定義噴流高度(Throw Height) 及溫度分
    層高度(Stratification Height), 進一步估算室內熱移除量。當改變溫度感
    測器位置時, 噴流高度及溫度分層高度無顯著變化; 當風量增加時, 噴流高
    度會有上升趨勢, 但溫度分層高度則在溫度感測器位於室內Z = -300 mm
    及Z = 1300 mm時, 即LR(A)及LR(C)系列, 有上升趨勢, Z = 1700 mm
    時, 即LR(B) 系列, 則有下降趨勢。於人員活動區域(高度0.1 m ∼ 1.7 m)
    時, 地板送風系統的移除熱量大於傳統天花板送風系統, 移除熱量增加率
    於Q1時約為1.44倍, Q2時約為1.46倍, Q3時約為1.25倍, 隨著室內總風
    量增加, 於人員活動區域之移除熱量增加率相對減少。LR(A)、LR(B) 及
    LR(C) 分別於Q1、Q2及Q3供風選項時, 消耗電能並無明顯的變化。


    This study is focused on the performance of Under-Floor Air Distribution (UFAD) system with different thermostat locations in an indoor space having the same heat load condition. Comparing Under-Floor Air Distribution system with
    Ceiling-Based Air Distribution (CBAD) system, UFAD system has clearer temperature stratification, and CBAD system has an uniform interior temperature.
    There are three series LR(A), LR(B) and LR(C) in experiments, and each series has a different thermostat location. The thermostat is located at Z = -300 mm, 1300 mm and 1700 mm respectively for the series of LR(A), LR(B) and LR(C). Experimental measurements were conducted in the test chamber utilizing the under-floor air distribution system. The UFAD system supplies cool conditioned air from the raised floor to the indoor space and extracts hot polluted
    air through return vents on the ceiling. The research measures the
    supply air velocity, the air flow rate, the vertical temperature profiles
    and estimates the removed heat in the indoor environment.

    Experimental results of the individual air flow rates of SA3 and
    SA4 diffusers are 0.05 m3/s and 0.03 m3/s for the Q1 option, 0.05 m3/s
    and 0.03 m3/s for the Q2 option, 0.08 m3/s and 0.05 m3/s for the
    Q3 option. The combination supply air flow rate, i.e. measuring the
    two supply diffusers at the same time, is 0.07 m3/s for the Q1 option,
    0.08 m3/s for the Q2 option and 0.12 m3/s for the Q3 option.

    The results show that the supply air flow rate affects the throw
    height and the stratification height significantly, but the thermostatic location has no clear relationship with them. As the supply
    air flow rate increases, the throw height rises in all the experimental
    series, and the stratification height rises in the series of LR(A) and
    LR(C), but it descends in the series of LR(B). The removed heat
    of the UFAD system from the floor level to the height of 1.7 m is
    more than that of the traditional mixing type system in all the ex-
    perimental series. The average values of Ep, the removed heat ratio
    of UFAD to CBAD system between 0.1 m and 1.7 m, are 1.44, 1.46
    and 1.25 in three series of experiments with the Q1, Q2 and Q3 options respectively for UFAD system. Experimental results show that
    the UFAD system provides a better heat removal efficiency for the
    bottom occupant region than the traditional mixing type system.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 符號索引. . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix 1 緒論. . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 通風方式. . . . . . . . . . . . . . . . . . . . . 2 1.2.2 熱舒適性及能源消耗. . . . . . . . . . . . . . . 6 1.3 論文架構及內容. . . . . . . . . . . . . . . . . . . . . . 8 2 實驗建築大樓、儀器及設備. . . . . . . . . . 11 2.1 臺灣建築科技中心大樓. . . . . . . . . . . . . . . . . . 11 2.1.1 臺灣建築科技中心大樓介紹. . . . . . . . . . . . 11 2.1.2 臺灣建築科技中心大樓實驗場地位置. . . . . . . 12 2.2 實驗場地空調設備介紹. . . . . . . . . . . . . . . . . . 14 2.2.1 變頻原理與傳統空調機概述. . . . . . . . . . . . 14 2.2.2 空調控制器(A.C. Remote Controller or Thermostat) . . . . . . . . . . 15 2.3 實驗儀器設備介紹. . . . . . . . . . . . . . . . . . . . 16 2.3.1 電子溫度測量儀器. . . . . . . . . . . . . . . . 16 2.3.2 風速及風量測量儀器. . . . . . . . . . . . . . . 19 2.3.3 數WT333位功率計(Power Meter) . . . . . . . 20 2.3.4 T-LSR150B與T-LST1500D 定位系統鍊式移動 平台(Motorized Linear Stages) . . . . . . . . 21 2.3.5 室內熱負載. . . . . . . . . . . . . . . . . . . 21 2.4 實驗測量方法. . . . . . . . . . . . . . . . . . . . . . . 21 2.4.1 供風口風速測量. . . . . . . . . . . . . . . . . 22 2.4.2 供風口風量測量. . . . . . . . . . . . . . . . . 23 2.4.3 溫度測量. . . . . . . . . . . . . . . . . . . . . 24 2.4.4 空調設備耗電量測量. . . . . . . . . . . . . . . 25 3 風速及風量量測實驗結果. . . . . . . . . . . . . . 27 3.1 風速量測實驗結果. . . . . . . . . . . . . . . . . . . . 27 3.1.1 水平風速量測結果. . . . . . . . . . . . . . . . 27 3.1.2 垂直風速量測結果. . . . . . . . . . . . . . . . 28 3.2 風量量測實驗結果. . . . . . . . . . . . . . . . . . . . 28 3.3 風速及風量實驗結果討論. . . . . . . . . . . . . . . . . 29 3.3.1 實際風速測量結果與討論. . . . . . . . . . . . . 29 3.3.2 實際風量測量結果與討論. . . . . . . . . . . . . 29 3.3.3 實驗量測空間換氣率(Air Change Per Hour, ACH) 估算. . . . . . . . . . . . . . . . . . . . . . . 31 3.4 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4 垂直溫度與電力消耗量測實驗. . . . . . . . . . . . . 33 4.1 實驗系列. . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 垂直溫度分布. . . . . . . . . . . . . . . . . . . . . . . 34 4.2.1 室外及室內溫度量測. . . . . . . . . . . . . . . 34 4.2.2 垂直溫度量測. . . . . . . . . . . . . . . . . . . 35 4.2.3 暫態及穩態的溫度量測. . . . . . . . . . . . . . 36 4.3 電力消耗. . . . . . . . . . . . . . . . . . . . . . . . . 36 4.4 垂直溫度實驗結果討論. . . . . . . . . . . . . . . . . . 36 4.4.1 供風口噴流高度(Throw Height, T.H.) . . . . . 36 4.4.2 溫度分層高度(Stratification Height, S.H.) . . . 40 4.4.3 室內移除熱量. . . . . . . . . . . . . . . . . . . 42 4.4.4 舒適性. . . . . . . . . . . . . . . . . . . . . . 44 4.5 電力消耗結果討論. . . . . . . . . . . . . . . . . . . . 44 4.6 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 結論與建議. . . . . . . . . . . . . . . . . . . . . . . 49 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 建議. . . . . . . . . . . . . . . . . . . . . . . . . . . 51 參考文獻. . . . . . . . . . . . . . . . . . . 53 作者簡歷. . . . . . . . . . . . . . . . . . . 155

    [1] 林憲德, 2004, 我愛綠建築: 健康又環保的生活空間新主張, 新自然主
    義. 高雄市政府環保局, ISBN 957-696-578-0.
    [2] Bauman, F., 2003, Underfloor Air Distribution (UFAD) Design
    Guide. American Society of Heating Refrigerating and Air Con-
    ditioning Engineers, Inc., Atlanta, GA, ISBN 1-031862-21-4.
    [3] ASHRAE, 1995, Thermal environmental conditions for human
    occupancy. Atlanta: American Society of Heating, Refrigerat-
    ing and Air-Conditioning Engineers, Inc., ANSI/ASHRAE Stan-
    dard 55a-1995.
    [4] ASHRAE, 1990, Method of testing for room air diffusion. At-
    lanta: American Society of Heating, Refrigerating and Air-
    Conditioning Engineers, Inc., ANSI/ASHRAE Standard 113-
    1990.
    [5] Li, R., Sekhar, S.C. & Melikov, A.K., 2010, Thermal comfort
    and IAQ assessment of under-floor air distribution system inte-
    grated with personalized ventilation in hot and humid climate.
    Building and Environment 45, 1906-1913.
    [6] Alajmi, A. & El-Amer, W., 2010, Saving energy by using
    underfloor-air-distribution (UFAD) system in commercial build-
    ings. Energy Conversion and Management 51 (8), 1637-1642.
    [7] Bauman, F., Webster, T. & Benedek, C., 2007, Cooling Airflow
    Design Calculations for UFAD. ASHRAE Journal 49 (10), 36-
    44.
    [8] ASHRAE, 2004, Thermal environmental conditions for human
    occupancy. Atlanta: American Society of Heating, Refrigerat-
    ing and Air-Conditioning Engineers, Inc., ANSI/ASHRAE Stan-
    dard 55-2004.
    [9] Lee, K., Xue, G. & Chen, Q., 2012, Thermal environment in
    indoor spaces with under-floor air distribution system 1. Im-
    pact of design parameters (1522-RP). HVAC & Research 18
    (6), 1182-1191.
    [10] Kong, Q. & Yu, B., 2008, Numerical study on temperature strat-
    ification in a room with underfloor air distribution system. En-
    ergy and Buildings 40, 495-502.
    [11] 蔡廷亞, 2013, 實驗測量研究地板送風系統應用於台灣建築科技中心
    大樓之室內環境。台灣科技大學碩士論文。
    [12] 黃齡嬌, 2010, 台灣首棟帆型建築-台科大台灣建築科技中心落成, 環
    保節能集一身, 台科大頂尖計畫電子報, 第四十二期。
    [13] 黃齡嬌, 2010, 台科大建築科技中心動土-臺灣杜拜帆船建築, 環保節
    能集一身, 台科大頂尖計畫電子報, 第二十八期。
    [14] 台灣建築科技中心, 2014, 台灣建築科技中心-得獎紀錄, 臺灣建築科
    技中心網站, http://www.tbtc-c.ntust.edu.tw/, 07/08。
    [15] 臺灣日立技報, 變頻式空調技術及節能監控系統技術, 臺灣日立公司。
    [16] Benedict, R. P., 1984, Fundamentals of Temperature Pressure
    and Air Flow Measurement. Third edition, John Wiley & Sons,
    Inc. ISBN 0-471-89383-8.
    [17] Powell, R.L., HALL, W.J., Hyink, C.H., Sparks, L.L., Burns,
    G.W., Sxroger, M.G., Plumb, H.H., 1974, Thermocouple Refer-
    ence Tables Based on the IPTS-68, U.S. Department of Com-
    merce, NBS Monograph 125.
    [18] 周志遠& 顏世雄, 1997, 電阻式溫度感測器測試原理。儀測技術雜誌.
    第二十期, 46-59.
    [19] Awbi, H.B., 2003, Ventilation of Buildings, Second edition, Spon
    Press, ISBN 0-415-27055-3.
    [20] Turner, J., 1973, Buoyancy Effects in Fluids. Cambridge Uni-
    versity Press. ISBN 052128623x.

    QR CODE