簡易檢索 / 詳目顯示

研究生: 蕭輔俊
Xiao-Fu-Jun
論文名稱: 鋼筋混凝土低矮型剪力牆強度之重新檢核
Re-examination of Strength of RC Squat Walls
指導教授: 鄭敏元
Min-Yuan Cheng
口試委員: 黃世建
Shyh-Jiann Hwang
李宏仁
Hung-Jen Lee
陳沛清
Pei-Ching Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 148
中文關鍵詞: 鋼筋混凝土剪力牆低矮牆剪力強度剪力模型
外文關鍵詞: Reinforced concrete, Shear wall, Squat wall, Shear strength, Shear strength model
相關次數: 點閱:271下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究藉由收蒐集過去國內外共138座低矮剪力牆試驗資料,將其整理成低矮剪力牆資料庫,觀察影響其試驗強度之測試參數,篩選出主要控制參數,再以此資料庫結果檢核評估ACI 318-14規範與過去學者所提出之剪力強度模型。
結果顯示高長比大於等於0.8試體,在剪應力需求小於0.83√f'c(MPa)為前提,似乎滿足規範對於低矮剪力牆的需求,試體強度可達到0.9Vmn。在高長比小於0.8試體中,試體剪應力需求小於0.83√f'c(MPa),仍有多數試體無法以撓曲強度主控,比對可能影響參數仍無法發現明確趨勢。
根據不同破壞機制假設,以兩種剪力強度模型評估試體強度,就本資料庫蒐集的所有試體而言,剪力強度模型min(Vn2,Vn5)評估試體最能反映試體剪力強度。


The research develops a database that collects results of 138 reinforced concrete (RC) low-rise walls tested previously in literature. The main objective is to investigate the design parameters that influence the specimen peak strength. Specimen peak strength is also evaluated by code-specified equations per ACI 318-14 and shear strength models proposed by previous researchers.
For specimens with aspect ratio greater than or equal to 0.8, analytical results indicate that specimen is capable of achieving Vmn if specimen shear stress demand is less than 0.83√f'c(MPa)and specimen is detailed in compliance with the ACI 318-14. For specimens with aspect ratio less than 0.8, most specimen peak strengths are lower than the nominal flexural strength and the trend is not clear regardless of the shear stress demand.
With the consideration of different failure mechanisms associated with the different shear strength models, the min{Vn2,Vn5} appears to provide the closest result for all test speimens collected in the database.

摘要 I Abstract III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法 2 1.4 研究內容架構 2 第二章 文獻回顧 3 2.1 剪力強度預測模型 3 2.2 ACI設計規範(2014)低矮剪力牆剪力強度 3 2.3 過去學者所建議的剪力強度模型 5 2.3.1 Wood (1990) 5 2.3.2 Gulec與Whittaker (2008,2011) 7 2.3.3 簡化軟化拉壓桿模型 (Hwang等學者,2001;Hwang與Lee,2002;Hwang等學者,2017) 8 2.3.4 Kassem (2015) 12 第三章 低矮剪力牆資料庫建立 17 3.1 低矮型鋼筋混凝土剪力牆試驗資料蒐集 17 3.2 資料庫參數定義說明 24 第四章 低矮剪力牆資料庫分析 31 4.1 簡介 31 4.2 高長比大於等於0.8 32 4.2.1 垂直鋼筋均佈配置 33 4.2.2 無圍束邊界構材 36 4.2.3 具圍束邊界構材 38 4.3 高長比小於0.8之試體 41 4.4 剪力強度評估模型 44 4.4.1 ACI 318-14剪力設計規範 Vn1 與 Vn2 比較 46 4.4.2 ACI 318-14剪力設計規範 Vn1 與Wood剪力模型 Vn3 比較 49 4.4.3 ACI 318-14剪力設計規範 Vn2 與簡化軟化壓拉桿模型 Vn5 比較 51 4.4.4 Wood剪力模型 Vn3 與簡化軟化壓拉桿模型 Vn5 比較 54 4.4.5 ACI 318-14剪力設計規範 Vn2 與Kassem剪力模型 Vn6 比較 56 4.4.6 Wood剪力模型 Vn3 與Kassem剪力模型 Vn6 比較 59 4.4.7 Gulec與Whittaker剪力模型 Vn4 61 4.5 剪力強度模型評估結果討論 64 第五章 結論與建議 67 參考文獻 69 符號說明 75 附錄A 低矮型剪力牆資料庫 79 附錄B 範例說明 125

ACI Committee 318, 2014, “Building Code Requirements for Structural Concrete and Commentary (ACI 318-14),” American Concrete Institute, Farmington Hills, Michigan, 519 pp.
Ahanasopoulou, A. and Parra-Montesinos, G. J., 2013, “Experimental Study on the Seismic Behavior of High-Performance Fiber-Reinforced Concrete Low-Rise Walls,” ACI Structural Journal, V. 110, No.5, Sep.- Oct., pp. 767-778.
Baek, J.–W., Park, H.–G., Lee, J.–H., and Bang, C.–J., 2017, “Cyclic Loading Test for Walls of Aspect Ratio 1.0 and 0.5 with Grade 550 MPa (80 ksi) Shear Reinforcing Bars,” ACI Structural Journal, V. 114, No.4, Jul., pp. 969-982.
Baek, J.–W., Park, H.–G., Lee, J.–H., and Shin, H.–M., 2018, “Shear-Friction Strength of Low-Rise Walls with 550 MPa (80 ksi) Reinforcing Bars under Cyclic Loading,” ACI Structural Journal, V. 115, No.1, Jan., pp. 65-77.
Cardenas, A. E., Russell, H. G., &; Corley, W. G. 1980. “Strength of low-rise structural walls.”, ACI Special Publication, V. 63, Aug., pp.221-242.
Cheng, M.–Y.; Hung, S.–H.; Lequesne, R. D.; and Lepage, A., 2016, “Earthquake-Resistant Squat Walls Reinforced with High Strength Steel,” ACI Structural Journal, V. 113, No.5, Sep.- Oct., pp. 1065-1076.
Gulec, C. K.; Whittaker, A. S.; and Stojadinovic, B., 2008, “Shear Strength of Squat Rectangular Reinforced Concrete Walls,” ACI Structural Journal, V. 105, No.4, Jul.-Aug., pp. 488-497.
Gulec, C. K. and Whittaker, A. S., 2011, “Empirical Equations for Peak Shear Strength of Low Aspect Ratio Reinforced Concrete Walls,” ACI Structural Journal, V. 108, No. 1, Jan.-Feb., pp. 80-89.
Hognestad, E., Hanson, N. W. and McHenry, D., 1955, “Concrete stress Distribution in Ultimate Strength Design,” ACI Journal Proceedings., V. 52, No. 4, Dec., pp. 455-480.
Hwang, S. –J.; Fang, W.–H.; Lee, H.–J.; and Yu, H.–W., 2001, “Analytical Model for Predicting Shear Strength of Squat Wall,” Journal of Structural Engineering, ASCE, Vol. 127, No. 1, Jan., pp. 43-50.
Hwang, S. –J.; and Lee, H. –J., 2002, “Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model,” Journal of Structural Engineering, ASCE, Vol. 128, No. 12, Dec., pp. 1519-1526.
Hwang, S. –J.; Tsai, R. –J.; Lam W. –K.; and Moehle, J. P., 2017, “Simplification of Softened Strut-and-Tie Model for Strength Prediction of Discontinuity Regions,” ACI Structural Journal, V. 114, No. 5, Sep.- Oct., pp. 1239-1248.
Kassem, W., 2015, “Shear Strength of Squat Walls: A Strut-and-Tie Model and Closed-Form Design Formula,” Engineering Structures, V. 84, Nov., pp. 430-438.
Kuang, J. S.; and Ho, Y. B., 2008, “Seismic Behavior and Ductility of Squat Reinforced Concrete Shear Walls with Nonseismic Detailing,” ACI Structural Journal, V. 105, No. 2, Mar.- Apr., pp. 225-231.
Lefas, I. D., Kotsovos, M. D., and Ambraseys, N.N. (1990). “Behavior of reinforced concrete structural walls: strength, deformation characteristic, failure mechanism.” ACI Structural Journal, V. 87, No. 1, Jan.-Feb., pp. 23-31.
Looi, D.T.W., Su, R.K.L., Cheng, B., Tsang, H.H., 2017, “Effects of axial load on seismic performance of reinforced concrete walls with short shear span.” Engineering Structures, V. 151, Aug., pp. 312-326.
Luna, B. N.; Rivera, J. P.; and Whittaker, A. S., 2015, “Seismic Behavior of Low-Aspect-Ratio Reinforced Concrete Shear Walls,” ACI Structural Journal, V. 112, No. 5, Sep.- Oct., pp. 593-604.
Maier, J., and Thürlimann, B., 1985, “Bruchversuche an Stahlbeton-scheiben,” Institut für Baustatik und Konstruktion, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland, 130 pp.
Mickleborough, N. C., Ning, F. and Chan, C. M., 1999, ”Prediction of Stiffness of Reinforced Concrete Shearwalls under Service Loads” , ACI Structural Journal, V. 96, No. 6, NOV.-DEC., pp. 1018-1026.
Moehle, J. P.; Ghodsi, T.; Hooper, J. D.; Fields, D. C.; and Gedhada, R., 2011, “Seismic Design of Cast-in-Place Concrete Special Structural Walls and Coupling Beams: A Guide for Practicing Engineers,” NEHRP Seismic Design Technical Brief No. 6, National Institute of Standards and Technology, U.S. Department of Commerce, NIST GCR 11-917-11, 37 pp.
Mohammadi–Doostdar, H., 1994, "Behavior and Design of Earthquake Resistant Low-Rise Shear Walls," Ph.D. Dissertation, Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada, 234 pp.
Park, H. -G.; Baek, J. -W.; Lee, J.- H.; and Shin, H. -M., 2015, “Cyclic Loading Tests for Shear Strength of Low-Rise Reinforced Concrete Walls with Grade 550 MPa Bars,” ACI Structural Journal, V. 112, No. 3, May-June, pp. 299-310.
Paulay, T., and, Priestley, M. J. N., 1993, “Stability of Ductile Structural Walls,” ACI Structural Journal, V. 90, No.4, July.-Aug., pp. 385-392.
Pilette, F. C., 1987, “Behavior of Earthquake Resistant Squat Shear Walls,” MS thesis, Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada, 177 pp.
Salonikios, N. T., Kappos, J. A., Tegos, A. I. and Penelis, G. G., 1999, “Cyclic Load Behavior of Low-Slenderness Reinforced Concrete Walls: Design Basis and Test Results.”, ACI Structural Journal, V. 96, No. 4, Jul.-Aug., pp. 649-660.
Synge, A. J., 1980, “Ductility of Squat Shear Walls,” Research Report 80-8, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, 142 pp.
Taleb, R.; Kono, S.; Tani, M.; and Sakashita, M., 2014, “Effect of End Region Confinement on Seismic Performance of RC Cantilever Walls,” Proceedings of the 10th National Conference in Earthquake Engineering, Earthquake Engineering Research Institute, Anchorage, Alaska, Jul., 11 pp.
Terzioglu, T., Orakcal, K., Massone, L., M., 2018. “Cyclic lateral load behavior of squat reinforced concrete walls,” Engineering Structures, V. 160, pp. 147-160.
Wibowo, L. S. B., 2017 “Strength and Deformation Capacity of High-Shear Demand RC Squat Wall using High-Strength Materials,” Ph.D. Dissertation, Department of Civil and Construction Engineering, University of Science and Technology, Taipei, Taiwan.
Wasiewicz, Z. F., 1988, “Sliding Shear in Low-Rise Shear Walls under Lateral Load Reversals,” MS thesis, Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada, 127 pp.
Wood, S. L., 1990, “Shear Strength of Low-Rise Reinforced Concrete Walls,” ACI Structural Journal, V. 87, No. 1, Jan.-Feb., pp. 99-107.
Wood, S. L., 1991, “Performance of Reinforced Concrete Buildings during the 1985 Chile Earthquake: Implications for the Design of Structural Walls,” Earthquake Spectra, EERI, V. 7, No. 4, pp. 607-638.
李嘉泰,1987,「低型剪力牆之牆筋配置對其耐震行為之影響」,碩士論文,成功大學建築研究所,台南。
黃銘宏,2016,「高強度鋼筋混凝土開孔牆之震損控制研究」,碩士論文,國立台灣大學土木工程系,台北。
葉柔伶,2017,「開孔鋼筋混凝土剪力牆耐震能力提升之研究」,碩士論文,國立台灣大學土木工程系,台北。
吳怡謙,2017,「高強度鋼筋混凝土開孔剪力牆裂縫控制之研究」,碩士論文,國立台灣大學土木工程系,台北。
周延,2018,「不同型式之特殊邊界構材於低矮剪力牆往復載重行為研究」,碩士論文,國立台灣科技大學營建工程系,台北。

QR CODE