簡易檢索 / 詳目顯示

研究生: 張欽舜
Chin-shun Chang
論文名稱: 以地電阻量測土壤中灌漿液之灌注行為
Monitoring the Intrusion Behavior of Grouts in Soils Using ERT Method
指導教授: 廖洪鈞
Hung-Jiun Liao
口試委員: 鄭世豪
none
蔡道賜
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 106
中文關鍵詞: 土壤灌漿地電阻量測電阻率灌漿材料
外文關鍵詞: Soil grouting, Resistivity, Electrical Resistivity Tomography, Grouts
相關次數: 點閱:103下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當土壤中注入灌漿材料時,除對現地土壤之工程性質產生影響外也會對原土壤介質的導電性造成變化,此一導電性之變化若能予以量測,可作為侵入介質(即灌漿材料)分佈狀況的判斷指標。因此,本研究於台北市承德路六段,士林高爾夫練習俱樂部東方50公尺處取得之土樣,進行一系列之導電性研究。並求出低塑性黏土(CL)、粉質砂土(SM)、低塑性粉土(ML)等三種土壤之含水量和孔隙比,對電阻率之影響關係;同時也量測出幾種常用的低壓灌漿材料之電阻率。最後在以上述結果為基礎,分別以水平脈狀分佈和近似脈狀分佈試體來量測其電導率,建立灌漿材料在粉質砂土中劈裂脈狀之分佈情況與其電導率之關係,再由其推估出脈狀分佈比N和電導率變化比σa之關係轉換式,希冀於未來施作雙環塞灌漿工法時,能以現場二維地電阻量測出其灌漿材料在地層脈狀分佈上之解析。


    When injecting grout material to the ground, it not only changes the engineering properties of soil but also the electrical conductivity of soil. The change of electrical resistivity of in-situ soil is related to the intrusions of grout material in soil and can be used as an index of grouting quality. Soil samples from the Shih Lin district of Taipei city was used for a series soil conductivity tests. The relationship between water contents and void ratios of clayey soil (CL), silty sand (SM), and silty soil (ML) and the conductivity of soil was determined. Meanwhile, the electrical resistivities of several different grout materials were also measured. Based on the results above, the electrical resistivities of fracture grouted soil with either layered or randomly distributed intrusions were measured using a two-electrode soil specimen box. Subsequently, the relationship of grout intrusion ratio (N) of grouted soil and change of conductivity ratio (sa) is established. Such relationship can be used to estimate the effectiveness of soil grouting from the soil resistivity measurement by Electrical Resistivity Tomography (ERT) method.

    摘 要 I ASTRACT II 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1研究動機 1 1.2研究目的與方法 2 1.3論文架構 2 第二章 文獻回顧 4 2.1 地電阻影像探測法 4 2.2 模型和反算法的發展 5 2.3地盤改良灌漿工法 6 2.4 灌漿工法之特性 10 2.5低壓灌漿工法 12 2.6 現地ERT量測之應用 15 第三章 研究方法 16 3.1 雙環塞灌漿工法 16 3.1.1 工法說明 16 3.1.2 施工步驟 18 3.1.3雙環塞灌漿施工流程 21 3.1.4施工機械設備 22 3.2地電阻剖面法基本原理 22 3.3量測方式 25 3.3.1二維地電阻排列方式 25 3.3.2二維地電阻施測流程 29 3.3.3電極排列方式的優缺點 35 3.4 反算原理 36 3.4.1 正算模型‐2D Forward modeling 36 3.4.2 正算模擬處理二維的控制方程式 37 3.4.3 反算方法‐2D inversed model 38 3.4.4各種反算法 38 3.5量測儀器與後處理反算軟體 40 第四章 試驗計畫與試驗材料 45 4.1試驗計畫說明: 45 4.2試驗土樣 46 4.2.1 黏土 46 4.2.2粉質砂土 46 4.2.3粉土 47 4.3灌漿材料 47 4.3.1 皂土液 47 4.3.2 Perma Rock 47 4.3.4卜特蘭第 I 型水泥 52 4.3.5水玻璃系MT-1灌漿材 52 4.3.6水玻璃系MT-2灌漿材 53 4.3.7 LW灌漿材 55 第五章 試體準備與試驗儀器 57 5.1 試體的準備 57 5.1.1 土壤電阻率量測試驗 57 5.1.2灌漿材料電阻率量測試驗 60 5.1.3水平分佈改良體電阻率量測試驗 61 5.1.4 隨機分佈改良體電阻率量測試驗 62 5.2 基本物理性質 63 5.2.1 比重 64 5.2.2 土壤分類 64 5.2.3 含水量 64 第六章 研究成果分析 65 6.1 基本物理性質 65 6.2 灌漿材料 71 6.3 土壤含水量和孔隙比對電阻率的關係 71 6.4 灌漿材料與電阻率的關係 88 6.5 粉質砂土與灌漿材料改良體電阻率關係 90 6.5.1 不同灌漿材料下水平脈狀改良體和電阻率關係 90 6.5.2 不同灌漿材料改良體之水平脈狀分佈比與電導率之關係 93 6.5.3 改良體水平脈狀分佈比與電導率變化比之關係 95 6.5.4 不同灌漿材料改良體之隨機脈狀分佈比與電導率關係 96 6.5.5 改良體隨機脈狀分佈比與電導率比之關係 98 6.5.6 隨機脈狀分佈比和水平脈狀分佈比之差異比較 100 第七章 結論與建議 101 7.1 結論 101 7.2 建議 102 參考文獻 103

    1. 廖洪鈞、陳福勝主編,「地盤改良設計施工及案例」,一版,科技圖書股份有限公司,民國九十五年。
    2. 李維峰、張嘉峰、梅興泰、蔡道賜,「地電阻影像剖面探測於地下工程之應用」,地工技術雜誌,第108 期,第91-104頁,民國九十五年。
    3. 蔡艾迪,「應用地電阻影像法偵檢DNAPL污染」,清雲科技大學碩士論文,民國九十六年。
    4. 王子賓,「結合地電阻影像剖面法及透地雷達法調查DNAPLs之案例研究」,國立中央大學碩士論文,民國九十四年。
    5. 梁勛泓,「潮州斷層之電阻率構造研究」,國立中央大學碩士論文,民國九十六年。
    6. 陳軍韜,「應用地電法探討地下掩埋體之污染」,清雲科技大學碩士論文,民國九十九年。
    7. 梅興泰、鄭富書、蔡道賜,「地電阻影像剖面法對非均質地下實體之模擬分析」,技術學刊,第二十一卷,第四期,第369-382頁,民國九十五年。
    8. 米倉亮三・島田俊介,「薬液注入における長期耐久性の研究、土と基礎」,Vol.40No12,pp.17-22,1992。
    9. Inman, J.R, 1975,” Resistivity inversion with ridge regression,” Geophysics, pp.798-817.
    10. Koefoed, O.,1979 , “resistivity sounding measurements,” Elsevier Scientific Publ,Geosounding Principles 1, pp.278.
    11. Loke, M.H.,2003 , “Tutorial: 2-D and 3-D electrical imaging surveys,” Geotomo Software, Malaysia.
    12. Dahlin, T. and Zhou, B. ,2004,“A numerical comparison of 2D resistivity imaging with 10 electrode arrays,”Geophysical prospecting, Vol. 52, pp.379-398.
    13. Edwards, L.S. ,1977, “A modified pseudosection for resistivity and ip,” Geophysics, Vol. 42,No.5, pp.1020-1036.
    14. Zhou, B. and Dahlin, T. ,2003, “Properties and effects of measurement errors on 2D resistivity imaging surveying,’’ Near surface geophysics, Vol.1, pp.105-117.
    15. Takahashi, T. ,2004, “ISRM Suggested Methods for land geophysics in rock engineering,” International journal of rock mechanics & mining sciences, Vol. 41, pp.885-914.
    16. Coggon, J. H. ,1971, “ Eletromagnetic and Electrical Modeling by the Finite Element,”Geophysics, Vol. 36, pp. 132-155.
    17. Olayinka, A.I. and Yaramanci, U. ,2000,” Use of block inversion in the 2-D interpretation of apparent resistivity data and its comparison with smooth inversion,” Journal of Applied Geophysics, pp. 63-82.
    18. Lines, L.R., and Treitel, S. ,1984, “Tutorial A Review of Least-squares Inversion and Its Application to Geophysical Problems,” Geophysical Prospecting, Vol. 32, pp. 159-186.
    19. Constable, S.C., Parker, R.L., and Constable, C.G. ,1987, “Occam’s Inversion: APractical Algorithm for Generating Smooth Models from ElectromagneticSounding Data,” Geophysics, Vol. 52, No. 3, Mar., pp. 289-300.
    20. Lowry, T., Allen, M.B., and Shive, P.N. ,1989, “Singularity Removal: A Refinement of Resistivity Modeling Techniques,” Geophysics, Vol. 54, No.6, pp. 766-774.
    21. Wolke, R. and Schwetlick, H.,1988, “ Iteratively reweighted least squares algorithms, convergence analysis, and numerical comparisons,” SIAM Journal of Scientific and Statistical Computations, pp. 907-921.
    22. deGroot-Headlin, C., and Constable, S. ,1990, “Occam's Inversion to Generate Smooth, Two-Dimensional Models from Magnetotelluric Data,” Geophysics, Vol. 55, No. 12, pp. 1613-1624.
    23. Sasaki, Y. ,1992, “Resolution of Resistivity Tomography Inferred from Numerical Simulation,” Geophysical Prospecting, Vol. 40, pp. 453-463.
    24. Loke, M.H. and Barker, R.D. ,1995, “Least-squares Deconvolution of Apparent Resistivity Pseudosections,” Geophysics, Vol. 60, No. 6, pp. 1682-1690.
    25. Loke, M.H. and Barker, R.D. ,1996, “Rapid Least-Squares Inversion of Apparent Resistivity Pseudosections by A Quasi-Newton Method,” Geophsical Prospecting, Vol. 44, pp. 131-152.
    26. Loke, M.H. and Dahlin, T.,2002, “A Comparison of the Gauss-Newton and Quasi-Newton Methods in Resistivity Imaging Inversion,” Geophysics, pp.149-162.

    QR CODE