簡易檢索 / 詳目顯示

研究生: 楊士葆
Shih-Pao Yang
論文名稱: 稀薄氣體流過有柱子的微流道研究探討
Experimental investigation of diluted gas flowing through microchannels with square structures
指導教授: 蘇裕軒
Yu-Hsuan Su
口試委員: 陳品銓
Pin-Chuan Chen
陳國聲
Kuo-Sheng Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 109
中文關鍵詞: 微流道稀薄氣體切線動量係數
外文關鍵詞: the tangential momentum accommodation coefficien, rarefaction, microchannel
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當流道的尺寸縮小且在相同的大氣環境下時, Knudsen number 將相對增加, 使得傳統的無滑移條件及理論分析不再適用, 造成流動進入滑移流動, 進而需討論流場中滑移流動行為, 並藉由巨觀的現象及微觀的行為來描述流場的流動變化。微流道通常是藉由微機電製程所製造的, 而表面粗糙度卻是影響切線動量係數的重要參數之一, 並研究氣體於其內所產生的滑移流現象, 但是若是在不同的表面粗糙度下, 必定會產生不同的結果, 但是表面粗糙度是在製程的過程當中必然會產生的結果, 故我們利用微機電製程在微流道內建構不同高度的柱子( 1μm, 2 μm and 3 μm), 使得主要的柱子是經由人為所控制的, 隨後再使用經過重新設計以避免漏電流產生的陽極鍵結系統對微流道晶片進行氣密封裝, 以利後續量測實驗的進行。本實驗所使用的為雙槽累積量測系統, 所量測的壓差對時間的變化, 即可求出質量流率。
    本實驗結果顯示, 流道中柱子在高度為1μm的情形之下, 儘管面積變化, 但其單位質量並不隨紐森數改變, 代表TMAC 受到柱子影響改變, 其中氦氣因為受到局部紐森數1.6影響, 導致其動量交換不足, 使得TMAC 參數比空白流道來的低, 並且其質量流率受到面積減少影響其減少幅度不會正比於面積減少的量, 會略高於面積比; 當柱子高度越高, 面積越來越小結果導致單位質量流率隨著紐森數改變, 在紐森數其越小時越接近連體行為, 流道中柱子在高度為2μm的情形之下, 單位質量流率比略接近面積比; 流道中柱子在高度為3μm的情形之下質量流率減少幅度大於面積縮減的量。當紐森數越大時後會形成一定值, 其會與流道面積比有關。在相同出口紐森數, 當壓縮比越低其平均紐森數提高, 動量交換不完全使得質量傳輸現象越大, 導致單位質量流率會提高。


    With rarefaction the flow behavior deviate from traditional Navior-Stokes
    equations with no-slip boundary condition. In place of slip boundary with Navior-Stokes equation, it is used to calculate a flow under somewhat and moderately dilute conditions. Maxwellian slip conditions are applied which in turn refer to the tangential momentum accommodation coefficient (TMAC). The tangential momentum accommodation coefficient is affected by such as surface roughness and gas properties. In that the mechanisms of TMAC is not authentically certain, it intrigues us to investigate profoundly the flow in microchannels.
    In this work, microchannels existing some artificial square(10 μm × 10 μm)
    structures with height 1μm, 2 μm and 3 μm pretending surface roughness were
    also constructed and hermetically sealed by the anodic bonding technology. The mass flow rate was measured by the dual-tank accumulation system,where the rate is related to time rate of differential pressure variation between two fixed volume tanks.
    The results found that helium flow into microchannel existing square with 1μm
    height decreases the TMAC because of large local Knudsen number. The mass
    flow rate decrease slightly that compared to the microchannel without structures due to insufficient collision of molecular. Also, mass flow rate in channel existing square with 2 μm and 3 μm height is extremely affected by shrinking area while with increase of Knudsen number the normalized mass flow rate will enlarge because of insufficient molecular collision. At the same output Knudsen number and different compressibility, mass flow rate will influence by local pressure. Low compressibility decreases the possibility of molecular collision resulting enlarged normalized mass flow rate.

    1 導論 1.1 前言與研究目的 1.2 文獻回顧 1.3 論文架構 2 理論分析 2.1 無滑移流動 2.1.1 二維平板流動 2.1.2 矩形之穩態不可壓縮流 2.2 滑移流動 2.2.1 滑移速度之邊界條件 2.2.2 滑移邊界之質量流率公式推導 2.2.3 質量流率公式與切線動量係數的關係 3 微流道晶片與陽極封裝 3.1 微流道晶片 3.2 陽極封裝 3.2.1 封裝鍵結原理與設備 3.2.2 陽極封裝鍵結步驟 3.3 接合介面 4 實驗設備與步驟 4.1 實驗設備 4.1.1 定容量測系統 4.1.2 實驗裝置 4.2 實驗步驟 4.2.1 實驗前處理 4.2.2 實驗過程 4.2.3 實驗效能 5 實驗參數與結果討論 5.1 實驗設定 5.1.1 實驗氣體選用 5.1.2 實驗分子模型選用 5.1.3 實驗壓力範圍 5.2 實驗結果討論 5.2.1 實驗流動型態驗證 5.2.2 切線動量係數參數求取 5.2.3 幾何形狀與質量流率 5.2.4 不同壓縮比對於質量流率影響 6 結論及未來發展 6.1 結論 6.2 未來發展 A 實驗數據資料表 參考文獻

    [1] R. Prud’homme, T. Chapman, and J. Bowen, “Laminar compressible flow in
    a tube,“ Appl. Sci. Res., vol. 43, 1986, pp. 67−74.
    [2] A. Beskok and G. Karniadakis, “Simulation of heat and momentum transfer
    in micro-geometries,“ 1993, AIAA Paper 93-3269.
    [3] K. Pong, C. Ho, J. Liu, and Y.Tai, “Non-linear pressure distribution in uniform microchannels,“ in Appl, Macrofabrication to Fluid Mechanics, ASME
    winter Annu. Meet., Chicago, IL, Nov. 1994, pp. 51−56.
    [4] J. Harley, Y. Huang, H. Bau, and J. N. Zemel, “Gas flow in micro-channels,“ J. Fluid Mech., vol. 284, 1995, pp. 257−274.
    [5] Wataru Sugiyama, Tadashi and Kenji Nakamori, “Rarefied gas flow between
    two flat plates with two dimensional surface roughness,“Vacuum, 1996, vol.
    47, pp. 791−794..
    [6] Errol B.Arkilic, Martin A. Schmidt, and Kenneth S. Breuer “Gaseous Slip
    Flow in Long Microchannel,“ Journal of Microelectromechanical Systems,
    1997, 6, pp. 167−178.
    [7] E. B.Arkilic, M. A. Schmidt, and K. S. Breuer “Sub-nanomol per second flow measurement near atmospheric pressure,“ 1998.
    [8] Errol B.Arkilic, Kenneth S. Breuer, and Martin A. Schmidt, “Mass flow and tangential momentum accommodation in silicon micromachined channels,“
    Journal of Fluid Mechanics, 2001, 437, pp. 29−43.
    [9] Jean Maurer, Patrick Tabeling, Pierre Joseph, Herve Willaime, “Second-order slip laws in microchannels for helium and nitrogen,“ Physics of Fluids, vol. 15, 2003.
    [10] A. Graur, J. G. Meolans, D. E. Zeitoun, “Analytical and numerical description for isothermal gas flows in microchannels,“ Physics of Fluids, 2006, vol. 15.
    [11] Timothee Ewart, I. A. Graur, T. Ewart, J. G. Meolans, “Tangential momentum accommodation in microtube,“ Microuidics and Nano uidics, 2007, vol. 3, pp. 689−695.
    [12] Pierre Perrier, Irina Graur, T. Ewart, J. G. Meolans, “Mass flow rate measurements in microtubes: From hydrodynamic to near free molecular regime,“ Physics of Fluids, 2011, vol. 23.
    [13] H Yamaguchi, Y Matsuda, T Niimi “Tangential Momentum Accommodation
    Coefficient measurements for various materials and gas species,“Journal of
    Physics: Conference Series, 2012, vol. 362.
    [14] H. Sun, M. Faghri,“Effect of surface roughness on nitrogen flow in a Microchannel using the direct simulation Monte Carlo method,“ Numerical Heat
    Transfer, Part A, 2003, vol.43.
    [15] Wang M, Li Z,“Simulations for gas flows in microgeometries using the direct simulation Monte Carlo method,“ International Journal of Heat and Fluid Flow, 2004, vol.25, pp. 975−985.
    [16] Yan Ji, Kun Yuan, and J.N. Chung,“Numerical simulation of wall roughness on gaseous flow and heat transfer in a micochannel,“ Internal Jounal of Heat and Mass Transfer, 2005, 49, 1329−1339.
    [17] Jaan Aarik, Aleks Aidla, Aarne Kasikov, Hugo M‥andar,Raul Rammula,
    Vaino Sammelselg, “Influence of carrier gas pressure and flow rate onatomic
    layer deposition of HfO2 and ZrO2 thin films,“ Applied Surface Science, 2006, vol. 252, pp. 5723−5734.
    [18] Magnus Wetterhall, Stefan Nilsson, Karin E. Markides, and Jonas Bergquist, “A Conductive Polymeric Material Used for Nanospray Needle and Low-Flow Sheathless Electrospray Ionization Applications,“ Analytical Chemistry, 2002, vol. 74, pp. 239−245.
    [19] Jan A. Dziuban(2006), Bonding in microsystem technology, Springer Series in Advanced Microelectronics, Vol.24.
    [20] Frank M. White(2006), Viscous Fluid Flow, McGraw-Hill, New York.
    [21] Eric F. May, Robert F. Berg, and Michael R. Moldover, “Reference Viscosities of H2, CH4, Ar, and Xe at Low Densities,” International Journal of Thermophysics, Aug. 2007, vol. 28, No. 4, pp. 1085−1110.
    [22] R. Byron Bird, Charles F. Curtiss, and Joseph O. Hirschfelder(1954), Molec-ular Theory of Gases and Liquids, Wiley, New York.

    無法下載圖示 全文公開日期 2020/01/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE