簡易檢索 / 詳目顯示

研究生: 鍾易樺
I-Hua Chung
論文名稱: 應用適應性類神經模糊推論系統於氣體絕緣開關瑕疵辨識之研究
Application of Adaptive Neuro-Fuzzy Inference System to the Defect Recognition of Gas Insulated Switchgear
指導教授: 吳瑞南
Ruay-Nan Wu
口試委員: 張宏展
Hong-Chan Chang
郭政謙
Cheng-Chien Kuo
陳建富
Jiann-Fuh Chen
林育勳
Yu-Hsun Lin
陳鴻誠
Hung-Cheng Chen
陳財榮
Tsair-Rong Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 121
中文關鍵詞: 局部放電氣體絕緣開關適應性類神經模糊推論系統
外文關鍵詞: partial discharges, gas-insulated switchgear, adaptive neuro-fuzzy inference system
相關次數: 點閱:272下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氣體絕緣開關設備因電、熱或人為在製造過程中的疏失,導致在電力系統運轉的過程中發生故障。其中造成氣體絕緣開關絕緣劣化的主要原因有:絕緣材質表面污垢造成之沿面放電、存在於絕緣材質中的雜質及空洞造成內部放電、現場組裝或施工不良,造成尖端而成形之電暈放電,以及因內部放電劇烈形成電樹通道放電等。由於不同瑕疵類型會產生不同的局部放電特徵,故可對運轉中的電力設備利用量測儀器檢測局部放電後進行分析,以達到預防性設備故障診斷的目的,其將可避免引起不必要的停電及損失。因此,評估氣體絕緣開關設備中可能存在的瑕疵類型,即成為本研究之重要課題。本文初步選用三台氣體絕緣開關分別在封裝前於內部預製不同瑕疵類型,藉由施加不同試驗電壓測得各類瑕疵的局部放電記錄資料後,利用數種統計方法萃取出特徵參量做為適應性類神經模糊推論系統(adaptive neuro-fuzzy inference system, ANFIS)的輸入資料,以評估辨識的效果。由ANFIS為核心組成的瑕疵辨識系統分析結果顯示,各類瑕疵類型的平均辨識率皆達90%以上。本文提出的系統架構除可持續累積氣體絕緣開關設備的瑕疵量測資料庫外,同時可做為後續其它電力設備瑕疵辨識系統建構的參考依據。


Partial discharge (PD) is the main cause of degradation of the insulation in gas-insulated switchgear (GIS). PD phenomena include: surface discharge, cavity discharge, corona discharge, and treeing channel discharge. Previous research has shown that different types of defects in GIS generate different symptoms of PD, which are associated with various degrees of damage to the GIS. Hence, PD detection is essential to the reliable evaluation of insulation systems and the identification of defects in GIS. In this research, the experimental objects were GIS defect models, which were filled with SF6 gas. Three models were designed based on the results of investigations of numerous power equipment failures. Statistical features were extracted from the PD pattern data and were inputs of adaptive neuro-fuzzy inference system (ANFIS). The results reveal that ANFIS classification has a high success rate, reaching an acceptable classification accuracy 90%. In addition to accumulating a huge mass of PD data of GIS, the procedure that proposed in this study can be also used to develop a data base of defect recognition for other power equipment.

中文摘要I 英文摘要II 誌謝III 目錄IV 符號索引VII 圖目錄IX 表目錄XIV 第一章緒論1 1-1研究背景與動機1 1-2研究目的及方法11 1-3論文架構20 第二章局部放電試驗設備及方法22 2-1氣體絕緣開關介紹22 2-2試驗系統說明23 2-3試驗量測規劃26 第三章量測資料處理及分析31 3-1資料化簡方法31 3-2局部放電2-D分布圖譜37 第四章局部放電特徵參量39 4-1基於電壓相位之特徵參量萃取39 4-1-1基本放電參量39 4-1-2修正交叉相關係數40 4-1-3放電量強度分布41 4-2基於放電區域之特徵參量萃取44 4-2-1基本放電參量51 4-2-2放電量相位分布53 4-2-3放電量高度分布55 4-3基於碎形理論之特徵參量萃取58 4-3-1碎形維度58 4-3-2差盒維數法60 第五章適應性類神經模糊推論系統63 5-1模糊系統相關理論63 5-1-1歸屬函數63 5-1-2映射65 5-1-3模糊集合66 5-1-4Sugeno推論模式66 5-1-5模糊系統的優缺點68 5-2類神經網路相關理論68 5-2-1人工神經元68 5-2-2倒傳遞網路70 5-2-3最小平方估測法72 5-2-4類神經網路的優缺點74 5-3適應性類神經模糊推論系統架構74 5-4適應性類神經模糊推論系統學習演算法78 第六章實測資料分析80 6-1辨識器參數評估80 6-1-1訓練及測試樣本80 6-1-2選擇歸屬函數類型81 6-1-3歸屬函數數量84 6-1-4辨識門檻87 6-2特徵參量選取分析89 6-2-1瑕疵類型一之特徵參量選取(GIS-1)91 6-2-2瑕疵類型二之特徵參量選取(GIS-2)96 6-2-3瑕疵類型三之特徵參量選取(GIS-3)101 6-3並行辨識系統測試結果與討論107 第七章結論及未來研究方向111 7-1結論111 7-2未來研究方向111 參考文獻114 附錄A局部放電特徵參量表120

[1]T. Tanaka, “Aging of polymeric and composite insulating materials. Aspects of interfacial performance in aging,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 9, pp. 704-716, 2002.
[2]V. M. Moreno and R. S. Gorur, “AC and DC performance of polymeric housing materials for HV outdoor insulators,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 6, pp. 342-350, 1999.
[3]C. J. Jones, “CIGRE working group 13.09-monitoring and diagnostic techniques for switch equipment,” IEEE/PES Transmission and Distribution Conference and Exposition, Vol. 2, pp. 1083-1087, 2001.
[4]P. C. Baker, M. D. Judd, and S. D. J. McArthur, “A frequency-based RF partial discharge detector for low-power wireless sensing,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, pp. 133-140, 2010.
[5]A. Sabot, A. Petit, and J. P. Taillebois, “GIS insulation co-ordination: on-site tests and diagnostic techniques. A utility point of view,” IEEE Transactions on Power Delivery, Vol. 11, pp. 1309-1316, 1996.
[6]成永紅,「電力設備絕緣檢測與診斷」,中國電力出版社,2001。
[7]K. Suzuki, H. Mizoguchi, Y. Ozaki, and S. Yanabu, “Investigation of interruption performance of newly developed 300 kV 3-phase-in-one-tank-type GCB and Its application to a reduced size GIS,” IEEE Transactions on Power Delivery, Vol. 4, pp. 362-367, 1989.
[8]B. Qi, C. Li, B. Geng, and Z. Hao, “Severity diagnosis and assessment of the partial discharge provoked by high-voltage electrode protrusion on GIS insulator surface,” IEEE Transactions on Power Delivery, Vol. 26, pp. 2363-2369, 2011.
[9]J. Tang, Q. Zhou, and M. Tang, “Study on mathematical model for VHF partial discharge of typical insulated defects in GIS,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 14, pp. 30-38, 2007.
[10]W. Gao, D. Ding, and W. Liu, “Research on the typical partial discharge using the UHF detection method for GIS,” IEEE Transactions on Power Delivery, Vol. 26, pp. 2621-2629, 2011.
[11]X. Zhang, J. Ren, J. Tang, and C. Sun, “Kernel statistical uncorrelated optimum discriminant vectors algorithm for GIS PD recognition,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 16, pp. 206-213, 2009.
[12]J. S. Pearson, O. Farish, B. F. Hampton, M. D. J, D. Templeton, B. M. Pryor, and I. M. Welch, “Partial discharge diagnostics for gas insulated substations,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 2, pp. 893-905, 1995.
[13]W. Gao, D. Ding, W. Liu, and X. Huang, “Analysis of the intrinsic characteristics of the partial discharge induced by typical defects in GIS,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 20, pp. 782-790, 2013.
[14]M. Hara, Y. Negara, M. Setoguchi, T. Kurihara, and J. Suehiro, “Particle-triggered pre-breakdown phenomena in atmospheric air gap under ac voltage,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 12, pp. 1071-1081, 2005.
[15]D.-E. A. Mansour, K. Nishizawa, H. Kojima, N. Hayakawa, F. Endo, and H. Okubo, “Charge accumulation effects on time transition of partial discharge activity at GIS spacer defects,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, pp. 247-255, 2010.
[16]E. Kuffel, W. S. Zaengl, and J. Kuffel, “High voltage engineering: fundamentals, second edition,” Butterworth, pp. 421-456, 2000.
[17]G. Ueta, J. Wada, S. Okabe, M. Miyashita, C. Nishida, and M. Kamei, “Insulation performance of three types of micro-defects in inner epoxy insulators,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 19, pp. 947-954, 2012.
[18]IEEE Substations Committee Working Group K, “Partial discharge testing of gas insulated substations,” IEEE Transactions on Power Delivery, Vol. 7, pp. 499-506, 1992.
[19]B. Fruth and L. Niemeyer, “The importance of statistical characteristics of partial discharge data,” IEEE Transactions on Electrical Insulation, Vol. 27, pp. 60-69, 1992.
[20]I. E. Portugues, P. J. Moore, I. A. Glover, C. Johnstone, R. H. Mckosky, M. B. Goff, and L. van der Zel, “RF-based partial discharge early warning system for air-insulated substations,” IEEE Transactions on Power Delivery, Vol. 24, pp. 20-29, 2009.
[21]S. Kusumoto, S. Itoh, Y. Tsuchiya, H. Mukae, S. Matsuda, and K. Takahashi, “Diagnostic technique of gas insulated substations by partial discharge detection,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-99, pp. 1456-1465, 1980.
[22]A. Krivda, "Automated recognition of partial discharges," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 2, pp. 796-821, 1995.
[23]L. Satish and W. S. Zaengl, "Can fractal features be used for recognizing 3-D partial discharge patterns," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 2, pp. 352-359, 1995.
[24]N. C. Sahoo, M. M. A. Salama, and R. Bartnikas, "Trends in partial discharge pattern classification: a survey," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 12, pp. 248-264, 2005.
[25]B. X. Du and Y. Liu, "Pattern analysis of discharge characteristics for hydrophobicity evaluation of polymer insulator," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 18, pp. 114-121, 2011.
[26]A. Cavallini, A. Contin, G. C. Montanari, and F. Puletti, "Advanced PD inference in on-field measurements. I. Noise rejection," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 10, pp. 216-224, 2003.
[27]A. Cavallini, M. Conti, A. Contin and G. C. Montanari, "Advanced PD inference in on-field measurements. II. Identification of defects in solid insulation systems," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 10, pp. 528-538, 2003.
[28]L. Wang, A. Cavallini, G. C. Montanari, and L. Testa, "Evolution of PD patterns in polyethylene insulation cavities under AC voltage," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 19, pp. 533-542, 2012.
[29]J. Tang, F. Liu, Q. Meng, X. Zhan, and J. Tao, “Partial discharge recognition through an analysis of SF6 decomposition products part 2: feature extraction and decision tree-based pattern recognition,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 19, pp. 37-44, 2012.
[30]M. Ren, M. Dong, Z. Ren, H.-D. Peng, and A.-C. Qiu, “Transient earth voltage measurement in PD detection of artificial defect models in SF6,” IEEE Transactions on Plasma Science, Vol. 40, pp. 2002-2008, 2012.
[31]C. Chang, C. S. Chang, J. Jin, T. Hoshino, M. Hanai, and N. Kobayashi, “Source classification of partial discharge for gas insulated substation using wave shape pattern recognition,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 12, pp. 374-386, 2005.
[32]張智涵,「應用局部放電小波低頻成份於氣體絕緣開關之瑕疵辨識研究」,碩士論文,國立台灣科技大學,2012。
[33]H. Tao and M. T. C. Fang, “Detection and classification of partial discharge using a feature decomposition-based modular neural network,” IEEE Transactions on Instrumentation and Measurement, Vol. 50, pp.1349-1354, 2001.
[34]W. R. Si, et al., “Investigation of a comprehensive identification method used in acoustic detection system for GIS,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, pp. 721-732, 2010.
[35]C. S. Chang, et al., “Online source recognition of partial discharge for gas insulated substations using independent component analysis,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 13, pp. 892-902, 2006.
[36]K. Gao, K. Tan, and F. Li, “PD pattern recognition for stator bar models with six kinds of characteristic vectors using BP networks,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 9, pp.381-389, 2002.
[37]W. Ziomek, M. Reformat, and E. Kuffel, “Application of genetic algorithms to pattern recognition of defects in GIS,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 7, pp.161-168, 2000.
[38]T. Lin, R. K. Aggarwal, and C. H. Kim, “Identification of the defective equipment in GIS using the self-organizing map,” IET on Generation, Transmission and Distribution, Vol. 151, pp. 644-650, 2004.
[39]H. Borsi, E. Gockenbach, and D. Wenzel, “Separation of partial discharges from pulse-shaped noise signals with the help of neural networks,” IET on Science, Measurement and Technology, Vol. 142, pp. 69-74, 1995.
[40]A. A. Mazroua, R. Bartnikas, and M. M. A. Salama, “Discrimination between PD pulse shapes using different neural network paradigms,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 1, pp.1119-1131, 1994.
[41]J.-S. R. Jang, ”ANFIS: adaptive-network-based fuzzy inference systems,” IEEE Transactions on System, Man, and cybernetics, Vol. 23, pp. 665-685, 1993.
[42]R. N. Wu, I. H. Chung, and C. K. Chang, “Classification of Partial Discharge Patterns in GIS Using Adaptive Neuro Fuzzy Inference System,” Accepted by Journal of the Chinese Institute, Vol. 37, 2014.
[43]J. Tang, F. Liu, X. Zhang, X. Liang, and Q. Fan, “Partial discharge recognition based on SF6 decomposition products and support vector machine,” IET on Science, Measurement and Technology, Vol. 6, pp. 198-204, 2012.
[44]L. Hao and P. L. Lewin, “Partial discharge source discrimination using a support vector machine,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, pp. 189-197, 2010.
[45]H. Hirose, M. Hikita, S. Ohtsuka, S. Tsuru, and J. Ichimaru, “Diagnosis of electric power apparatus using the decision tree method,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, pp. 1252-1260, 2008.
[46]K. Dreisbusch, H. G. Kranz, and A. Schnettler, “Determination of a failure probability prognosis based on PD diagnostics in GIS,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, pp. 1707-1714, 2008.
[47]H. G. Kranz, “Fundamentals in computer aided PD processing, PD pattern recognition and automated diagnosis in GIS,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 7, pp.12-20, 2000.
[48]R. N. Wu and C. K. Chang, “The use of partial discharges as an online monitoring system for underground cable joints,” IEEE Transactions on Power Delivery, Vol. 26, pp. 1585-1591, 2011.
[49]S. Tenbohlen, D. Denissov, and S. M. Hoek, “Partial discharge measurement in the ultra high frequency (UHF) range,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, pp. 1544-1552, 2008.
[50]M. Hikita, et al., “Propagation properties of PD-induced electromagnetic wave in 66 kV GIS model tank with L branch structure,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 18, pp. 1678-1685, 2011.
[51]A Bargigia, W. Koltunowicz, and A. Pigini, "Detection of parallel discharges in gas insulated substations," IEEE Transactions on Power Delivery, Vol. 7, pp. 1239-1249, 1992.
[52]L. E. Lundgaard, G. Tangen, B. Skyberg, and K. Faugstad, “Acoustic diagnoses of GIS: field experience and development of expert system,” IEEE Transactions on Power Delivery, Vol. 7, pp. 287-294, 1992.
[53]W. Ziornek and E. Kuffel, “Activity of moving metallic particles in prebreakdown state in GIS,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 4, pp. 39-43, 1997.
[54]Q. Bo, et al., “Surface discharge initiated by immobilized metallic particles attached to gas insulated substation insulators: process and features,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 18, pp. 792-800, 2011.
[55]J. Tang, F. Liu, X. Zhang, Q. Meng, and J. Zhou, “Partial discharge recognition through an analysis of SF6 decomposition products part 1: decomposition characteristics of SF6 under four different partial discharges,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 19, pp. 29-36, 2012.
[56]I. Sauers, H. W. Ellis, and L. G. Christophorou, “Neutral decomposition products in spark breakdown of SF6,” IEEE Transactions on Electrical Insulation, Vol. 21, pp.111-120, 1986.
[57]IEC 60270, “High-voltage test technique: partial discharge measurements,” 2000.
[58]H. Borsl, “A PD measuring and evaluation system based on digital signal processing,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 7, pp. 21-29, 2000.
[59]潘彥竹,「局部放電量測系統之研制」,碩士論文,國立台灣科技大學,2004。
[60]Y. H. Lin, R. N. Wu, and I. H. Chung, “Novel trend of “l” shape in PD pattern,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, pp. 292-301, 2008.
[61]X. Zhongrong, T. Ju, and S. Caixin, “Application of complex wavelet transform to suppress white noise in GIS UHF PD signals,” IEEE Transactions on Power Delivery, Vol. 22, pp. 1498-1504, 2007.
[62]R. N. Wu, Y. H. Lin, I. H. Chung and C. K. Chang, “Recognition of insulation status of high voltage cast-resin current transformers,” International Journal of Electrical Engineering, Vol. 15, pp. 49-56, 2008.
[63]E. Gulski and F. H. Kreuger, ”Computer-aided recognition of discharge sources,” IEEE Transactions on Electrical Insulation, Vol. 27, pp. 82-92, 1992.
[64]E. Gulski, “Digital analysis of partial discharges,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 2, pp. 822-837, 1995.
[65]A. Contin, G. C. Montanari, and C. Ferraro, “PD source recognition by Weibull processing of pulse height distributions,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 7, pp. 48-58, 2000.
[66]M. Cacciari, A. Contin and G. C. Montanari, “Use of a mixed Weibull distribution for the identification of PD phenomena”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 2, pp. 1166-1179, 1995.
[67]沈駿壹,「在區間資料下,參數模式之參數估計」,碩士論文,國立成功大學,2002。
[68]林群晋,「應用統計理論於即時性評估地下電纜接頭絕緣狀態之研究」,碩士論文,國立台灣科技大學,2010。
[69]張建國,「高電壓地下電纜接頭絕緣狀態之監測與診斷系統之研究」,博士論文,國立台灣科技大學,2012。
[70]J. W. Tukey, “A projection pursuit algorithm for exploratory data analysis,” IEEE Transactions on computers, Vol. C-23, pp. 881-890, 1974.
[71]C. Bovill, “Fractal geometry in architecture and design,” Birkhauser, 1996.
[72]N. Sarkar and B. B. Chaudhuri, “An efficient differential box-counting approach to compute fractal dimension of image,” IEEE Transactions on systems, Man and Cybernetics, Vol. 24, pp. 115-120, 1944.
[73]K. Falconer, “Fractal geometry: mathematical foundations and application, second edtion,” John Wiley, pp. 113-137, 1990.
[74]古峰昌,「XLPE電力電纜局部放電量測與瑕疵模式辨識」,碩士論文,國立勤益科技大學,2009。
[75]A. Z. Lotfi and C. Berkely, “Fuzzy logic toolbox: user’s guide,” The MathWorks Incorporated, Ch. 2-7, 2008.
[76]L. A. Zadeh, “Fuzzy sets,“ Information and Control, Vol. 8, pp. 338-353, 1965.
[77]A. B. Cara, C. Wagner, H. Hagras, H. Pomares, and I. Rojas, “Multi-objective optimization and comparison of non-singleton type-1 and singleton interval type-2 fuzzy logic systems,” IEEE Transactions on Fuzzy systems, Vol. 21, pp. 459-476, 2013.
[78]E. H. Mamdani, “Applications of fuzzy algorithms for control of simple dynamic plants,” Proceedings of the Institution of Electrical Engineers, Vol. 121, pp. 1585-1588, 1974.
[79]E. H. Mamdani, “Application of fuzzy logic to approximate reasoning using linguistic synthesis,” IEEE Transactions on Computers, Vol. C-26, pp. 1182-1191, 1977.
[80]Y. Tsukamoto, “An approach to fuzzy reasoning method, in: advances in fuzzy set theory and applications,” North-Holland, pp. 137-149, 1979.
[81]T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-15, pp. 116-132, 1985.
[82]M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” Fuzzy Sets and Systems, Vol. 28, pp.15-23, 1988.
[83]J. S. R. Jang, C. T. Sun, and E. Mizutani, “Neural-fuzzy and soft computing,” Pearson, Ch. 7-11, 2004.
[84]羅強華,「類神經網路-MATLAB的應用」,高立圖書有限公司,2005。
[85]S. Barnet, “Matrices: methods and applications,” Oxford University Press, 1990.
[86]J. S. R. Jang and C. T. Sun, ”Neuro-fuzzy modeling and control,” Proceedings of the IEEE, Vol. 83, pp.378-406, 1995.
[87]K. M. Passino and S. Yurkovich, “Fuzzy control,” Addision Wesley, pp. 235-256, 1998.

QR CODE