簡易檢索 / 詳目顯示

研究生: KEBENA GEBEYEHU MOTORA
KEBENA GEBEYEHU MOTORA
論文名稱: Reduced Tungsten Oxide Based Materials Full-Spectrum Solar Light Driven Photocatalyst and its Applications for Removal of Organic and Inorganic Pollutants
Reduced Tungsten Oxide Based Materials Full-Spectrum Solar Light Driven Photocatalyst and its Applications for Removal of Organic and Inorganic Pollutants
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 吳昌謀
Chang-Mou Wu
Hsie-Tay Chiu
Hsie-Tay Chiu
Ching-Iuan Su
Ching-Iuan Su
Jyh Ming Wu
Jyh Ming Wu
Chi-Jung Chang
Chi-Jung Chang
Shu Mei Chang
Shu Mei Chang
Kuo-Bing Chen
Kuo-Bing Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 163
中文關鍵詞: Reduced tungsten trioxideNear infrarednanocompositesAg3VO4/WO2.72 nanocomposites,Janus membraneInorganic pollutantsOrganic pollutants,PhotocatalysisFull-spectrumchromium reduction
外文關鍵詞: Reduced tungsten trioxide, Near infrared, nanocomposites, Ag3VO4/WO2.72 nanocomposites,, Janus membrane, Inorganic pollutants, Organic pollutants,, Photocatalysis, Full-spectrum, chromium reduction
相關次數: 點閱:250下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近期還原氧化鎢及其複合材料因它獨特的物化性和可調式結構在奈米科技引起廣大的討論。因此,在此篇研究中我們利用還原氧化鎢(WO2.72)作為光催化的材料,並能應用於全光譜染料降解及六價鎘(Cr 6+)還原。
在第一部分中,我們製備出高效率的光催化奈米複合材料(Ag3VO4/WO2.72)並在紫外光(UV)、可見光(Vis)、近紅外光(NIR)及太陽光催化下成功降解有機染料羅丹明 B (Rh B)及甲基藍 (MB)。其中Ag3VO4和WO2.72的莫爾比率為1:2 (AgV-WO-2)時有最佳光降解效率。AgV-WO-2在太陽光及可見光催化時,降解羅丹明 B和甲基藍效率可達99%及98%。在紫外光(UV)催化時,降解羅丹明 B和甲基藍效率可達96%及89%,而在近紅外光催化時分別是40%及38%。此外,我們也探討此光催化奈米複合材料對於還原六價鎘的能力。AgV-WO-2在太陽光的催化下,其六價鎘還原效率可達90%。在與其它的文獻相比之下,AgV-WO-2不管是在降解染料或是還原六價鎘都表現出更佳的結果,因此,此光催化奈米複合材料在去除羅丹明 B (Rh B)、甲基藍 (MB)和還原六價鎘(Cr 6+)上極具有的價值。
在第二部分中,我們將工業廢棄的三醋酸纖維素(rTAC)配置成溶液並混摻WO2.72/Fe3O4,最後利用靜電紡絲技術將三醋酸纖維素混摻WO2.72/Fe3O4材料電紡在聚乙烯醇(PVA)不織布上,形成具有光催化特性的雙面膜。在此篇論文中,我們探討了WO2.72/Fe3O4和雙面膜在太陽光催化下,對於有機染料甲基橘(MO)、羅丹明 B和甲基藍的降解及在紫外光、可見光和太陽光催化下,及對於還原六價鎘的能力。此雙面膜設計以聚乙烯醇親水的特性,驅動汙水更易穿透到三醋酸纖維(rTAC)層並使汙染物與光催化材料接觸而降解。從結果來看,WO2.72/Fe3O4奈米複合材料對於有機染料的降解及還原六價鎘(Cr 6+)都有相當好的成效。特別是WO-FO-0.5,其還原六價鎘的能力比Fe3O4出色許多,分別在太陽光、可見光(Vis)及紫外光(UV)催化時高出2.9、1.6及2.0倍。而在太陽光下降解羅丹明 B、甲基藍及甲基橘的能力也分別高出20、29.2及1.6倍。合成的雙面膜對於降解羅丹明 B和甲基藍及還原六價鎘也展現出良好的光催化特性、穩定性和可重複利用性。在20 ppm的甲基藍及20 ppm的羅丹明 B中,其光催化效率分別達到接近100%及50%。而在50 ppm的六價鎘中也能達到80 %的還原效率。因此,此可重複回收使用之雙面膜在環境除汙的應用上具有相當大的潛力。


Recently, reduced tungsten oxides and their composites has got huge attention in the development of nanotechnology because of their merits such as; high tunable structure and owing unique physicochemical properties. Herein, the dissertation highlights reduced tungsten oxides (WO2.72) materials for photocatalytic activities for degradation of organic dye pollutants from ultraviolet to near infrared and Photocatalytic reduction of Chromium (VI) and organic pollutants under UV, Visible and Solar light.
In the first section we have reported preparation of highly efficient photocatalyst Ag3VO4/WO2.72 nanocomposites. The photocatalytic performances of the prepared nanocomposites towards photodegradation of organic dyes Rhodamine B (Rh B) and Methylene Blue (MB) were studied. The Ag3VO4/WO2.72 nanocomposites exhibited outstanding photocatalytic performance for the photodegradation of Rh B and MB, and they were stable under irradiation with UV, visible, near-infrared (NIR), and solar light. A nanocomposite prepared with Ag3VO4 and WO2.72 in a 1:2 molar ratios (AgV-WO-2) exhibited particularly high photodegradation efficiency. AgV-WO-2 photodegraded 99% of the Rh B and 98% of the MB in aqueous solutions under solar and visible light. Under UV light, 96% of the Rh B and 89% of the MB were degraded, while 40% of the Rh B and 38% of the MB in solutions irradiated with NIR light were removed. The photocatalytic performance of the nanocomposites for the photo reduction of chromium (VI) was also studied. AgV-WO-2 exhibited a photo reduction efficiency of 90% under solar light irradiation. The photocatalytic activities of the AgV-WO-2 nanocomposites were better than other reported catalysts for the photodegradation of Rh B and the photo reduction of Cr (VI). It is thus a promising photocatalyst for the removal of Rh B, MB, and chromium (VI).
In the second section, recyclable Janus membrane was prepared from industrial waste triacetate cellulose (TAC) by solution electro spinning. Recycled TAC (rTAC) and poly vinyl alcohol (PVA) were used as the host matrix and substrate with WO2.72/Fe3O4 nanocomposite. The photocatalytic property of WO2.72/Fe3O4 nanocomposite towards photodegradation of organic dyes such as methyl orange (MO), Rhodamine B (Rh B), and methylene blue (MB) under solar light irradiation as well as photocatalytic reduction of Cr(VI) under UV, Visible and Solar light were studied. The photocatalytic performance of recyclable Janus membrane for photocatalytic reduction of Cr(VI) and photodegradation of MB and Rh B were also investigated. The recyclable Janus membrane were intentionally designed so that the contaminated water can easily come into contact with hydrophilic PVA and pass to porous rTAC where the pollutant and the photocatalyst meet and photocatalysis takes place. The result displayed that WO2.72/Fe3O4 nanocomposite exhibited excellent photocatalytic performance for photodegradation of MO, MB and Rh B dyes under solar light and photo reduction of Cr(VI) under UV, visible and solar light. Particularly, WO-FO-0.5 nanocomposite exhibited 2.9, 1.6, and 2.0 times for Cr(VI) photo reduction under solar, visible, and UV and 20, 29.2 and 1.6 times that of Fe3O4, for Rh B, MB and MO under solar light. The synthesized recyclable Janus membrane exhibited outstanding photocatalytic activity and stability for photodegradation of MB and Rh B dyes and photo reduction of Cr(VI). Photocatalysis efficiency of about 100% of 20 ppm MB, 50% of 20 ppm Rh B and 80% of 50 ppm Cr(VI) can be obtained by the recyclable Janus membrane and still it is stable after multiple cycle. Therefore, the recyclable Janus membrane is promising candidate for environmental remediation under solar light irradiation.

Contents 大綱 III Abstract V Acknowledgments VIII Table of contents X List of Figures XIV List of Tables XVII Chapter 1 1 1.0 Introduction 1 1.1. Why Photo-catalysis materials 1 1.2. Motivation and objectives of the study 4 Chapter 2 8 2.0 Background and Literature review 8 2.1. Fundamental Properties of Tungsten Oxide 9 2.1.1 Stoichiometric WO3 9 2.1.2. Structures of non-stoichiometric WO3-x 9 2.1.3. Electronic band structure 11 2.1.4. Near infrared (NIR) absorption properties 12 2.2. Preparations of Tungsten oxide based materials 13 2.2.1. Mechanochemical Method 13 2.2.2. Solid phase reactions 13 2.2.3. Chemical vapor transport 14 2.2.4. Hydrothermal Method 15 2.2.5. Inductively Coupled Thermal Plasma Method 16 2.2.6. Solvothermal Method 17 2.3. Applications 18 2.3.1. Electrochromism and Super capacitors 18 2.3.2. Optical Recording Device 19 2.3.3. Phototherapy applications 20 2.3.4. Sensing Applications 20 2.3.5. Photocatalysis 21 2.4. Full-spectrum (UV-Vis-NIR) photocatalysis 22 2.5. Development of Full-spectrum (UV-Vis-NIR) photocatalysts 24 2.5.1. P–N Heterojunction Photocatalyst 24 2.5.2 Doped Photocatalysts 26 2.5.3. Nanocomposites 29 Chapter 3 32 Highly efficient photocatalytic activity of Ag3VO4/WO2.72 nanocomposites for the degradation of organic dyes from the ultraviolet to near-infrared regions 32 3.1.0. Introduction 32 3.2. Materials and methods 34 3.2.1. Synthesis of urchin-like WO2.72 34 3.2.2. Synthesis of Ag3VO4/WO2.72 nanocomposites 35 3.2.3. Characterization 35 3.2.4. Study of photocatalytic properties 36 3.2.5. Analysis of degraded products by UPLC-MS 37 3.2.6. Photo-electrochemical measurements 37 3.3. Results and discussion 38 3.3.1. Characterization of the samples 38 3.3.2. Photocatalytic performance evaluation 50 3.3.3. Photocatalytic degradation mechanism 67 3.3.4. Summary 72 Chapter 4.0 74 Facile synthesis and Recyclability of solar light driven WO2.72/Fe3O4 Janus membrane for photo reduction of Cr(VI) and photodegradation of organic dyes 74 4.1. Introduction 74 4.2. Materials and methods 77 4.2.1. Preparation of urchin-like WO2.72 78 4.2.2. Synthesis of WO2.72 /Fe3O4 nanocomposites 78 4.2.3. Preparation of recyclable Janus membrane 78 4.2.5. Characterizations 79 4.2.6. Study of photocatalytic property by powder 80 4.2.7. Study of photocatalytic performance of recyclable Janus membrane 81 4.3. Result and discussions 82 4.3.1. Characterizations of the samples 82 4.3.2. Photocatalytic activity of powder 93 4.3.3. Photocatalytic performance of Janus membrane 105 4.3.4. Reusability of Janus membrane 106 4.3.5. Mechanism of photocatalytic performance 107 4.4. Summary 109 Chapter 5: Conclusion and outlook 111 5.1 Conclusion 111 5.2. Outlook 113 References 114

[1] X. Chen, C. Li, M. Grätzel, R. Kostecki, S.S. Mao, Nanomaterials for renewable energy production and storage, Chemical Society Reviews, 41 (2012) 7909-7937.
[2] Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO Nanostructures for Dye-Sensitized Solar Cells, Advanced Materials, 21 (2009) 4087-4108.
[3] S.K. Cushing, J. Li, F. Meng, T.R. Senty, S. Suri, M. Zhi, M. Li, A.D. Bristow, N. Wu, Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor, Journal of the American Chemical Society, 134 (2012) 15033-15041.
[4] D.K. Hwang, Y.-G. Shul, K. Oh, Photocatalytic Application of Au–TiO2 Immobilized in Polycarbonate Film, Industrial & Engineering Chemistry Research, 52 (2013) 17907-17912.
[5] J. Di, J. Xia, M. Ji, B. Wang, S. Yin, H. Xu, Z. Chen, H. Li, Carbon Quantum Dots Induced Ultrasmall BiOI Nanosheets with Assembled Hollow Structures for Broad Spectrum Photocatalytic Activity and Mechanism Insight, Langmuir, 32 (2016) 2075-2084.
[6] L. Zhang, W. Wang, S. Sun, D. Jiang, Near-infrared light photocatalysis with metallic/semiconducting HxWO3/WO3 nanoheterostructure in situ formed in mesoporous template, Applied Catalysis B: Environmental, 168-169 (2015) 9-13.
[7] H. Wang, X. Yuan, G. Zeng, Y. Wu, Y. Liu, Q. Jiang, S. Gu, Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation, Advances in Colloid and Interface Science, 221 (2015) 41-59.
[8] S. Huang, S. Guo, Q. Wang, N. Zhu, Z. Lou, L. Li, A. Shan, H. Yuan, CaF2-Based Near-Infrared Photocatalyst Using the Multifunctional CaTiO3 Precursors as the Calcium Source, ACS Applied Materials & Interfaces, 7 (2015) 20170-20178.
[9] X. Zhang, B. Peng, T. Peng, L. Yu, R. Li, J. Zhang, A new route for visible/near-infrared-light-driven H2 production over titania: Co-sensitization of surface charge transfer complex and zinc phthalocyanine, Journal of Power Sources, 298 (2015) 30-37.
[10] X. Zhang, L. Yu, C. Zhuang, T. Peng, R. Li, X. Li, Highly Asymmetric Phthalocyanine as a Sensitizer of Graphitic Carbon Nitride for Extremely Efficient Photocatalytic H2 Production under Near-Infrared Light, ACS Catalysis, 4 (2014) 162-170.
[11] J. Zhang, Y. Wu, M. Xing, S.A.K. Leghari, S. Sajjad, Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides, Energy & Environmental Science, 3 (2010) 715-726.
[12] R. Daghrir, P. Drogui, D. Robert, Modified TiO2 For Environmental Photocatalytic Applications: A Review, Industrial & Engineering Chemistry Research, 52 (2013) 3581-3599.
[13] J. Yu, X. Yu, Hydrothermal Synthesis and Photocatalytic Activity of Zinc Oxide Hollow Spheres, Environmental Science & Technology, 42 (2008) 4902-4907.
[14] G.K. Prasad, P.V.R.K. Ramacharyulu, B. Singh, K. Batra, A.R. Srivastava, K. Ganesan, R. Vijayaraghavan, Sun light assisted photocatalytic decontamination of sulfur mustard using ZnO nanoparticles, Journal of Molecular Catalysis A: Chemical, 349 (2011) 55-62.
[15] L. Guo, F. Chen, X. Fan, W. Cai, J. Zhang, S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst towards the degradation of acid orange 7 and phenol, Applied Catalysis B: Environmental, 96 (2010) 162-168.
[16] G. Liu, P. Niu, L. Yin, H.-M. Cheng, α-Sulfur Crystals as a Visible-Light-Active Photocatalyst, Journal of the American Chemical Society, 134 (2012) 9070-9073.
[17] C. Reyes, J. Fernandez, J. Freer, M. Mondaca, C. Zaror, S. Malato, H. Mansilla, Degradation and inactivation of tetracycline by TiO2 photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 184 (2006) 141-146.
[18] S. Fukahori, H. Ichiura, T. Kitaoka, H. Tanaka, Photocatalytic decomposition of bisphenol A in water using composite TiO2-zeolite sheets prepared by a papermaking technique, Environmental science & technology, 37 (2003) 1048-1051.
[19] S. Kaniou, K. Pitarakis, I. Barlagianni, I. Poulios, Photocatalytic oxidation of sulfamethazine, Chemosphere, 60 (2005) 372-380.
[20] S.N. Habisreutinger, L. Schmidt‐Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angewandte Chemie International Edition, 52 (2013) 7372-7408.
[21] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chemical Society Reviews, 43 (2014) 7520-7535.
[22] H.M. Chen, C.K. Chen, R.-S. Liu, L. Zhang, J. Zhang, D.P. Wilkinson, Nano-architecture and material designs for water splitting photoelectrodes, Chemical Society Reviews, 41 (2012) 5654-5671.
[23] K. Shimura, H. Yoshida, Heterogeneous photocatalytic hydrogen production from water and biomass derivatives, Energy & Environmental Science, 4 (2011) 2467-2481.
[24] J. Schneider, H. Jia, J.T. Muckerman, E. Fujita, Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts, Chemical Society Reviews, 41 (2012) 2036-2051.
[25] R.T. Koodali, D. Zhao, Photocatalytic degradation of aqueous organic pollutants using titania supported periodic mesoporous silica, Energy & Environmental Science, 3 (2010) 608-614.
[26] D.A. Nicewicz, D.W. MacMillan, Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes, Science, 322 (2008) 77-80.
[27] J.M. Narayanam, C.R. Stephenson, Visible light photoredox catalysis: applications in organic synthesis, Chemical Society Reviews, 40 (2011) 102-113.
[28] H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H.A. Tsang, X. Yang, S.T. Lee, Water‐soluble fluorescent carbon quantum dots and photocatalyst design, Angewandte Chemie International Edition, 49 (2010) 4430-4434.
[29] Y. Sang, H. Liu, A. Umar, Photocatalysis from UV/Vis to Near‐Infrared Light: Towards Full Solar‐Light Spectrum Activity, ChemCatChem, 7 (2015) 559-573.
[30] G. Wang, B. Huang, X. Ma, Z. Wang, X. Qin, X. Zhang, Y. Dai, M.H. Whangbo, Cu2(OH)PO4, a Near‐Infrared‐Activated Photocatalyst, Angewandte Chemie International Edition, 52 (2013) 4810-4813.
[31] L.V. Bora, R.K. Mewada, Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review, Renewable and Sustainable Energy Reviews, 76 (2017) 1393-1421.
[32] J. Tsao, N. Lewis, G. Crabtree, Solar faqs, US department of Energy, 13 (2006).
[33] P.P. Kumavat, P. Sonar, D.S. Dalal, An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements, Renewable and Sustainable Energy Reviews, 78 (2017) 1262-1287.
[34] A. Babuponnusami, K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemical Engineering, 2 (2014) 557-572.
[35] P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Advances in Environmental Research, 8 (2004) 501-551.
[36] P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment II: hybrid methods, Advances in Environmental Research, 8 (2004) 553-597.
[37] G. Mamba, C. Pulgarin, J. Kiwi, M. Bensimon, S. Rtimi, Synchronic coupling of Cu2O(p)/CuO(n) semiconductors leading to Norfloxacin degradation under visible light: Kinetics, mechanism and film surface properties, Journal of Catalysis, 353 (2017) 133-140.
[38] S. Rtimi, O. Baghriche, C. Pulgarin, R. Sanjines, J. Kiwi, Design, testing and characterization of innovative TiN–TiO2 surfaces inactivating bacteria under low intensity visible light, RSC Advances, 2 (2012) 8591-8595.
[39] S. Rtimi, C. Pulgarin, R. Sanjines, J. Kiwi, Innovative semi-transparent nanocomposite films presenting photo-switchable behavior and leading to a reduction of the risk of infection under sunlight, RSC Advances, 3 (2013) 16345-16348.
[40] O. Baghriche, S. Rtimi, C. Pulgarin, J. Kiwi, Polystyrene CuO/Cu2O uniform films inducing MB-degradation under sunlight, Catalysis Today, 284 (2017) 77-83.
[41] K. Tennakone, J. Bandara, Multiphoton semiconductor photocatalysis, Solar Energy Materials and Solar Cells, 60 (2000) 361-365.
[42] J. Bandara, J. Kiwi, C. Pulgarin, P. Peringer, G.M. Pajonk, A. Elaloui, P. Albers, Novel cyclic process mediated by copper oxides active in the degradation of nitrophenols: Implications for the natural cycle, Environmental Science and Technology, 30 (1996) 1261-1267.
[43] A.H. Mamaghani, F. Haghighat, C.-S. Lee, Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art, Applied Catalysis B: Environmental, 203 (2017) 247-269.
[44] J.L. Wang, L.J. Xu, Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application, Critical Reviews in Environmental Science and Technology, 42 (2012) 251-325.
[45] L. Zhang, H.H. Mohamed, R. Dillert, D. Bahnemann, Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13 (2012) 263-276.
[46] S. Bagheri, A. TermehYousefi, T.-O. Do, Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: structure, kinetics and mechanism approach, Catalysis Science & Technology, 7 (2017) 4548-4569.
[47] Z. Liang, C.-F. Yan, S. Rtimi, J. Bandara, Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook, Applied Catalysis B: Environmental, 241 (2019) 256-269.
[48] A.A. Farghali, W.M. El Rouby, A. Hamdedein, Effect of hydrothermal conditions on microstructures of pure and doped CeO2 nanoparticles and their photo-catalytic activity: degradation mechanism and pathway of methylene blue dye, Research on Chemical Intermediates, 43 (2017) 7171-7192.
[49] P.K. Wong, Photocatalysis: Preface, Elsevier, 2017.
[50] J. Wu, B. Liu, Z. Ren, M. Ni, C. Li, Y. Gong, W. Qin, Y. Huang, C.Q. Sun, X. Liu, CuS/RGO hybrid photocatalyst for full solar spectrum photoreduction from UV/Vis to near-infrared light, Journal of colloid and interface science, 517 (2018) 80-85.
[51] C. Sriwong, S. Wongnawa, O. Patarapaiboolchai, Rubber sheet strewn with TiO2 particles: Photocatalytic activity and recyclability, Journal of Environmental Sciences, 24 (2012) 464-472.
[52] J. Krýsa, G. Waldner, H. Měšt’ánková, J. Jirkovský, G. Grabner, Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO2 layer: Roles of adsorption processes and mechanistic complexity, Applied Catalysis B: Environmental, 64 (2006) 290-301.
[53] S. Singh, P. Singh, H. Mahalingam, A novel and effective strewn polymer-supported titanium dioxide photocatalyst for environmental remediation, J Mater Environ Sci, 6 (2015) 349-358.
[54] H. Abdullah, D.-H. Kuo, Y.-R. Kuo, F.-A. Yu, K.-B. Cheng, Facile synthesis and recyclability of thin nylon film-supported n-type ZnO/p-type Ag2O nano composite for visible light photocatalytic degradation of organic dye, The Journal of Physical Chemistry C, 120 (2016) 7144-7154.
[55] S. Singh, H. Mahalingam, P.K. Singh, Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review, Applied Catalysis A: General, 462 (2013) 178-195.
[56] S.K. Deb, Opportunities and challenges in science and technology of WO3 for electrochromic and related applications, Solar Energy Materials and Solar Cells, 92 (2008) 245-258.
[57] H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar‐zadeh, Nanostructured tungsten oxide–properties, synthesis, and applications, Advanced Functional Materials, 21 (2011) 2175-2196.
[58] W. Zhang, C. Lin, S. Cong, J. Hou, B. Liu, F. Geng, J. Jin, M. Wu, Z. Zhao, W₁₈O₄₉ nanowire composites as novel barrier layers for Li–S batteries based on high loading of commercial micro-sized sulfur, RSC advances, (2016).
[59] A. Azens, G. Vaivars, M. Veszelei, L. Kullman, C. Granqvist, Electrochromic devices embodying W oxide/Ni oxide tandem films, Journal of Applied Physics, 89 (2001) 7885-7887.
[60] S.-H. Lee, H.M. Cheong, C.E. Tracy, A. Mascarenhas, J.R. Pitts, G. Jorgensen, S.K. Deb, Alternating current impedance and Raman spectroscopic study on electrochromic a-WO3 films, Applied Physics Letters, 76 (2000) 3908-3910.
[61] C. Granqvist, Electrochromic oxides: a bandstructure approach, Solar Energy Materials and Solar Cells, 32 (1994) 369-382.
[62] C.G. Granqvist, Electrochromic tungsten oxide films: review of progress 1993–1998, Solar Energy Materials and Solar Cells, 60 (2000) 201-262.
[63] H.-S. Shim, J.W. Kim, Y.-E. Sung, W.B. Kim, Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method, Solar Energy Materials and Solar Cells, 93 (2009) 2062-2068.
[64] B.J.-W. Liu, J. Zheng, J.-L. Wang, J. Xu, H.-H. Li, S.-H. Yu, Ultrathin W18O49 nanowire assemblies for electrochromic devices, Nano letters, 13 (2013) 3589-3593.
[65] K. Lee, W.S. Seo, J.T. Park, Synthesis and optical properties of colloidal tungsten oxide nanorods, Journal of the American Chemical Society, 125 (2003) 3408-3409.
[66] M. Remškar, J. Kovac, M. Viršek, M. Mrak, A. Jesih, A. Seabaugh, W5O14 Nanowires, Advanced Functional Materials, 17 (2007) 1974-1978.
[67] C. Guo, S. Yin, Q. Dong, T. Sato, The near infrared absorption properties of W18 O49, RSC Advances, 2 (2012) 5041-5043.
[68] Z. Chen, Q. Wang, H. Wang, L. Zhang, G. Song, L. Song, J. Hu, H. Wang, J. Liu, M. Zhu, Ultrathin PEGylated W18O49 Nanowires as a New 980 nm‐Laser‐Driven Photothermal Agent for Efficient Ablation of Cancer Cells In Vivo, Advanced materials, 25 (2013) 2095-2100.
[69] Y. Chang, Z. Wang, Y.-e. Shi, X. Ma, L. Ma, Y. Zhang, J. Zhan, Hydrophobic W18O49 mesocrystal on hydrophilic PTFE membrane as an efficient solar steam generation device under one sun, Journal of Materials Chemistry A, 6 (2018) 10939-10946.
[70] C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, T. Sato, Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties, Inorganic chemistry, 51 (2012) 4763-4771.
[71] B. Li, X. Shao, T. Liu, L. Shao, B. Zhang, Construction of metal/WO2.72/rGO ternary nanocomposites with optimized adsorption, photocatalytic and photoelectrochemical properties, Applied Catalysis B: Environmental, 198 (2016) 325-333.
[72] C. Di Valentin, G. Pacchioni, Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations, Accounts of chemical research, 47 (2014) 3233-3241.
[73] K.S. Joya, Y.F. Joya, K. Ocakoglu, R. van de Krol, Water‐splitting catalysis and solar fuel devices: artificial leaves on the move, Angewandte Chemie International Edition, 52 (2013) 10426-10437.
[74] X. Liu, F. Wang, Q. Wang, Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting, Physical Chemistry Chemical Physics, 14 (2012) 7894-7911.
[75] Z.F. Huang, J. Song, L. Pan, X. Zhang, L. Wang, J.J. Zou, Tungsten oxides for photocatalysis, electrochemistry, and phototherapy, Advanced Materials, 27 (2015) 5309-5327.
[76] Z.-F. Huang, J. Song, L. Pan, F. Lv, Q. Wang, J.-J. Zou, X. Zhang, L. Wang, Mesoporous W18O49 hollow spheres as highly active photocatalysts, Chemical Communications, 50 (2014) 10959-10962.
[77] A. Polaczek, M. Pekala, Z. Obuszko, Magnetic susceptibility and thermoelectric power of tungsten intermediary oxides, Journal of Physics: Condensed Matter, 6 (1994) 7909.
[78] J. Yan, T. Wang, G. Wu, W. Dai, N. Guan, L. Li, J. Gong, Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting, Advanced Materials, 27 (2015) 1580-1586.
[79] H. Takeda, K. Adachi, Near Infrared Absorption of Tungsten Oxide Nanoparticle Dispersions, Journal of the American Ceramic Society, 90 (2007) 4059-4061.
[80] H. Shanks, P. Sidles, G. Danielson, Electrical properties of the tungsten bronzes, Ames Lab., Ames, Iowa, 1962.
[81] K. Kalantar-zadeh, A. Vijayaraghavan, M.-H. Ham, H. Zheng, M. Breedon, M.S. Strano, Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide, Chemistry of materials, 22 (2010) 5660-5666.
[82] J.Y. Zheng, Z. Haider, T.K. Van, A.U. Pawar, M.J. Kang, C.W. Kim, Y.S. Kang, Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications, CrystEngComm, 17 (2015) 6070-6093.
[83] A. Chemseddine, F. Babonneau, J. Livage, Anisotropic WO3·nH2O layers deposited from gels, Journal of non-crystalline solids, 91 (1987) 271-278.
[84] J. Szymański, A. Roberts, The crystal structure of tungstite, WO3·H2O, Canadian Mineralogist, 22 (1984) 681-688.
[85] C.H. Rüscher, K.R. Dey, T. Debnath, I. Horn, R. Glaum, A. Hussain, Perovskite tungsten bronze-type crystals of LixWO3 grown by chemical vapour transport and their characterisation, Journal of Solid State Chemistry, 181 (2008) 90-100.
[86] S. Gullapalli, R. Vemuri, C. Ramana, Structural transformation induced changes in the optical properties of nanocrystalline tungsten oxide thin films, Applied Physics Letters, 96 (2010) 171903.
[87] M. Gillet, K. Aguir, C. Lemire, E. Gillet, K. Schierbaum, The structure and electrical conductivity of vacuum-annealed WO3 thin films, Thin Solid Films, 467 (2004) 239-246.
[88] A. Hjelm, C.G. Granqvist, J.M. Wills, Electronic structure and optical properties of WO3, LiWO3, NaWO3, and HWO3, Physical Review B, 54 (1996) 2436.
[89] P. Woodward, A. Sleight, T. Vogt, Ferroelectric tungsten trioxide, Journal of Solid State Chemistry, 131 (1997) 9-17.
[90] S. Zhou, X. Pi, Z. Ni, Y. Ding, Y. Jiang, C. Jin, C. Delerue, D. Yang, T. Nozaki, Comparative Study on the Localized Surface Plasmon Resonance of Boron- and Phosphorus-Doped Silicon Nanocrystals, ACS Nano, 9 (2015) 378-386.
[91] X. Liu, M.T. Swihart, Heavily-doped colloidal semiconductor and metal oxide nanocrystals: An emerging new class of plasmonic nanomaterials, Chemical Society Reviews, 43 (2014) 3908-3920.
[92] H. Yin, Y. Kuwahara, K. Mori, H. Cheng, M. Wen, Y. Huo, H. Yamashita, Localized Surface Plasmon Resonances in Plasmonic Molybdenum Tungsten Oxide Hybrid for Visible-Light-Enhanced Catalytic Reaction, The Journal of Physical Chemistry C, 121 (2017) 23531-23540.
[93] H. Cheng, M. Wen, X. Ma, Y. Kuwahara, K. Mori, Y. Dai, B. Huang, H. Yamashita, Hydrogen Doped Metal Oxide Semiconductors with Exceptional and Tunable Localized Surface Plasmon Resonances, Journal of the American Chemical Society, 138 (2016) 9316-9324.
[94] J. Li, W. Zhang, C. Lu, Z. Lou, B. Li, Nonmetallic plasmon induced 500-fold enhancement in the upconversion emission of the UCNPs/WO3−x hybrid, Nanoscale Horizons, 4 (2019) 999-1005.
[95] X. Zeng, Y. Zhou, S. Ji, H. Luo, H. Yao, X. Huang, P. Jin, The preparation of a high performance near-infrared shielding CsxWO3/SiO2 composite resin coating and research on its optical stability under ultraviolet illumination, Journal of Materials Chemistry C, 3 (2015) 8050-8060.
[96] K. Manthiram, A.P. Alivisatos, Tunable localized surface plasmon resonances in tungsten oxide nanocrystals, Journal of the American Chemical Society, 134 (2012) 3995-3998.
[97] C.-M. Wu, S. Naseem, M.-H. Chou, J.-H. Wang, Y.-Q. Jian, Recent Advances in Tungsten-Oxide-Based Materials and Their Applications, Frontiers in Materials, 6 (2019).
[98] J. Wang, G. Liu, Y. Du, Mechanochemical synthesis of sodium tungsten bronze nanocrystalline powders, Materials Letters, 57 (2003) 3648-3652.
[99] F.J. Castro, F. Tonus, J.-L. Bobet, G. Urretavizcaya, Synthesis of hydrogen tungsten bronzes HxWO3 by reactive mechanical milling of hexagonal WO3, Journal of Alloys and Compounds, 495 (2010) 537-540.
[100] S.Y. Lee, J.Y. Kim, J.Y. Lee, H.J. Song, S. Lee, K.H. Choi, G. Shin, Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer, Nanoscale Research Letters, 9 (2014) 294.
[101] K. Moon, J.-J. Cho, Y.-B. Lee, T.A.P.J., 34 (2013).
[102] P. Schmidt, M. Binnewies, R. Glaum, M. Schmidt, Chemical vapor transport reactions–methods, materials, modeling, InTech Rijeka, Croatia2013.
[103] A. Hussain, R. Gruehn, C.H. Rüscher, Crystal growth of alkali metal tungsten brozes MxWO3 (M = K, Rb, Cs), and their optical properties, Journal of Alloys and Compounds, 246 (1997) 51-61.
[104] T. Okusako, T. Tokuyama, K. Mikami, Y. Nogami, N. Hanasaki, Thermoelectric Effect in Hexagonal Tungsten Oxides, Journal of the Physical Society of Japan, 81 (2012) SB028.
[105] X. Wu, J. Wang, G. Zhang, K.-i. Katsumata, K. Yanagisawa, T. Sato, S. Yin, Series of MxWO3/ZnO (M=K, Rb, NH4) nanocomposites: Combination of energy saving and environmental decontamination functions, Applied Catalysis B: Environmental, 201 (2017) 128-136.
[106] C. Guo, S. Yin, Q. Dong, T. Sato, Simple route to (NH4)xWO3 nanorods for near infrared absorption, Nanoscale, 4 (2012) 3394-3398.
[107] G. Liu, S. Wang, Y. Nie, X. Sun, Y. Zhang, Y. Tang, Electrostatic-induced synthesis of tungsten bronze nanostructures with excellent photo-to-thermal conversion behavior, Journal of Materials Chemistry A, 1 (2013) 10120-10129.
[108] Y. Deng, L. Tang, C. Feng, G. Zeng, Z. Chen, J. Wang, H. Feng, B. Peng, Y. Liu, Y. Zhou, Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light, Applied Catalysis B: Environmental, 235 (2018) 225-237.
[109] Z.-F. Huang, J.-J. Zou, L. Pan, S. Wang, X. Zhang, L. Wang, Synergetic promotion on photoactivity and stability of W18O49/TiO2 hybrid, Applied Catalysis B: Environmental, 147 (2014) 167-174.
[110] X. Guo, X. Qin, Z. Xue, C. Zhang, X. Sun, J. Hou, T. Wang, Morphology-controlled synthesis of WO2.72 nanostructures and their photocatalytic properties, RSC advances, 6 (2016) 48537-48542.
[111] B. Bhuyan, B. Paul, S.S. Dhar, S. Vadivel, Facile hydrothermal synthesis of ultrasmall W18O49 nanoparticles and studies of their photocatalytic activity towards degradation of methylene blue, Materials Chemistry and Physics, 188 (2017) 1-7.
[112] X. Chang, S. Sun, L. Dong, X. Hu, Y. Yin, Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material, Electrochimica acta, 129 (2014) 40-46.
[113] V.K. Thakur, G. Ding, J. Ma, P.S. Lee, X. Lu, Hybrid materials and polymer electrolytes for electrochromic device applications, Advanced Materials, 24 (2012) 4071-4096.
[114] J. Seidel, W. Luo, S. Suresha, P.-K. Nguyen, A. Lee, S.-Y. Kim, C.-H. Yang, S.J. Pennycook, S.T. Pantelides, J. Scott, Prominent electrochromism through vacancy-order melting in a complex oxide, Nature communications, 3 (2012) 799.
[115] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science, 347 (2015) 1246501.
[116] P. Zhang, J. Zhang, J. Gong, Tantalum-based semiconductors for solar water splitting, Chemical Society Reviews, 43 (2014) 4395-4422.
[117] Y. Tian, S. Cong, W. Su, H. Chen, Q. Li, F. Geng, Z. Zhao, Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality, Nano letters, 14 (2014) 2150-2156.
[118] D.-H. Kim, Effects of phase and morphology on the electrochromic performance of tungsten oxide nano-urchins, Solar Energy Materials and Solar Cells, 107 (2012) 81-86.
[119] J. Jung, D.H. Kim, W18O49 nanowires assembled on carbon felt for application to supercapacitors, Applied Surface Science, 433 (2018) 750-755.
[120] S. Yoon, E. Kang, J.K. Kim, C.W. Lee, J. Lee, Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity, Chemical Communications, 47 (2011) 1021-1023.
[121] D. Wang, J. Li, X. Cao, G. Pang, S. Feng, Hexagonal mesocrystals formed by ultra-thin tungsten oxide nanowires and their electrochemical behaviour, Chemical Communications, 46 (2010) 7718-7720.
[122] S. Cong, Y. Tian, Q. Li, Z. Zhao, F. Geng, Single‐crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications, Advanced Materials, 26 (2014) 4260-4267.
[123] Y. Takeda, N. Kato, T. Fukano, A. Takeichi, T. Motohiro, S. Kawai, WO3∕ metal thin-film bilayered structures as optical recording materials, Journal of applied physics, 96 (2004) 2417-2422.
[124] Y. Lu, H. Qiu, Laser coloration and bleaching of amorphous WO3 thin film, Journal of Applied Physics, 88 (2000) 1082-1087.
[125] T. Aoki, T. Matsushita, A. Suzuki, K. Tanabe, M. Okuda, Optical recording characteristics of WO3 films grown by pulsed laser deposition method, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 23 (2005) 1325-1330.
[126] C. Guo, S. Yin, H. Yu, S. Liu, Q. Dong, T. Goto, Z. Zhang, Y. Li, T. Sato, Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption, Nanoscale, 5 (2013) 6469-6478.
[127] S. Lal, S.E. Clare, N.J. Halas, Nanoshell-enabled photothermal cancer therapy: impending clinical impact, Accounts of chemical research, 41 (2008) 1842-1851.
[128] P. Kalluru, R. Vankayala, C.S. Chiang, K.C. Hwang, Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by PEGylated W18O49 nanowires, Angewandte Chemie International Edition, 52 (2013) 12332-12336.
[129] Y. Lu, Y. Jiang, X. Gao, X. Wang, W. Chen, Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts, Journal of the American chemical Society, 136 (2014) 11687-11697.
[130] Z. Zhou, B. Kong, C. Yu, X. Shi, M. Wang, W. Liu, Y. Sun, Y. Zhang, H. Yang, S. Yang, Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy, Scientific reports, 4 (2014) 3653.
[131] Z. Gu, Y. Ma, T. Zhai, B. Gao, W. Yang, J. Yao, A Simple Hydrothermal Method for the Large‐Scale Synthesis of Single‐Crystal Potassium Tungsten Bronze Nanowires, Chemistry–A European Journal, 12 (2006) 7717-7723.
[132] G. Tian, X. Zhang, X. Zheng, W. Yin, L. Ruan, X. Liu, L. Zhou, L. Yan, S. Li, Z. Gu, Multifunctional RbxWO3 Nanorods for Simultaneous Combined Chemo‐photothermal Therapy and Photoacoustic/CT Imaging, Small, 10 (2014) 4160-4170.
[133] H.-M. Lin, C.-M. Hsu, H.-Y. Yang, P.-Y. Lee, C.-C. Yang, Nanocrystalline WO3-based H2S sensors, Sensors and Actuators B: Chemical, 22 (1994) 63-68.
[134] J. Bai, B. Zhou, Titanium dioxide nanomaterials for sensor applications, Chemical reviews, 114 (2014) 10131-10176.
[135] Q. Liu, C. Wu, H. Cai, N. Hu, J. Zhou, P. Wang, Cell-based biosensors and their application in biomedicine, Chemical reviews, 114 (2014) 6423-6461.
[136] D. Chandra, K. Saito, T. Yui, M. Yagi, Crystallization of Tungsten Trioxide Having Small Mesopores: Highly Efficient Photoanode for Visible‐Light‐Driven Water Oxidation, Angewandte Chemie International Edition, 52 (2013) 12606-12609.
[137] M. D’Arienzo, L. Armelao, C.M. Mari, S. Polizzi, R. Ruffo, R. Scotti, F. Morazzoni, Macroporous WO3 thin films active in NH3 sensing: role of the hosted Cr isolated centers and Pt nanoclusters, Journal of the American Chemical Society, 133 (2011) 5296-5304.
[138] S. Vallejos, P. Umek, T. Stoycheva, F. Annanouch, E. Llobet, X. Correig, P. De Marco, C. Bittencourt, C. Blackman, Sensors: Single‐Step Deposition of Au‐and Pt‐Nanoparticle‐Functionalized Tungsten Oxide Nanoneedles Synthesized Via Aerosol‐Assisted CVD, and Used for Fabrication of Selective Gas Microsensor Arrays (Adv. Funct. Mater. 10/2013), Advanced Functional Materials, 23 (2013) 1226-1226.
[139] K. Song, F. Xiao, L. Zhang, F. Yue, X. Liang, J. Wang, X. Su, W18O49 nanowires grown on g-C3N4 sheets with enhanced photocatalytic hydrogen evolution activity under visible light, Journal of Molecular Catalysis A: Chemical, 418-419 (2016) 95-102.
[140] S. Sun, X. Chang, L. Dong, Y. Zhang, Z. Li, Y. Qiu, W18O49 nanorods decorated with Ag/AgCl nanoparticles as highly-sensitive gas-sensing material and visible-light-driven photocatalyst, Journal of Solid State Chemistry, 184 (2011) 2190-2195.
[141] G. Xi, S. Ouyang, P. Li, J. Ye, Q. Ma, N. Su, H. Bai, C. Wang, Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near‐infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide, Angewandte Chemie International Edition, 51 (2012) 2395-2399.
[142] X. Zhong, Y. Sun, X. Chen, G. Zhuang, X. Li, J.G. Wang, Mo Doping Induced More Active Sites in Urchin‐Like W18O49 Nanostructure with Remarkably Enhanced Performance for Hydrogen Evolution Reaction, Advanced Functional Materials, 26 (2016) 5778-5786.
[143] C. Feng, L. Tang, Y. Deng, J. Wang, W. Tang, Y. Liu, Z. Chen, J. Yu, J. Wang, Q. Liang, Synthesis of branched WO3@W18O49 homojunction with enhanced interfacial charge separation and full-spectrum photocatalytic performance, Chemical Engineering Journal, 389 (2020) 124474.
[144] Z. Ying, S. Chen, S. Zhang, T. Peng, R. Li, Efficiently enhanced N2 photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping, Applied Catalysis B: Environmental, 254 (2019) 351-359.
[145] X. Hu, X. Liu, J. Tian, Y. Li, H. Cui, Towards full-spectrum (UV, visible, and near-infrared) photocatalysis: achieving an all-solid-state Z-scheme between Ag2O and TiO2 using reduced graphene oxide as the electron mediator, Catalysis Science & Technology, 7 (2017) 4193-4205.
[146] J. Li, H. Cui, X. Song, N. Wei, J. Tian, The high surface energy of NiO {110} facets incorporated into TiO2 hollow microspheres by etching Ti plate for enhanced photocatalytic and photoelectrochemical activity, Applied Surface Science, 396 (2017) 1539-1545.
[147] Y. Li, T. Li, J. Tian, X. Wang, H. Cui, TiO2 Nanobelts Decorated with In2S3 Nanoparticles as Photocatalysts with Enhanced Full‐Solar‐Spectrum (UV–vis–NIR) Photocatalytic Activity toward the Degradation of Tetracycline, Particle & Particle Systems Characterization, 34 (2017) 1700127.
[148] R. Molinari, C. Lavorato, P. Argurio, Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review, Catalysis Today, 281 (2017) 144-164.
[149] Y. Wang, G. Du, H. Liu, D. Liu, S. Qin, N. Wang, C. Hu, X. Tao, J. Jiao, J. Wang, Nanostructured Sheets of TiO Nanobelts for Gas Sensing and Antibacterial Applications, Advanced Functional Materials, 18 (2008) 1131-1137.
[150] L. Yang, B. Liu, T. Liu, X. Ma, H. Li, S. Yin, T. Sato, Y. Wang, A P25/(NH4)x WO3 hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation, Scientific Reports, 7 (2017) 45715.
[151] K. Nakata, T. Ochiai, T. Murakami, A. Fujishima, Photoenergy conversion with TiO2 photocatalysis: New materials and recent applications, Electrochimica Acta, 84 (2012) 103-111.
[152] L. Wang, H. Wei, Y. Fan, X. Gu, J. Zhan, One-dimensional CdS/α-Fe2O3 and CdS/Fe3O4 heterostructures: epitaxial and nonepitaxial growth and photocatalytic activity, The Journal of Physical Chemistry C, 113 (2009) 14119-14125.
[153] Y.-F. Hou, S.-J. Liu, J.-h. Zhang, X. Cheng, Y. Wang, Facile hydrothermal synthesis of TiO2–Bi2WO6 hollow superstructures with excellent photocatalysis and recycle properties, Dalton Transactions, 43 (2014) 1025-1031.
[154] C. Guo, S. Yin, Q. Dong, T. Sato, Simple route to (NH4)xWO3 nanorods for near infrared absorption, Nanoscale, 4 (2012) 3394-3398.
[155] J. Park, Visible and near infrared light active photocatalysis based on conjugated polymers, Journal of Industrial and Engineering Chemistry, 51 (2017) 27-43.
[156] N. Li, M. Liu, B. Yang, W. Shu, Q. Shen, M. Liu, J. Zhou, Enhanced photocatalytic performance toward CO2 hydrogenation over nanosized TiO2-loaded Pd under UV irradiation, The Journal of Physical Chemistry C, 121 (2017) 2923-2932.
[157] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano‐photocatalytic materials: possibilities and challenges, Advanced materials, 24 (2012) 229-251.
[158] F. Zhang, C.L. Zhang, H.Y. Peng, H.P. Cong, H.S. Qian, Near‐Infrared Photocatalytic Upconversion Nanoparticles/TiO2 Nanofibers Assembled in Large Scale by Electrospinning, Particle & Particle Systems Characterization, 33 (2016) 248-253.
[159] W. Fan, H. Bai, W. Shi, Semiconductors with NIR driven upconversion performance for photocatalysis and photoelectrochemical water splitting, CrystEngComm, 16 (2014) 3059-3067.
[160] H. Li, R. Liu, Y. Liu, H. Huang, H. Yu, H. Ming, S. Lian, S.-T. Lee, Z. Kang, Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior, Journal of Materials Chemistry, 22 (2012) 17470-17475.
[161] H. Li, R. Liu, S. Lian, Y. Liu, H. Huang, Z. Kang, Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction, Nanoscale, 5 (2013) 3289-3297.
[162] W. Qin, D. Zhang, D. Zhao, L. Wang, K. Zheng, Near-infrared photocatalysis based on YF3: Yb3+, Tm3+/TiO2 core/shell nanoparticles, Chemical communications, 46 (2010) 2304-2306.
[163] N. Bloembergen, Solid state infrared quantum counters, Physical Review Letters, 2 (1959) 84.
[164] X. Jia, J. Li, E. Wang, One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence, Nanoscale, 4 (2012) 5572-5575.
[165] F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids, Chemical reviews, 104 (2004) 139-174.
[166] F. Wang, X. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chemical Society Reviews, 38 (2009) 976-989.
[167] S. Zhuo, M. Shao, S.-T. Lee, Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis, ACS Nano, 6 (2012) 1059-1064.
[168] J. Tian, Y. Sang, G. Yu, H. Jiang, X. Mu, H. Liu, A Bi2WO6‐based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near‐infrared irradiation, Advanced Materials, 25 (2013) 5075-5080.
[169] S. Kim, M. Kim, Y.K. Kim, S.-H. Hwang, S.K. Lim, Core–shell-structured carbon nanofiber-titanate nanotubes with enhanced photocatalytic activity, Applied Catalysis B: Environmental, 148 (2014) 170-176.
[170] J. Li, N. Wu, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review, Catalysis Science & Technology, 5 (2015) 1360-1384.
[171] C. Han, Q. Shao, J. Lei, Y. Zhu, S. Ge, Preparation of NiO/TiO2p-n heterojunction composites and its photocathodic protection properties for 304 stainless steel under simulated solar light, Journal of Alloys and Compounds, 703 (2017) 530-537.
[172] W. Zhao, Y. Liu, Z. Wei, S. Yang, H. He, C. Sun, Fabrication of a novel p–n heterojunction photocatalyst n-BiVO4@p-MoS2 with core–shell structure and its excellent visible-light photocatalytic reduction and oxidation activities, Applied Catalysis B: Environmental, 185 (2016) 242-252.
[173] J. Ke, C. Zhao, H. Zhou, X. Duan, S. Wang, Enhanced solar light driven activity of p-n heterojunction for water oxidation induced by deposition of Cu2O on Bi2O3 microplates, Sustainable Materials and Technologies, 19 (2019) e00088.
[174] A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe− TiO2 architecture, Journal of the American Chemical Society, 130 (2008) 4007-4015.
[175] K. Prabakar, S. Minkyu, S. Inyoung, K. Heeje, CdSe quantum dots co-sensitized TiO2 photoelectrodes: particle size dependent properties, Journal of Physics D: Applied Physics, 43 (2009) 012002.
[176] B.A. Gonfa, H. Zhao, J. Li, J. Qiu, M. Saidani, S. Zhang, R. Izquierdo, N. Wu, M.A. El Khakani, D. Ma, Air-processed depleted bulk heterojunction solar cells based on PbS/CdS core–shell quantum dots and TiO2 nanorod arrays, Solar Energy Materials and Solar Cells, 124 (2014) 67-74.
[177] J. Li, M.W. Hoffmann, H. Shen, C. Fabrega, J.D. Prades, T. Andreu, F. Hernandez-Ramirez, S. Mathur, Enhanced photoelectrochemical activity of an excitonic staircase in CdS@TiO2 and CdS@ anatase@ rutile TiO2 heterostructures, Journal of Materials Chemistry, 22 (2012) 20472-20476.
[178] K. Baiju, A. Zachariah, S. Shukla, S. Biju, M. Reddy, K. Warrier, Correlating photoluminescence and photocatalytic activity of mixed-phase nanocrystalline titania, Catalysis letters, 130 (2009) 130-136.
[179] J. Zhang, Q. Xu, Z. Feng, M. Li, C. Li, Importance of the relationship between surface phases and photocatalytic activity of TiO2, Angewandte Chemie International Edition, 47 (2008) 1766-1769.
[180] D.P. Joshi, D.P. Bhatt, Theory of grain boundary recombination and carrier transport in polycrystalline silicon under optical illumination, IEEE transactions on electron devices, 37 (1990) 237-249.
[181] D. Wang, H. Zhao, N. Wu, M.A. El Khakani, D. Ma, Tuning the charge-transfer property of PbS-quantum dot/TiO2-nanobelt nanohybrids via quantum confinement, The Journal of Physical Chemistry Letters, 1 (2010) 1030-1035.
[182] S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Advances in Heterogeneous Photocatalytic Degradation of Phenols and Dyes in Wastewater: A Review, Water, Air, & Soil Pollution, 215 (2011) 3-29.
[183] L. Shindume, Z. Zhao, N. Wang, H. Liu, A. Umar, J. Zhang, T. Wu, Z. Guo, Enhanced photocatalytic activity of B, N-codoped TiO2 by a new molten nitrate process, Journal of Nanoscience and Nanotechnology, 19 (2019) 839-849.
[184] A. Di Paola, G. Marci, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda, B. Ohtani, Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol, The Journal of Physical Chemistry B, 106 (2002) 637-645.
[185] L.G. Devi, N. Kottam, B.N. Murthy, S.G. Kumar, Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light, Journal of Molecular Catalysis A: Chemical, 328 (2010) 44-52.
[186] R. Ravindranath, P. Roy, A.P. Periasamy, H.-T. Chang, Effects of deposited ions on the photocatalytic activity of TiO2–Au nanospheres, RSC Advances, 4 (2014) 57290-57296.
[187] L. Khalil, W. Mourad, M. Rophael, Photocatalytic reduction of environmental pollutant Cr (VI) over some semiconductors under UV/visible light illumination, Applied Catalysis B: Environmental, 17 (1998) 267-273.
[188] S. Cao, B. Fan, Y. Feng, H. Chen, F. Jiang, X. Wang, Sulfur-doped g-C3N4 nanosheets with carbon vacancies: General synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation, Chemical Engineering Journal, 353 (2018) 147-156.
[189] Y. Fu, C. Chang, P. Chen, X. Chu, L. Zhu, Enhanced photocatalytic performance of boron doped Bi2WO6 nanosheets under simulated solar light irradiation, Journal of Hazardous Materials, 254-255 (2013) 185-192.
[190] R. Liang, F. Jing, L. Shen, N. Qin, L. Wu, M@ MIL-100 (Fe)(M= Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water, Nano Research, 8 (2015) 3237-3249.
[191] J.M. Rehm, G.L. McLendon, Y. Nagasawa, K. Yoshihara, J. Moser, M. Grätzel, Femtosecond electron-transfer dynamics at a sensitizing dye-semiconductor (TiO2) interface, Journal of Physical Chemistry, 100 (1996) 9577-9578.
[192] G.R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of AuTiO2 and PtTiO2, Journal of Photochemistry and Photobiology A: Chemistry, 89 (1995) 177-189.
[193] S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Research, 38 (2004) 3001-3008.
[194] V. Subramanian, E. Wolf, P.V. Kamat, Semiconductor−Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films?, The Journal of Physical Chemistry B, 105 (2001) 11439-11446.
[195] I.H. Tseng, J.C.S. Wu, H.-Y. Chou, Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction, Journal of Catalysis, 221 (2004) 432-440.
[196] A. Takai, P.V. Kamat, Capture, Store, and Discharge. Shuttling Photogenerated Electrons across TiO2–Silver Interface, ACS Nano, 5 (2011) 7369-7376.
[197] T.L. Phan, P. Zhang, H.D. Tran, S.C. Yu, Electron spin resonance study of Mn-doped metal oxides annealed at different temperatures, Journal of the Korean Physical Society, 57 (2010) 1270-1276.
[198] M. Anpo, M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, Journal of Catalysis, 216 (2003) 505-516.
[199] M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 189 (2007) 258-263.
[200] L. Sun, R. Shao, L. Tang, Z. Chen, Synthesis of ZnFe2O4/ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation, Journal of Alloys and Compounds, 564 (2013) 55-62.
[201] W.-c. Peng, X.-y. Li, Synthesis of MoS2/g-C3N4 as a solar light-responsive photocatalyst for organic degradation, Catalysis Communications, 49 (2014) 63-67.
[202] C. Feng, Y. Deng, L. Tang, G. Zeng, J. Wang, J. Yu, Y. Liu, B. Peng, H. Feng, J. Wang, Core-shell Ag2CrO4/N-GQDs@g-C3N4 composites with anti-photocorrosion performance for enhanced full-spectrum-light photocatalytic activities, Applied Catalysis B: Environmental, 239 (2018) 525-536.
[203] X. Yang, J. Qin, Y. Jiang, K. Chen, X. Yan, D. Zhang, R. Li, H. Tang, Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria, Applied Catalysis B: Environmental, 166-167 (2015) 231-240.
[204] F.-J. Zhang, F.-Z. Xie, S.-F. Zhu, J. Liu, J. Zhang, S.-F. Mei, W. Zhao, A novel photofunctional g-C3N4/Ag3PO4 bulk heterojunction for decolorization of Rh. B, Chemical Engineering Journal, 228 (2013) 435-441.
[205] S. Kumar, T. Surendar, A. Baruah, V. Shanker, Synthesis of a novel and stable g-C3N4–Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation, Journal of Materials Chemistry A, 1 (2013) 5333-5340.
[206] X. Chen, X. Huang, Z. Yi, Enhanced Ethylene Photodegradation Performance of g‐C3N4–Ag3PO4 Composites with Direct Z‐Scheme Configuration, Chemistry–A European Journal, 20 (2014) 17590-17596.
[207] S. Meng, X. Ning, T. Zhang, S.-F. Chen, X. Fu, What is the transfer mechanism of photogenerated carriers for the nanocomposite photocatalyst Ag3PO4/g-C3N4, band–band transfer or a direct Z-scheme?, Physical Chemistry Chemical Physics, 17 (2015) 11577-11585.
[208] J. Tian, Y. Sang, G. Yu, H. Jiang, X. Mu, H.J.A.M. Liu, A Bi2WO6‐based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near‐infrared irradiation, 25 (2013) 5075-5080.
[209] X. Liu, X. Zhang, M. Bo, L. Li, H. Tian, Y. Nie, Y. Sun, S. Xu, Y. Wang, W.J.C.r. Zheng, Coordination-resolved electron spectrometrics, 115 (2015) 6746-6810.
[210] N. Panwar, S. Kaushik, S.J.R. Kothari, S.E. Reviews, Role of renewable energy sources in environmental protection: a review, 15 (2011) 1513-1524.
[211] H. Wang, X. Yuan, G. Zeng, Y. Wu, Y. Liu, Q. Jiang, S.J.A.i.c. Gu, i. science, Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation, 221 (2015) 41-59.
[212] H. Wang, X. Yuan, H. Wang, X. Chen, Z. Wu, L. Jiang, W. Xiong, G.J.A.C.B.E. Zeng, Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance, 193 (2016) 36-46.
[213] Y. Sang, Z. Zhao, M. Zhao, P. Hao, Y. Leng, H.J.A.M. Liu, From UV to near‐infrared, WS2 nanosheet: a novel photocatalyst for full solar light spectrum photodegradation, 27 (2015) 363-369.
[214] Y. Sang, H. Liu, A.J.C. Umar, Photocatalysis from UV/Vis to Near‐Infrared Light: Towards Full Solar‐Light Spectrum Activity, 7 (2015) 559-573.
[215] W. Jiang, X. Wang, Z. Wu, X. Yue, S. Yuan, H. Lu, B.J.I. Liang, E.C. Research, Silver oxide as superb and stable photocatalyst under visible and near-infrared light irradiation and its photocatalytic mechanism, 54 (2015) 832-841.
[216] L. Ye, H. Wang, X. Jin, Y. Su, D. Wang, H. Xie, X. Liu, X.J.S.E.M. Liu, S. Cells, Synthesis of olive-green few-layered BiOI for efficient photoreduction of CO2 into solar fuels under visible/near-infrared light, 144 (2016) 732-739.
[217] X. Hu, Y. Li, J. Tian, H. Yang, H. Cui, Highly efficient full solar spectrum (UV-vis-NIR) photocatalytic performance of Ag2S quantum dot/TiO2 nanobelt heterostructures, Journal of Industrial and Engineering Chemistry, 45 (2017) 189-196.
[218] D. Xu, T. Jiang, D. Wang, L. Chen, L. Zhang, Z. Fu, L. Wang, T. Xie, pH-dependent assembly of tungsten oxide three-dimensional architectures and their application in photocatalysis, ACS applied materials & interfaces, 6 (2014) 9321-9327.
[219] G. Hai, J. Huang, Y. Jie, J. Li, L. Cao, G. Zhang, Y.J.M.L. Wang, Influence of octadecylamine on the phase composition and the photocatalytic property of the tungsten oxide, 174 (2016) 134-137.
[220] K. Song, F. Xiao, L. Zhang, F. Yue, X. Liang, J. Wang, X.J.J.o.M.C.A.C. Su, W18O49 nanowires grown on g-C3N4 sheets with enhanced photocatalytic hydrogen evolution activity under visible light, 418 (2016) 95-102.
[221] G. Gu, B. Zheng, W. Han, S. Roth, J. Liu, Tungsten oxide nanowires on tungsten substrates, Nano Letters, 2 (2002) 849-851.
[222] X.W. Lou, H.C. Zeng, An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution, Inorganic chemistry, 42 (2003) 6169-6171.
[223] Z.-F. Huang, J.-J. Zou, L. Pan, S. Wang, X. Zhang, L.J.A.C.B.E. Wang, Synergetic promotion on photoactivity and stability of W18O49/TiO2 hybrid, 147 (2014) 167-174.
[224] C. Yu, X. Guo, Z. Xi, M. Muzzio, Z. Yin, B. Shen, J. Li, C.T. Seto, S.J.J.o.t.A.C.S. Sun, AgPd nanoparticles deposited on WO2.72 nanorods as an efficient catalyst for one-pot conversion of nitrophenol/nitroacetophenone into benzoxazole/quinazoline, 139 (2017) 5712-5715.
[225] J. Li, W. Li, X. Li, Y. Li, H. Bai, M. Li, G.J.R.A. Xi, Plasmonic W18O49-photosensitized TiO2 nanosheets with wide-range solar light harvesting, 7 (2017) 23846-23850.
[226] D.K. Padhi, T.K. Panigrahi, K. Parida, S. Singh, P. Mishra, Green synthesis of Fe3O4/RGO nanocomposite with enhanced photocatalytic performance for Cr (VI) reduction, phenol degradation, and antibacterial activity, ACS Sustainable Chemistry & Engineering, 5 (2017) 10551-10562.
[227] Q. Zhang, J. Yang, M. Xu, J. Chen, Y. Lou, J. Zhou, L.J.J.o.C.T. Cheng, Biotechnology, Fabrication of WO2.72/UiO‐66 nanocomposites and effects of WO2.72 ratio on photocatalytic performance: judgement of the optimal content and mechanism study, 93 (2018) 2710-2718.
[228] T. Chala, C.-M. Wu, M.-H. Chou, M. Gebeyehu, K.-B. Cheng, Highly efficient near infrared photothermal conversion properties of reduced tungsten oxide/polyurethane nanocomposites, Nanomaterials, 7 (2017) 191.
[229] Y. Xu, L. Jing, X. Chen, H. Ji, H. Xu, H. Li, H. Li, Q. Zhang, Novel visible-light-driven Fe2O3/Ag3VO4 composite with enhanced photocatalytic activity toward organic pollutants degradation, RSC Advances, 6 (2016) 3600-3607.
[230] R. Konta, H. Kato, H. Kobayashi, A. Kudo, Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates, Physical Chemistry Chemical Physics, 5 (2003) 3061-3065.
[231] S. Wang, D. Li, C. Sun, S. Yang, Y. Guan, H. He, Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation, Applied Catalysis B: Environmental, 144 (2014) 885-892.
[232] S.-Z. Wu, K. Li, W.-D. Zhang, On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity, Applied Surface Science, 324 (2015) 324-331.
[233] K. Wangkawong, D. Tantraviwat, S. Phanichphant, B. Inceesungvorn, Band offsets of novel CoTiO3/Ag3VO4 heterojunction measured by X-ray photoelectron spectroscopy, Applied Surface Science, 324 (2015) 705-709.
[234] P. Wang, H. Tang, Y. Ao, C. Wang, J. Hou, J. Qian, Y. Li, In-situ growth of Ag3 VO4 nanoparticles onto BiOCl nanosheet to form a heterojunction photocatalyst with enhanced performance under visible light irradiation, Journal of Alloys and Compounds, 688 (2016) 1-7.
[235] L. Zhang, Y. He, P. Ye, Y. Wu, T. Wu, Visible light photocatalytic activities of ZnFe2O4 loaded by Ag3VO4 heterojunction composites, Journal of Alloys and Compounds, 549 (2013) 105-113.
[236] B. Inceesungvorn, T. Teeranunpong, J. Nunkaew, S. Suntalelat, D. Tantraviwat, Novel NiTiO3/Ag3VO4 composite with enhanced photocatalytic performance under visible light, Catalysis Communications, 54 (2014) 35-38.
[237] L. Jing, Y. Xu, C. Qin, J. Liu, S. Huang, M. He, H. Xu, H. Li, Visible-light-driven ZnFe2O4/Ag/Ag3VO4 photocatalysts with enhanced photocatalytic activity under visible light irradiation, Materials Research Bulletin, 95 (2017) 607-615.
[238] Y. Zhao, Q. Tang, P. Yang, B.J.C.C. He, Robust electrocatalysts from metal doped W18O49 nanofibers for hydrogen evolution, 53 (2017) 4323-4326.
[239] A. Phuruangrat, A. Maneechote, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, T. Thongtem, Effect of pH on visible-light-driven Bi2WO6 nanostructured catalyst synthesized by hydrothermal method, Superlattices and Microstructures, 78 (2015) 106-115.
[240] Y.-j. Hao, F.-t. Li, J. Zhao, R.-h. Liu, X.-j. Wang, Y.-p. Li, Y. Liu, Introduction of CoCl2· 6H2O into Co3O4 for enhancement of hydroxyl radicals and effective charge separation, Dalton Transactions, 45 (2016) 2444-2453.
[241] D. Lu, P. Fang, W. Wu, J. Ding, L. Jiang, X. Zhao, C. Li, M. Yang, Y. Li, D. Wang, Solvothermal-assisted synthesis of self-assembling TiO2 nanorods on large graphitic carbon nitride sheets with their anti-recombination in the photocatalytic removal of Cr (VI) and rhodamine B under visible light irradiation, Nanoscale, 9 (2017) 3231-3245.
[242] T. Rasheed, M. Bilal, H.M.N. Iqbal, S.Z.H. Shah, H. Hu, X. Zhang, Y. Zhou, TiO2/UV-assisted rhodamine B degradation: putative pathway and identification of intermediates by UPLC/MS, Environmental Technology, 39 (2018) 1533-1543.
[243] A. Phuruangrat, D.J. Ham, S. Thongtem, J.S. Lee, Electrochemical hydrogen evolution over MoO3 nanowires produced by microwave-assisted hydrothermal reaction, Electrochemistry Communications, 11 (2009) 1740-1743.
[244] K. Wangkawong, S. Phanichphant, D. Tantraviwat, B. Inceesungvorn, CoTiO3/Ag3VO4 composite: A study on the role of CoTiO3 and the active species in the photocatalytic degradation of methylene blue, Journal of colloid and interface science, 454 (2015) 210-215.
[245] J. Wang, P. Wang, Y. Cao, J. Chen, W. Li, Y. Shao, Y. Zheng, D. Li, A high efficient photocatalyst Ag3VO4/TiO2/graphene nanocomposite with wide spectral response, Applied Catalysis B: Environmental, 136 (2013) 94-102.
[246] Y. Bu, Z. Chen, C.J.A.C.B.E. Sun, Highly efficient Z-scheme Ag3PO4/Ag/WO3−x photocatalyst for its enhanced photocatalytic performance, 179 (2015) 363-371.
[247] K. Thummavichai, N. Wang, F. Xu, G. Rance, Y. Xia, Y. Zhu, In situ investigations of the phase change behaviour of tungsten oxide nanostructures, Royal Society open science, 5 (2018) 171932.
[248] H. Xu, H. Li, G. Sun, J. Xia, C. Wu, Z. Ye, Q. Zhang, Photocatalytic activity of La2O3-modified silver vanadates catalyst for Rhodamine B dye degradation under visible light irradiation, Chemical Engineering Journal, 160 (2010) 33-41.
[249] F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, Y. Xie, Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting, Journal of the American Chemical Society, 136 (2014) 6826-6829.
[250] S. Wang, Y. Guan, L. Wang, W. Zhao, H. He, J. Xiao, S. Yang, C. Sun, Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption–photocatalysis for efficient treatment of dye wastewater, Applied Catalysis B: Environmental, 168 (2015) 448-457.
[251] L. Jing, Y. Xu, S. Huang, M. Xie, M. He, H. Xu, H. Li, Q. Zhang, Novel magnetic CoFe2O4/Ag/Ag3VO4 composites: highly efficient visible light photocatalytic and antibacterial activity, Applied Catalysis B: Environmental, 199 (2016) 11-22.
[252] C. Guo, S. Yin, M. Yan, M. Kobayashi, M. Kakihana, T.J.I.c. Sato, Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties, 51 (2012) 4763-4771.
[253] Y. Deng, L. Tang, G. Zeng, Z. Zhu, M. Yan, Y. Zhou, J. Wang, Y. Liu, J. Wang, Insight into highly efficient simultaneous photocatalytic removal of Cr (VI) and 2, 4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism, Applied Catalysis B: Environmental, 203 (2017) 343-354.
[254] Y. Bu, Z. Chen, C. Sun, Highly efficient Z-Scheme Ag3PO4/Ag/WO3−x photocatalyst for its enhanced photocatalytic performance, Applied Catalysis B: Environmental, 179 (2015) 363-371.
[255] M. Zhang, Y. Zhang, L. Tang, G. Zeng, J. Wang, Y. Zhu, C. Feng, Y. Deng, W. He, Ultrathin Bi2WO6 nanosheets loaded g-C3N4 quantum dots: A direct Z-scheme photocatalyst with enhanced photocatalytic activity towards degradation of organic pollutants under wide spectrum light irradiation, Journal of colloid and interface science, 539 (2019) 654-664.
[256] D. Liu, G. Li, C. Zhao, X. Wang, M. Sun, X. Sun, M. Yan, C. Guo, WO3−x for rapid adsorption and full-spectrum-responsive photocatalytic activities, Journal of Materials Science: Materials in Electronics, 29 (2018) 15029-15033.
[257] H. Yang, J. Tian, T. Li, H. Cui, Synthesis of novel Ag/Ag2O heterostructures with solar full spectrum (UV, visible and near-infrared) light-driven photocatalytic activity and enhanced photoelectrochemical performance, Catalysis Communications, 87 (2016) 82-85.
[258] H. Sinaim, D.J. Ham, J.S. Lee, A. Phuruangrat, S. Thongtem, T. Thongtem, Free-polymer controlling morphology of α-MoO3 nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties, Journal of Alloys and Compounds, 516 (2012) 172-178.
[259] M.E. Khan, M.M. Khan, M.H. Cho, Green synthesis, photocatalytic and photoelectrochemical performance of an Au–Graphene nanocomposite, RSC Advances, 5 (2015) 26897-26904.
[260] F. Li, X.J.C. Li, The enhancement of photodegradation efficiency using Pt–TiO2 catalyst, 48 (2002) 1103-1111.
[261] K.E. Ahmed, D.-H. Kuo, L.W. Duresa, Synthesis and characterizations of BiOCl nanosheets with controlled particle growth for efficient organic dyes degradation, Journal of Industrial and Engineering Chemistry, 83 (2020) 200-207.
[262] Z. Zhang, J. Huang, Y. Fang, M. Zhang, K. Liu, B. Dong, A nonmetal plasmonic Z‐scheme photocatalyst with UV‐to NIR‐driven photocatalytic protons reduction, Advanced Materials, 29 (2017) 1606688.
[263] Y. Kang, X. Wu, Q. Gao, Plasmonic-Enhanced Near-Infrared Photocatalytic Activity of F-Doped (NH4)0.33WO3 Nanorods, ACS Sustainable Chemistry & Engineering, 7 (2019) 4210-4219.
[264] Y. Li, Y. Xue, J. Tian, X. Song, X. Zhang, X. Wang, H. Cui, Silver oxide decorated graphitic carbon nitride for the realization of photocatalytic degradation over the full solar spectrum: From UV to NIR region, Solar Energy Materials and Solar Cells, 168 (2017) 100-111.
[265] S. Kumar, T. Surendar, A. Baruah, V. Shanker, Synthesis of a novel and stable g-C3N4–Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation, Journal of Materials Chemistry A, 1 (2013) 5333-5340.
[266] L. Xu, D. Gu, X. Chang, L. Chai, Z. Li, X. Jin, S.J.M. Sun, N. Letters, Adsorption and photocatalytic study of dye degradation over the g-C3N4/W18O49 nanocomposite, 13 (2018) 541-545.
[267] B. Li, X. Shao, T. Liu, L. Shao, B.J.A.C.B.E. Zhang, Construction of metal/WO2. 72/rGO ternary nanocomposites with optimized adsorption, photocatalytic and photoelectrochemical properties, 198 (2016) 325-333.
[268] H. Wang, X. Yuan, H. Wang, X. Chen, Z. Wu, L. Jiang, W. Xiong, G. Zeng, Facile synthesis of Sb2S3/ultrathin g-C3N4 sheets heterostructures embedded with g-C3N4 quantum dots with enhanced NIR-light photocatalytic performance, Applied Catalysis B: Environmental, 193 (2016) 36-46.
[269] J.M. Buriak, P.V. Kamat, K.S. Schanze, Best practices for reporting on heterogeneous photocatalysis, ACS Publications, 2014.
[270] N.A. Rodríguez, A. Savateev, M.A. Grela, D. Dontsova, Facile synthesis of potassium poly (heptazine imide)(PHIK)/Ti-based metal–organic framework (MIL-125-NH2) composites for photocatalytic applications, ACS applied materials & interfaces, 9 (2017) 22941-22949.
[271] G. Mishra, K. Parida, S. Singh, Solar light driven Rhodamine B degradation over highly active β-SiC–TiO2 nanocomposite, RSC Advances, 4 (2014) 12918-12928.
[272] V.R. Posa, V. Annavaram, J.R. Koduru, P. Bobbala, A.R. Somala, Preparation of graphene–TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation, Journal of Experimental Nanoscience, 11 (2016) 722-736.
[273] E. Abroshan, S. Farhadi, A. Zabardasti, Novel magnetically separable Ag3PO4/MnFe2O4 nanocomposite and its high photocatalytic degradation performance for organic dyes under solar-light irradiation, Solar Energy Materials and Solar Cells, 178 (2018) 154-163.
[274] K.S. Ranjith, P. Manivel, R.T. Rajendrakumar, T. Uyar, Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption, Chemical Engineering Journal, 325 (2017) 588-600.
[275] M. Mousavi, A. Habibi-Yangjeh, Magnetically recoverable highly efficient visible-light-active g-C3N4/Fe3O4/Ag2WO4/AgBr nanocomposites for photocatalytic degradations of environmental pollutants, Advanced Powder Technology, 29 (2018) 94-105.
[276] J. Zhang, N. Gao, F. Chen, T. Zhang, G. Zhang, D. Wang, X. Xie, D. Cai, X. Ma, L. Wu, Improvement of Cr (VI) photoreduction under visible-light by g-C3N4 modified by nano-network structured palygorskite, Chemical Engineering Journal, 358 (2019) 398-407.
[277] I. Kretschmer, A.M. Senn, J.M. Meichtry, G. Custo, E.B. Halac, R. Dillert, D.W. Bahnemann, M.I. Litter, Photocatalytic reduction of Cr (VI) on hematite nanoparticles in the presence of oxalate and citrate, Applied Catalysis B: Environmental, 242 (2019) 218-226.
[278] I. Ibrahim, A. Kaltzoglou, C. Athanasekou, F. Katsaros, E. Devlin, A.G. Kontos, N. Ioannidis, M. Perraki, P. Tsakiridis, L. Sygellou, Magnetically separable TiO2/CoFe2O4/Ag nanocomposites for the photocatalytic reduction of hexavalent chromium pollutant under UV and artificial solar light, Chemical Engineering Journal, (2019) 122730.
[279] Z. Zhang, S. Wang, M. Bao, J. Ren, S. Pei, S. Yu, J. Ke, Construction of ternary Ag/AgCl/NH2-UiO-66 hybridized heterojunction for effective photocatalytic hexavalent chromium reduction, Journal of Colloid and Interface Science, 555 (2019) 342-351.
[280] Y. Huang, H. Xu, D. Luo, Y. Zhao, Y. Fang, Y. Wei, L. Fan, J. Wu, Facile in situ synthesis of Ag and Bi co-decorated BiOCl heterojunction with high photocatalytic performance over the full solar spectrum, Solid State Sciences, 89 (2019) 74-84.
[281] D.-X. Xu, Z.-W. Lian, M.-L. Fu, B. Yuan, J.-W. Shi, H.-J. Cui, Advanced near-infrared-driven photocatalyst: Fabrication, characterization, and photocatalytic performance of β-NaYF4: Yb3+, Tm3+@ TiO2 core@shell microcrystals, Applied Catalysis B: Environmental, 142 (2013) 377-386.
[282] Z. Wu, X. Yuan, H. Wang, Z. Wu, L. Jiang, H. Wang, L. Zhang, Z. Xiao, X. Chen, G.J.A.C.B.E. Zeng, Facile synthesis of a novel full-spectrum-responsive Co2. 67S4 nanoparticles for UV-, vis-and NIR-driven photocatalysis, 202 (2017) 104-111.
[283] L. Xu, D. Gu, X. Chang, L. Chai, Z. Li, X. Jin, S. Sun, Adsorption and photocatalytic study of dye degradation over the g-C3N4/W18O49 nanocomposite, Micro & Nano Letters, 13 (2018) 541-545.
[284] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surface science reports, 63 (2008) 515-582.
[285] S. Gligorovski, R. Strekowski, S. Barbati, D. Vione, Environmental implications of hydroxyl radicals (• OH), Chemical reviews, 115 (2015) 13051-13092.
[286] G. Li, C. Guo, M. Yan, S. Liu, CsxWO3 nanorods: Realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region, Applied Catalysis B: Environmental, 183 (2016) 142-148.
[287] M. Yan, G. Li, C. Guo, W. Guo, D. Ding, S. Zhang, S. Liu, WO3−x sensitized TiO2 spheres with full-spectrum-driven photocatalytic activities from UV to near infrared, Nanoscale, 8 (2016) 17828-17835.
[288] H. Zhang, Q. Liu, T. Wang, Z. Yun, G. Li, J. Liu, G. Jiang, Facile preparation of glutathione-stabilized gold nanoclusters for selective determination of chromium (III) and chromium (VI) in environmental water samples, Analytica Chimica Acta, 770 (2013) 140-146.
[289] D. Basu, K. Blackburn, B. Harris, M. Neal, F. Stoss, Health Assessment Document for Chromium. Final Report, (1984).
[290] X. Guo, G.T. Fei, H. Su, L. De Zhang, High-performance and reproducible polyaniline nanowire/tubes for removal of Cr(VI) in aqueous solution, The Journal of Physical Chemistry C, 115 (2011) 1608-1613.
[291] M. Bhaumik, A. Maity, V. Srinivasu, M.S. Onyango, Enhanced removal of Cr (VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite, Journal of Hazardous Materials, 190 (2011) 381-390.
[292] L. Hsu, S.A. Masuda, K.H. Nealson, M. Pirbazari, Evaluation of microbial fuel cell Shewanella biocathodes for treatment of chromate contamination, Rsc Advances, 2 (2012) 5844-5855.
[293] M.A. Zeleke, D.-H. Kuo, K.E. Ahmed, N.S. Gultom, Facile synthesis of bimetallic (In, Ga)2(O, S)3 oxy-sulfide nanoflower and its enhanced photocatalytic activity for reduction of Cr (VI), Journal of colloid and interface science, 530 (2018) 567-578.
[294] S. Rengaraj, S. Venkataraj, J.-W. Yeon, Y. Kim, X. Li, G. Pang, Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr (VI) under UV light illumination, Applied Catalysis B: Environmental, 77 (2007) 157-165.
[295] X. Sun, L. Yang, Q. Li, J. Zhao, X. Li, X. Wang, H. Liu, Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr (VI): synthesis and adsorption studies, Chemical Engineering Journal, 241 (2014) 175-183.
[296] C.-C. Wang, X.-D. Du, J. Li, X.-X. Guo, P. Wang, J. Zhang, Photocatalytic Cr (VI) reduction in metal-organic frameworks: A mini-review, Applied Catalysis B: Environmental, 193 (2016) 198-216.
[297] X. Sun, A. Liu, Q. Chen, X. Wang, The experimental study of Cr6+ contaminated water remediation by zero-valent nano-Fe, International Journal of Modern Physics B, 29 (2015) 1542044.
[298] Z. Modrzejewska, W. Kaminski, Separation of Cr(VI) on chitosan membranes, Industrial & engineering chemistry research, 38 (1999) 4946-4950.
[299] F. Gode, E. Pehlivan, A comparative study of two chelating ion-exchange resins for the removal of chromium (III) from aqueous solution, Journal of Hazardous Materials, 100 (2003) 231-243.
[300] E.A. Schmieman, D.R. Yonge, M.A. Rege, J.N. Petersen, C.E. Turick, D.L. Johnstone, W.A. Apel, Comparative kinetics of bacterial reduction of chromium, Journal of Environmental Engineering, 124 (1998) 449-455.
[301] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, Journal of environmental management, 92 (2011) 407-418.
[302] A. Hassani, M. Shariat, J. Nouri, A. Shokati Poursani, A. Nilchi, Int. J. Environ. Sci. Technol, 12 (2015) 2003-2014.
[303] L.W. Duresa, D.-H. Kuo, K.E. Ahmed, M.A. Zeleke, H. Abdullah, Highly enhanced photocatalytic Cr (vi) reduction using In-doped Zn (O, S) nanoparticles, New Journal of Chemistry, 43 (2019) 8746-8754.
[304] T.F. Chala, C.-M. Wu, K.G. Motora, RbxWO3/Ag3VO4 nanocomposites as efficient full-spectrum (UV, visible, and near-infrared) photocatalysis, Journal of the Taiwan Institute of Chemical Engineers, 102 (2019) 465-474.
[305] V. Kostas, M. Baikousi, K. Dimos, K.C. Vasilopoulos, I. Koutselas, M.A. Karakassides, Efficient and rapid photocatalytic reduction of hexavalent chromium achieved by a phloroglucinol-derived microporous polymeric organic framework solid, The Journal of Physical Chemistry C, 121 (2017) 7303-7311.
[306] Z. He, Q. Cai, M. Wu, Y. Shi, H. Fang, L. Li, J. Chen, J. Chen, S. Song, Photocatalytic reduction of Cr(VI) in an aqueous suspension of surface-fluorinated anatase TiO2 nanosheets with exposed {001} facets, Industrial & Engineering Chemistry Research, 52 (2013) 9556-9565.
[307] H. Chu, X. Liu, B. Liu, G. Zhu, W. Lei, H. Du, J. Liu, J. Li, C. Li, C. Sun, Hexagonal 2H-MoSe 2 broad spectrum active photocatalyst for Cr (VI) reduction, Scientific reports, 6 (2016) 35304.
[308] N. Panwar, S. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renewable and sustainable energy reviews, 15 (2011) 1513-1524.
[309] K. Vinodgopal, P.V. Kamat, Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films, Environmental science & technology, 29 (1995) 841-845.
[310] L. Pan, T. Muhammad, L. Ma, Z.-F. Huang, S. Wang, L. Wang, J.-J. Zou, X. Zhang, MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis, Applied Catalysis B: Environmental, 189 (2016) 181-191.
[311] L. Ren, M. Mao, Y. Li, L. Lan, Z. Zhang, X. Zhao, Novel photothermocatalytic synergetic effect leads to high catalytic activity and excellent durability of anatase TiO2 nanosheets with dominant {001} facets for benzene abatement, Applied Catalysis B: Environmental, 198 (2016) 303-310.
[312] N. Zhang, C. Chen, Z. Mei, X. Liu, X. Qu, Y. Li, S. Li, W. Qi, Y. Zhang, J. Ye, Monoclinic tungsten oxide with {100} facet orientation and tuned electronic band structure for enhanced photocatalytic oxidations, ACS applied materials & interfaces, 8 (2016) 10367-10374.
[313] N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation, Journal of the American Chemical Society, 140 (2018) 9434-9443.
[314] G. Xi, J. Ye, Q. Ma, N. Su, H. Bai, C. Wang, In situ growth of metal particles on 3D urchin-like WO3 nanostructures, Journal of the American Chemical Society, 134 (2012) 6508-6511.
[315] X. Zhao, S. Huang, Y. Liu, Q. Liu, Y. Zhang, In situ preparation of highly stable polyaniline/W18O49 hybrid nanocomposite as efficient visible light photocatalyst for aqueous Cr (VI) reduction, Journal of hazardous materials, 353 (2018) 466-475.
[316] K.G. Motora, C.-M. Wu, T.F. Chala, M.-H. Chou, C.-F.J. Kuo, P. Koinkar, Highly efficient photocatalytic activity of Ag3VO4/WO2.72 nanocomposites for the degradation of organic dyes from the ultraviolet to near-infrared regions, Applied Surface Science, 512 (2020) 145618.
[317] F. Liu, M. Zeng, Y. Li, Y. Yang, M. Mao, X. Zhao, UV–Vis–infrared light driven thermocatalytic activity of octahedral layered birnessite nanoflowers enhanced by a novel photoactivation, Advanced Functional Materials, 26 (2016) 4518-4526.
[318] P. Benjwal, M. Kumar, P. Chamoli, K.K. Kar, Enhanced photocatalytic degradation of methylene blue and adsorption of arsenic (iii) by reduced graphene oxide (rGO)–metal oxide (TiO2/Fe3O4) based nanocomposites, Rsc Advances, 5 (2015) 73249-73260.
[319] B. Maleki, O. Reiser, E. Esmaeilnezhad, H.J. Choi, SO3H-dendrimer functionalized magnetic nanoparticles (Fe3O4@ DNH(CH2)4SO3H): Synthesis, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of polyfunctionalized pyrans and polyhydroquinolines, Polyhedron, 162 (2019) 129-141.
[320] H. GaoZD, Synthesisofmagnetically separable Ag3PO4/TiO2/Fe3O4 heterostructure with enhanced photocatalyticperformanceundervisiblelightforphotoinactivation ofbacteria, ACSAppliedMaterials& Interfaces, 6 (2014) 15122-15131.
[321] L. Zhang, J. Lian, L. Wu, Z. Duan, J. Jiang, L. Zhao, Synthesis of a Thin-Layer MnO2 Nanosheet-Coated Fe3O4 Nanocomposite as a Magnetically Separable Photocatalyst, Langmuir, 30 (2014) 7006-7013.
[322] S. Kumar, S. T, B. Kumar, A. Baruah, V. Shanker, Synthesis of Magnetically Separable and Recyclable g-C3N4–Fe3O4 Hybrid Nanocomposites with Enhanced Photocatalytic Performance under Visible-Light Irradiation, The Journal of Physical Chemistry C, 117 (2013) 26135-26143.
[323] X. Liu, Z. Fang, X. Zhang, W. Zhang, X. Wei, B. Geng, Preparation and Characterization of Fe3O4/CdS Nanocomposites and Their Use as Recyclable Photocatalysts, Crystal Growth & Design, 9 (2009) 197-202.
[324] C.H. Kim, Y.H. Jung, H.Y. Kim, D.R. Lee, N. Dharmaraj, K.E. Choi, Effect of collector temperature on the porous structure of electrospun fibers, Macromolecular Research, 14 (2006) 59-65.
[325] S. Naseem, C.-M. Wu, T.-Z. Xu, C.-C. Lai, S.-P. Rwei, Oil-water separation of electrospun cellulose triacetate nanofiber membranes modified by electrophoretically deposited TiO2/graphene oxide, Polymers, 10 (2018) 746.
[326] C. Wu, M. Chou, Acoustic-electric conversion and piezoelectric properties of electrospun polyvinylidene fluoride/silver nanofibrous membranes, eXPRESS Polymer Letters, 14 (2020).
[327] H. Fatima, D.-W. Lee, H.J. Yun, K.-S. Kim, Shape-controlled synthesis of magnetic Fe3O4 nanoparticles with different iron precursors and capping agents, RSC advances, 8 (2018) 22917-22923.
[328] K. Thummavichai, N. Wang, L. Cheong Lem, M. Phillips, C. Ton-That, H. Chang, C. Hu, F. Xu, Y. Xia, Y. Zhu, Lanthanide-doped W18O49 nanowires: Synthesis, structure and optical properties, Materials Letters, 214 (2018) 232-235.
[329] T. Yang, C. Shen, Z. Li, H. Zhang, C. Xiao, S. Chen, Z. Xu, D. Shi, J. Li, H. Gao, Highly ordered self-assembly with large area of Fe3O4 nanoparticles and the magnetic properties, Journal of Physical Chemistry B, 109 (2005) 23233-23236.
[330] R. Guo, L. Fang, W. Dong, F. Zheng, M. Shen, Magnetically separable BiFeO3 nanoparticles with a γ-Fe2O3 parasitic phase: Controlled fabrication and enhanced visible-light photocatalytic activity, Journal of Materials Chemistry, 21 (2011) 18645-18652.
[331] L. Cheng, S. Zhang, Y. Wang, G. Ding, Z. Jiao, Ternary P25–graphene–Fe3O4 nanocomposite as a magnetically recyclable hybrid for photodegradation of dyes, Materials Research Bulletin, 73 (2016) 77-83.
[332] Y. Zeng, N. Guo, Y. Song, Y. Zhao, H. Li, X. Xu, J. Qiu, H. Yu, Fabrication of Z-scheme magnetic MoS2/CoFe2O4 nanocomposites with highly efficient photocatalytic activity, Journal of Colloid and Interface Science, 514 (2018) 664-674.
[333] K.G. Motora, C.-M. Wu, T.-Z. Xu, T.F. Chala, C.-C. Lai, Photocatalytic, antibacterial, and deodorization activity of recycled triacetate cellulose nanocomposites, Materials Chemistry and Physics, 240 (2020) 122260.
[334] S.M. Abdel Moniem, M.E.M. Ali, T.A. Gad-Allah, A.S.G. Khalil, M. Ulbricht, M.F. El-Shahat, A.M. Ashmawy, H.S. Ibrahim, Detoxification of hexavalent chromium in wastewater containing organic substances using simonkolleite-TiO2 photocatalyst, Process Safety and Environmental Protection, 95 (2015) 247-254.
[335] R. Liang, L. Shen, F. Jing, W. Wu, N. Qin, R. Lin, L. Wu, NH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr (VI), Applied Catalysis B: Environmental, 162 (2015) 245-251.
[336] B.A. Marinho, R. Djellabi, R.O. Cristóvão, J.M. Loureiro, R.A. Boaventura, M.M. Dias, J.C.B. Lopes, V.J. Vilar, Intensification of heterogeneous TiO2 photocatalysis using an innovative micro–meso-structured-reactor for Cr(VI) reduction under simulated solar light, Chemical Engineering Journal, 318 (2017) 76-88.
[337] S. Douafer, H. Lahmar, M. Benamira, L. Messaadia, D. Mazouzi, M. Trari, Chromate reduction on the novel hetero-system LiMn2O4/SnO2 catalyst under solar light irradiation, Surfaces and Interfaces, 17 (2019) 100372.
[338] H. Lahmar, M. Benamira, F. Akika, M. Trari, Reduction of chromium (VI) on the hetero-system CuBi2O4/TiO2 under solar light, Journal of Physics and Chemistry of Solids, 110 (2017) 254-259.
[339] H. Lahmar, G. Rekhila, M. Trari, Y. Bessekhouad, reduction on the novel heterosystem La2CuO4/SnO2 under solar light, Environmental Progress & Sustainable Energy, 34 (2015) 744-750.
[340] A. Habibi-Yangjeh, M. Mousavi, Deposition of CuWO4 nanoparticles over g-C3N4/Fe3O4 nanocomposite: Novel magnetic photocatalysts with drastically enhanced performance under visible-light, Advanced Powder Technology, 29 (2018) 1379-1392.
[341] H. Liang, H. Zou, S. Hu, Preparation of the W18O49/g-C3N4 heterojunction catalyst with full-spectrum-driven photocatalytic N2 photofixation ability from the UV to near infrared region, New Journal of Chemistry, 41 (2017) 8920-8926.

無法下載圖示 全文公開日期 2024/07/28 (校內網路)
全文公開日期 2026/07/28 (校外網路)
全文公開日期 2030/07/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE