簡易檢索 / 詳目顯示

研究生: 張志宇
Chih-Yu Chang
論文名稱: PPV衍生物材料發光效率、載子特性及發光元件性能預測
Luminescence Efficiency, Carrier Properties, and Light-Emitting Device Performance Prediction in PPV-Derived Polymers
指導教授: 胡孝光
Shiaw-Guang Hu
口試委員: 周賢鎧
Shyan-Kay Jou
郭欽湊
Chin-Tsou Kuo
王立義
Lee-Yih Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 89
中文關鍵詞: 共軛高分子載子遷移率效率
外文關鍵詞: efficiency, carrier mobility, meh-ppv
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究藉由改變PPV側鏈的化學結構,測量在溶液態及固態的UV-Vis吸收光譜、光激發光光譜以及時間解析光激發光光譜,並藉由Strickler-Berg equation計算激子固有生命期,探討化學結構對於激子生命期、激子固有生命期與光激發光量子效率的影響。另外,製作二極體元件測量電流-電壓特性,由空間電荷限制電流模型計算出電洞遷移率,並以歐姆接觸關係式計算出平衡電洞濃度。藉由Fowler-Nordheim equation結合元件電流-電壓特性,預測在不同能障高度的載子再結合效率,探討化學結構對於載子特性及載子再結合效率的影響,並進一步預測元件外部量子效率。
溶液態UV-Vis吸收光譜中顯示隨著溶劑極性增加,極性最小的DO-PPV最大吸收波長有藍位移情形,顯示其共軛長度隨著溶劑極性增加而減少。其他兩高分子的最大吸收波長則沒有改變。溶液態光激發光光譜中顯示隨著溶劑極性的增加,極性最小的DO-PPV最大發射波長有些許的藍位移情形,其他兩高分子的最大發射波長則有些許的紅位移情形。相對於溶液態,固態光激發光光譜的發射波長有紅位移情形,比較位移量得知π-π stacking interaction最大的是DO-PPV,最小的是MEH-PPV。
比較溶液態的激子固有生命期,得知極性越小的高分子其激子固有生命期越短,這是由於在吸收過程中存在較高的分子內電子轉移機率。比較固態激子固有生命期,顯示其趨勢與溶液態激子固有生命期相同,但相對於溶液態,固態激子固有生命期較短。此外,比較三個高分子的激子生命期,顯示π-π stacking interaction越大的高分子其激子生命期越短。相對於溶液態,固態激子生命期較短,這是由於在固態時π-π stacking interaction較溶液態大。
比較溶液態及固態的光激發光量子效率,顯示激子固有生命期越短的高分子其光激發光量子效率越高。相對於溶液態,固態光激發光量子效率較低。
比較三個高分子相同電場下的電洞遷移率及平衡電洞濃度,發現DO-PPV的電洞遷移率最高, MO-PPV最低,而能隙值越高的高分子其平衡電洞濃度越低。
由載子再結合效率預測結果得知,隨著能障高度的提高,在相同電壓下的載子再結合效率下降,元件起始電壓提高。此外,比較外部量子效率的預測值,顯示在本研究中固態光激發光量子效率較高的高分子其外部量子效率亦較高。


This study investigated the influence of PPV side chain structures on the exciton lifetime, exciton intrinsic lifetime, and photoluminescence efficiency by measuring the UV-Vis absorption spectra, photoluminescence spectra, time-resolved photoluminescence spectra, and calculating the exciton intrinsic lifetime by Strickler-Berg equation. On the other hand, by fabricating the LED devices and measuring current-voltage characteristics, current-voltage characteristics were used to calculate the hole mobility and equilibrium hole concentration by the space charge limited current model and ohmic contact relationship. By combining Fowler-Nordheim equation and current-voltage characteristics, the carrier recombination efficiency with various barrier heights could be predicted. Carrier properties and the carrier recombination efficiency for different polymers were further investigated. Moreover, the external quantum efficiency was predicted.
In UV-Vis absorption spectra, the maximum absorption wavelength of DO-PPV showed blue shift with increasing the solvent polarity, while the maximum absorption wavelength of the other two polymers were independent of the solvent polarity in solution state. In photoluminescence spectra, the maximum emission wavelength of DO-PPV showed blue shift with increasing the solvent polarity, while the maximum emission wavelength of the other two polymers showed red shift with increasing the solvent polarity in solution state. Compared to the photoluminescence spectra in solution state, the emission wavelength of photoluminescence spectra in solid state showed red shift. By comparing the results of the shift displacement, it was found that DO-PPV had the strongest π-π stacking interaction, follow by MO-PPV, and then MEH-PPV.
By comparing the exciton intrinsic lifetime in solution state with different polymers, it was found that the polymers with smaller polarity had shorter exciton intrinsic lifetime, and it was due to higher electronic transition probability of the absorption band. By comparing the exciton intrinsic lifetime in solid state with different polymers, the trend of characteristics was similar to solution state, except polymers in solid state had shorter exciton intrinsic lifetime. Besides, the polymers with stronger π-π stacking interaction had shorter exciton lifetime. The exciton lifetime was relative shorter in solid state compared to solution state, and it was due to the stronger π-π stacking interaction in solid state.
By comparing the photoluminescence efficiency in solution and solid states with different polymers, it was found that the polymers with shorter exciton intrinsic lifetime had higher photoluminescence efficiency. Furthermore, the photoluminescence efficiency was relative smaller in solid state compared to solution state.
By comparing the hole mobility and equilibrium hole concentration at the same electric field with different polymers, it was found that DO-PPV had the highest hole mobility, follow by MEH-PPV, and then MO-PPV. Besides, the polymers with higher energy gap had smaller equilibrium hole concentration.
From the predicted carrier recombination efficiency results, it was found that the carrier recombination efficiency was decreased and the turn-on voltage was increased with increasing the barrier height. Besides, by comparing the external quantum efficiency with different polymers, it was also found that polymers with higher photoluminescence efficiency in solid state also had higher external quantum efficiency in this study.

中文摘要 Ⅰ 英文摘要 Ⅲ 誌謝 Ⅶ 目錄 Ⅷ 圖表索引 XI PPV衍生物材料發光效率、載子特性及發光元件性能預測 一、前言 1 二、實驗方法 6 2.1 MEH-PPV高分子的合成與製備 6 2.1.1 1-methoxy-4-(2-ethylhexyloxy)benzene 之合成 6 2.1.2 2,5-bis(bromomethyl)-1-methoxy-4-(2-ethylhexyloxy) benzene 單體之合成 6 2.1.3 Poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene- vinylene (MEH-PPV) 高分子之製備 7 2.2 MO-PPV高分子的合成與製備 8 2.2.1 1-methoxy-4-octyloxybenzene 之合成 8 2.2.2 2,5-bis(bromomethyl)-1-methoxy-4-octyloxybenzene 單體之合成 8 2.2.3 Poly(2-methoxy-5-octyloxy-1,4-phenylene-vinylene) (MO-PPV) 高分子之製備 9 2.3 Poly(2,5-di-octyloxy-1,4-phenylene-vinylene) (DO-PPV)高分子的合成與製備 9 2.4 光譜分析 9 2.4.1 核磁共振光譜(1H-NMR)分析 9 2.4.2 傅立葉紅外線(FT-IR)光譜分析 10 2.4.3 UV-Vis吸收光譜分析 10 2.4.4 光激發光光譜分析 10 2.4.5 時間解析光激發光光譜分析 11 2.5 元件之製作 11 2.5.1 ITO玻璃清洗 11 2.5.2 ITO玻璃蝕刻 12 2.5.3 高分子溶液塗佈 12 2.5.4 電極蒸鍍 13 2.6 元件電流-電壓特性量測 13 三、結果與討論 20 3.1 結構鑑定與分子量分析 20 3.2 溶液態光譜分析 21 3.2.1 UV-Vis吸收光譜分析 21 3.2.2 光激發光光譜分析 22 3.2.3 溶液態激子固有生命期 23 3.2.4 時間解析光激發光光譜分析 26 3.3 溶液態光激發光量子效率 28 3.4 固態光譜分析 28 3.4.1 UV-Vis吸收光譜分析 28 3.4.2 光激發光光譜分析 28 3.4.3 固態激子固有生命期 29 3.4.4 時間解析光激發光光譜分析 30 3.5 固態光激發光量子效率 31 3.6 高分子發光二極體元件特性分析 31 3.6.1 元件電流-電壓特性分析 31 3.6.2 電洞遷移率之探討 32 3.6.3 平衡電洞濃度之探討 35 3.6.4 載子再結合效率之探討 36 3.6.5 能障高度對載子再結合效率之影響 38 3.6.6 外部量子效率之探討 40 四、結論 42 五、參考文獻 44

1.D. D. C. Bradley, Adv. Mater., 4, 756(1992).
2.D. D. Gebler, Y. Z. Wang, J. W. Blatchford, S. W. Jessen, D. K. Fu, T. M. Swager, A. G. MacDiarmid, A. J. Epstein, Appl. Phys. Lett., 70, 1644(1997).
3.Y. Shi, J. Liu, Y. Yang, J. Appl. Phys., 87, 4254(2000).
4.U. Lemmer, D. Vacar, D. Moses, A. J. Heeger, T. Ohnishi, T. Noguchi, Appl. Phys. Lett., 68, 3007(1996).
5.H. Antoniadis, M. A. Abkowitz, J. A. Osahemi, S. A. Jenekhe, M. Stolka, Synth. Met., 60, 149(1993).
6.W. Rieß, S. Karg, V. Dyakonov, M. Meier, M. Schwoerer, J. Lumin., 60, 906(1994).
7.N. S. Sariciftci, D. Braum, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, Appl. Phys. Lett., 62, 585(1993).
8.G. J. Lee, D. Kim, J. I. Lee, H. K. Shim, Y. W. Kim, J. C. Jo, Jpn. J. Appl. Phys., 35, 114(1996).
9.M. R. Anderson, B. R. Mattes, H. Reiss, R. B. Kaner, Science, 252, 1412(1991).
10.A. Ohtani, A. M. Ezoe, T. Doi, T. Miyata, A. Miyaka, Synth. Met., 55-57, 3696(1993).
11.D. A. Skoog, D. M. West, F. J. Holler, “Fundamentals of Analytical Chemistry”, 5th Ed., Saunders College Publishing, pp. 534(1988).
12.E. L. Wehry, “Modern Fluorescence Spectroscopy”, Vol. 2, Plenum Press, New York, pp. 93(1976).
13.A. B. Holmes, D. D. C. Bradley, A. R. Brown, P. L. Burn, J. H. Burroughes, R. H. Friend, N. C. Greenham, A. W. Gymer, D. A. Halliday, R. W. Jackson, A. Kraft, J. H. F. Martens, K. Pichler, I. D. W. Samuel, Synth. Met., 55-57, 4031(1993).
14.J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, R. H. Friend, P. L. Burn and A. B. Holems, Nature, 347, 539(1990).
15.D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982(1991).
16.S. Doi, M. Kuwabara, T. Noguchi, T. Ohnishi, Synth. Met., 55-57, 4174(1993).
17.I. D. Samuel, B. Crystall, G. Rumbles, P. L. Burn, A. B. Holmes, R. H. Friend, Synth. Met., 54, 281(1993).
18.K. S. Wong, D. D. C. Bradley, W. Hayes, J. F. Ryan, R. H. Friend, H. Lindenberger, S. Roth, J. Phys. C: Solid State Phys., 20, L187-L194(1987).
19.S. J. Strickler, R. A. Berg, J. Chem. Phys., 37, 814(1962).
20.L. Smilowitz, A. Hays, A. J. Heeger, G. Wang, J. E. Bowers, J. Chem. Phys, 98, 6504(1993).
21.D. Braun, E. G. J. Staring, R. C. J. E. Demandt, G. L. J. Rikken, Y. A. R. R. Kessener, A. H. J. Venhuizen, Synth. Met., 66, 75(1994).
22.P. W. M. Blom, M. J. M. de Jone, J. J. M. Vleggaar, Appl. Phys. Lett., 68, 3308(1996).
23.B. K. Crone, I. H. Campbell, P. S. Davids, D. L. Smith, Appl. Phys. Lett., 73, 3162(1998).
24.C. Tanase, P. W. M. Blom, D. W. de Leeuw, E. J. Meijer, Phys. Stat. Sol. A, 201(6), 1236(2004).
25.Y. Kawabe, M. M. Morrell, G. E. Jabbour, S. E. Shaheen, B. Kippelen, N. Peyghambarian, J. Appl. Phys., 84, 5306(1998).
26.G. G. Malliaras, J. C. Scott, J. Appl. Phys., 85, 7426(1999).
27.I. D. Park, J. Appl. Phys., 75, 1656(1994).
28.Y. Cao, G. Yu, C. Zhang, R. Menon, A. J. Heeger, Synth. Met., 87, 171(1997).
29.Y. Yang, A. J. Heeger, Appl. Phys. Lett., 64, 1245(1994).
30.H. Y. Jeong, Y. K. Lee, A. Talaie, K. M. Kim, Y. D. Kwon, Y. R. Jang, K. H. Yoo, D. J. Choo, J. Jang, Thin Solid Films, 417, 171(2002).
31.C. –B. Yoon, I. –N. Kang, H. –K. Shim, J. Polym. Sci., Part A: Polym. Chem., 35, 2253(1997).
32.H. S. Kang, K. H. Kim, M. S. Kim, K. T. Park, K. M. Kim, T. H. Lee, J. Joo, K. Kim, D. W. Lee, J. I. Jin, Curr. Appl. Phys., 1, 443(2001).
33.C. J. Neef, J. P. Ferraris, Macromolecules, 33, 2311(2000).
34.C. Reichardt, “Solvents and Solvent Effects in Organic Chemistry”, 2nd Ed., VCH Publishing, New York, pp.408-410(1988).
35.R. B. Breitenkamp, G. N. Tew, Macromolecules, 37, 1163(2004).
36.S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Müllen, F. Meghdadi, E. J. W. List, G. Leising, J. Am. Chem. Soc., 123, 946(2001).
37.Yi-Fang Huang, “Molecular Packing and Its Effects on Light-emitting Properties of Poly(1,4-phenylenevinylene)s”, 博士論文(2002).
38.R. S. Knox, Photochemistry and Photobiology, 77, 492 (2003).
39.I. D. W. Samuel, B. Crystall, G. Rumbles, P. L. Burn, A. B. Holmes, R. H. Friend, Chem. Phys. Lett., 213, 472(1993).
40.I. D. W. Samuel, G. Rumbles, C. J. Collison, Phys. Rev. B., 52, 11573(1995).
41.I. D. W. Samuel, G. Rumbles, C. J. Collison, R. H. Friend, S. C. Moratti, A. B. Holmes, Synth. Met., 84, 497(1997).
42.N. J. Turro, “Molecular Photochemistry”, W. A. Benjamin, New York, pp. 6(1967).
43.M. Klessinger, J. Michl, “Excited State and Photochemistry of Organic Molecules”, VCH Publishing, New York, pp. 248(1995).
44.J. C. de Mello, H. F. Wittmann, R. H. Friend, Adv. Mat., 9, 230(1997).
45.W. D. Gill, J. Appl. Phys., 43, 5033(1972).
46.H. Bässler, Phys. Stat. Sol. B, 175, 15(1993).
47.Q. Mohammad, S. S. Manoharan, J. Appl. Phys., 97, 96101(2005).
48.M. A. Abkowitz, J. S. Facci, W. W. Limburg, J. F. Yanus, Phys. Rev. B, 46, 6705(1992).
49.H. Meyer, D. Haarer, H. Naarmann, H. H. Hörhold, Phys. Rev. B, 52, 2587(1995).
50.E. Lebedev, Th. Dittrich, V. Petrova-Koch, S. Karg, W. Brütting, Appl. Phys. Lett., 71, 2686(1997).
51.R. G. Kepler, P. M. Beeson, S. J. Jacobs, R. A. Anderson, M. B. Sinclair, V. S. Valencia, P. A. Cahill, Appl. Phys. Lett., 66, 3618(1995).
52.P. W. M. Blom, M. J. M. de Jong, M. G. van Munster, Phys. Rev. B, 55, R565(1997).
53.I. H. Campbell, D. L. Smith, C. J. Neef, J. P. Ferraris, Appl. Phys. Lett., 74, 2809(1999).
54.N. F. Mott, R. W. Gurney, “Electronic Process in Ionic Crystals”, Oxford University Press, New York, pp. 170-173(1940).
55.W. Helfrich, “Physics and Chemistry of the Organic Solid State”, Vol. 3, Wiley, New York, pp. 911(1967).
56.M. A. Lambert, P. Marks, “Current Injection in Solids”, Academic Press, New York, pp. 46(1970).
57.L. Bozano, S. A. Carter, J. C. Scott, G. G. Malliaras, P. J. Brock, Appl. Phys. Lett., 74, 1132(1999).
58.J. C. Scott, P. J. Brock, J. R. Salem, S. Ramos, G. G. Malliaras, S. A. Carter, L. Bozano, Synth. Met., 111-112, 289(2000).
59.P. W. M. Blom, M. J. M. de Jong, C. T. H. F. Liedenbaum, Polym. Adv. Technol., 9, 390(1998).
60.P. W. M. Blom, M. C. J. M. Vissenberg, Mater. Sci. Eng., 27, 53(2000).
61.P. W. M. Blom, M. J. M. de Jong, IEEE J. Sel. Top. Quantum Electron., 4, 105(1998).
62.J. M. Lupton, I. D. W. Samuel, Synth. Met., 111-112, 381(2000).
63.S. V. Rakhmanova, E. M. Conwell, Synth. Met., 116, 389(2001).
64.W. Brütting, S. Berleb, A. G. Mückl, Synth. Met., 122, 99(2001).
65.P. N. Murgatroyd, J. Phys. D, 3, 151(1970).
66.G. G. Malliaras, J. R. Salem, P. J. Brock, C. Scott, Phys. Rev. B, 58, R13411(1998).
67.L. S. Roman, O. Inganäs, Synth. Met., 125, 419(2002).
68.G. G. Malliaras, J. R. Salem, P. J. Brock, J. C. Scott, J. Appl. Phys., 84, 1583(1998).
69.I. H. Campbell, D. Smith, C. J. Neef, P. Ferraris, Appl. Phys. Lett., 75, 841(1999).
70.D. J. Pinner, R. H. Friend, N. Tessler, J. Appl. Phys., 86, 5116(1999).
71.F. Feller, C. Rothe, M. Tammer, D. Geschke, A. P. Monkman, J. Appl. Phys., 91, 9225(2002).
72.A. B. Walker, A. Kambili, S. J. Martin, J. Phys.: Conden. Matter, 14, 9925(2002)
73.D. R. Lamb, “Electrical Conduction Mechanisms in Thin Insulating Films”, Methuen Publishing, London, pp. 47(1967).
74.D. A. Neamen, “Semiconductor Physics & Devices”, 3rd Ed., McGraw-Hill, Boston, pp. 712(2002).
75.S. M. Sze, “Semiconductor Devices: Physics and Technology”, 2nd Ed., Wiley, New York, pp. 536(2002).
76.A. Moliton, R. C. Hiorns, Polym. Int., 53, 1397(2004).
77.Y. Cao, I. D. Parker, G. Yu, C. Zhang, A. J. Heeger, Nature, 397, 414(1999).
78.T. –W. Lee, J. Zaumseil, Z. Bao, J. W. P. Hsu, J. A. Rogers, Proc. Nat. Acad. Sci., 101, 429(2004).

無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2006/08/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE