簡易檢索 / 詳目顯示

研究生: 黃怡晶
Yi-Jing Huang
論文名稱: 高速生產線瑕疵檢測之兩階段卷積神經網絡模型
A Two-phase Convolutional Neural Network Model for Automatic Optical Inspection System of High Speed Production Line
指導教授: 王孔政
Kung-Jeng Wang
口試委員: 郭人介
Ren-Jieh Kuo
陳怡永
Yi-Yung Chen
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 45
中文關鍵詞: 深度學習卷積神經網絡自動光學檢測瑕疵辨識瑕疵分類
外文關鍵詞: deep learning, convolutional neural network, automated optical inspection, defective identification, defect classification
相關次數: 點閱:321下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高速生產的微型電子元件需要快速且準確的檢測方法,自動光學檢測(Automated Optical Inspection, AOI)常應用於此。然而,AOI易於產生檢測篩選不足且/或篩選過度的問題。本研究提出一全新的兩階段集成卷積神經網絡模型來解決AOI檢測瓶頸,基於檢測速度下,該模型包含兩階段品質檢測,即為瑕疵辨識與瑕疵分類,前者的準確度達到92.75%-100%,且每一產品之檢測速度約為0.02-0.03秒;後者的準確度達到85.71%-100%,且每一瑕疵產品之檢測速度約為0.04-0.06秒。本實驗結果不僅優於AOI的檢測表現、又符合生產速度計劃,且接近即時檢測。此外,本實驗可以檢測到AOI無法辨認的瑕疵,並識別因AOI誤判的良品。


    Since tiny-scaled electronical components with high-speed production requires fast but accurate inspection. Automatic optical inspection (AOI) is commonly employed in this situation. However, AOI tends to cause under-screening and/or over-screening. This paper proposes a new two-phase integrated convolutional neural network (CNN) model to resolve AOI inspection issue. The proposed model contains two phases of quality detection that are defective identification and defect type classification on the basis of inspection speed. The former reaches 92.75%-100% with detection speed at 0.02-0.03 second per product, and the latter accuracy reaches 85.71%-100% with detection speed at 0.04-0.06 second per product, which are better than AOI, match production schedule and close to real time. In addition, our methods can detect the defects that AOI cannot recognize, and identify good products that AOI misjudges.

    摘要 i Abstract ii Contents iii Content of Table iv Content of Figure v Chapter 1 Introduction 1 1.1  Research background 1
 1.2  Research motivation and objective 2
 1.3  Thesis structure 2
 Chapter 2 Literature Review 3 2.1  AOI system and risks 3 
2.2  Convolutional neural network 4 
2.3  Summary 6 Chapter 3 Modeling 7 3.1  AOI system under investigation 7 
3.2  Defect definition and image pre-processing 7
 3.3  Statistics by current AOI 10 
3.4  Proposed two-phase CNN architecture 11
 3.5  Confusion matrix 20
 3.6  Model integration 21 
Chapter 4 Experiments and discussion 23 4.1  Result of OK/NG classification of CNN model (phase one) 23
 4.2  Result of defect classification in CNN model (phase two) 26
 4.3  Result of the proposed two-phase CNN model 29
 Chapter 5 Conclusion and Future Research 32 5.1  Discussion and conclusion 32 
5.2  Future research 33
 References 34

    Akram, M. W., Li, G., Jin, Y., Chen, X., Zhu, C., Zhao, X., ... & Ahmad, A. (2019). CNN based automatic detection of photovoltaic cell defects in electroluminescence images. Energy, 189, 116319.
    Chang, M., Chen, B. C., Gabayno, J. L., & Chen, M. F. (2016). Development of an optical inspection platform for surface defect detection in touch panel glass. International Journal of Optomechatronics, 10(2), 63-72.
    Chen, S. H., & Perng, D. B. (2016). Automatic optical inspection system for IC molding surface. Journal of Intelligent Manufacturing, 27(5), 915-926.
    Chen, Y. J., Fan, C. Y., & Chang, K. H. (2016). Manufacturing intelligence for reducing false alarm of defect classification by integrating similarity matching approach in CMOS image sensor manufacturing. Computers & Industrial Engineering, 99, 465-473.
    Chen, F. C., & Jahanshahi, M. R. (2017). NB-CNN: Deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion. IEEE Transactions on Industrial Electronics, 65(5), 4392-4400.
    Dai, W., Mujeeb, A., Erdt, M., & Sourin, A. (2020). Soldering defect detection in automatic optical inspection. Advanced Engineering Informatics, 43, 101004.
    Dos Reis, D. H., Welfer, D., De Souza Leite Cuadros, M. A., & Gamarra, D. F. T. (2019). Mobile Robot Navigation Using an Object Recognition Software with RGBD Images and the YOLO Algorithm. Applied Artificial Intelligence, 33(14), 1290-1305.
    Hung, C. W., Jiang, J. G., Wu, H. H. P., & Mao, W. L. (2018). An Automated Optical Inspection system for a tube inner circumference state identification. Journal of Robotics, Networking and Artificial Life, 4(4), 308-311.
    Janóczki, M., Becker, Á., Jakab, L., Gróf, R., & Takács, T. (2013). Automatic Optical Inspection of Soldering. Materials Science-Advanced Topics, 10, 51699.
    Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
    Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
    LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
    LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation network. In Advances in neural information processing systems (pp. 396-404).
    LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4), 541-551.
    LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
    Le, N. T., Wang, J. W., Shi, M. H., & Wang, C. C. (2020). Novel Framework for Optical Film Defect Detection and Classification. IEEE Access.
    Lin, Y. L., Chiang, Y. M., & Hsu, H. C. (2018). Capacitor Detection in PCB Using YOLO Algorithm. In 2018 International Conference on System Science and Engineering (ICSSE) (pp. 1-4). IEEE.
    Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2016). Convolutional neural networks for large-scale remote-sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 645-657.
    Mar, N. S. S., Fookes, C., & Yarlagadda, P. K. (2009). Design of automatic vision-based inspection system for solder joint segmentation. Journal of Achievements in Materials and Manufacturing Engineering, 34(2), 145-151.
    Ojer, M., Serrano, I., Saiz, F., Barandiaran, I., Gil, I., Aguinaga, D., & Alejandro, D. (2020). Real-time automatic optical system to assist operators in the assembling of electronic components. The International Journal of Advanced Manufacturing Technology, 1-15.
    Ranzato, M. A., Huang, F. J., Boureau, Y. L., & LeCun, Y. (2007, June). Unsupervised learning of invariant feature hierarchies with applications to object recognition. In 2007 IEEE conference on computer vision and pattern recognition (pp. 1-8). IEEE.
    Rau, H., & Wu, C. H. (2005). Automatic optical inspection for detecting defects on printed circuit board inner layers. The International Journal of Advanced Manufacturing Technology, 25(9-10), 940-946.
    Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehensive review. Neural computation, 29(9), 2352-2449.
    Ren, Y., Zhu, C., & Xiao, S. (2018). Small object detection in optical remote sensing images via modified faster R-CNN. Applied Sciences, 8(5), 813.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Berg, A. C. (2015). Imagenet large scale visual recognition challenge. International journal of computer vision, 115(3), 211-252.
    Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
    Taha, E. M., Emary, E., & Moustafa, K. (2014). Automatic optical inspection for PCB manufacturing: a survey. International Journal of Scientific and Engineering Research, 5(7), 1095-1102.
    Vieira, S. M., Kaymak, U., & Sousa, J. M. (2010, July). Cohen's kappa coefficient as a performance measure for feature selection. In International Conference on Fuzzy Systems (pp. 1-8). IEEE.
    Wang, J., Huang, Y., Wei, W., & Li, J. (2018, May). Character Recognition System Design Based on Image Feature Extraction and QNN. In 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) (pp. 2605-2608). IEEE.
    Ye, R., Chang, M., Pan, C. S., Chiang, C. A., & Gabayno, J. L. (2018). High-resolution optical inspection system for fast detection and classification of surface defects. International Journal of Optomechatronics, 12(1), 1-10.

    無法下載圖示 全文公開日期 2025/06/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE