簡易檢索 / 詳目顯示

研究生: Zabish Bilew Muche
Zabish Bilew Muche
論文名稱: Fabrication of Novel Thermally Stable and Porous Polyimide-Based Polymer Separator for Li-Ion Battery Applications
Fabrication of Novel Thermally Stable and Porous Polyimide-Based Polymer Separator for Li-Ion Battery Applications
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 何郡軒
Jinn-Hsuan Ho
鄧熙聖
Deng Xisheng
江陸穎
Chia-Ying Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 77
中文關鍵詞: lithium-ion batterypolyimideSeparatononsolvent-induced phase inversion(immersion precipitation)
外文關鍵詞: lithium-ion battery, polyimide, Separator, nonsolvent-induced phase inversion, immersion precipitation
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

A new porous polyimide (PI) membrane has been successfully prepared via nonsolvent-induced
phase inversion (immersion precipitation) technique. The as-prepared uniform porous PI
membrane has shown excellent separator properties for lithium-ion batteries (LIBs). As compared
with the commercial celgard separator, our PI separator exhibits excellent thermal stability, high
porosity, and super wettability in LiPF6 (in EC/DMC=1:1, V/V) electrolytes, and better ionic
conductivity and electrochemical stability. The battery coin-cell assembled with the PI separator
is more robust and still works even after heating at 140 °C for 30 minutes. However, under the
same environmental condition, the cell assembled with the commercial Celgard separator could
not show a stable result. Moreover, its capacity gets drop after the first cycle. This is because of
the shrinkage of the Celgard separator at a temperature of 140 °C.


A new porous polyimide (PI) membrane has been successfully prepared via nonsolvent-induced
phase inversion (immersion precipitation) technique. The as-prepared uniform porous PI
membrane has shown excellent separator properties for lithium-ion batteries (LIBs). As compared
with the commercial celgard separator, our PI separator exhibits excellent thermal stability, high
porosity, and super wettability in LiPF6 (in EC/DMC=1:1, V/V) electrolytes, and better ionic
conductivity and electrochemical stability. The battery coin-cell assembled with the PI separator
is more robust and still works even after heating at 140 °C for 30 minutes. However, under the
same environmental condition, the cell assembled with the commercial Celgard separator could
not show a stable result. Moreover, its capacity gets drop after the first cycle. This is because of
the shrinkage of the Celgard separator at a temperature of 140 °C.

Table of Contents Abstract ..................................................................................................................................... i Acknowledgments .................................................................................................................... ii List of Abbreviations.............................................................................................................. vii List of Figures........................................................................................................................ viii List of Tables .............................................................................................................................x Chapter 1...................................................................................................................................1 Introduction and Motivation ....................................................................................................1 1.1. Preface .........................................................................................................................1 1.1.1. Energy Challenges .................................................................................................1 1.1.2. Energy Storage Device (ESD)................................................................................2 1.1.3. The Choices of Battery...........................................................................................2 1.2. General Introduction of Lithium-Ion Battery (LIB) .................................................2 1.2.1. Components of Lithium-Ion Battery.......................................................................3 1.3. Cathode Materials in Lithium-Ion Battery ................................................................4 1.4. Anode Materials..........................................................................................................5 1.5. Electrolyte in Lithium-Ion Battery.............................................................................5 1.6. Separator.....................................................................................................................6 1.7. Requirements for Separators......................................................................................7 1.7.1. Chemical and Electrochemical Stabilities...............................................................7 1.7.2. Wettability.............................................................................................................7 1.7.3. Ionic Conductivity .................................................................................................8 1.7.4. Thickness...............................................................................................................8 1.7.5. Porosity and Pores Distributions ............................................................................8 1.7.6. Mechanical Property ..............................................................................................9 1.7.7. Thermal Stability ...................................................................................................9 1.7.8. Cost .....................................................................................................................10 1.8. Significance of Separator..........................................................................................10iv 1.9. Types and Manufactures of Separators ...................................................................10 1.9.1. Inorganic Composite Membranes.........................................................................11 1.9.2. Non-woven Fabric Mats.......................................................................................11 1.9.3. Microporous Polymer Membranes .......................................................................11 1.10. Polyimide Separator..................................................................................................15 1.11. Properties of Ether-based Polyimide Polymers .......................................................16 1.12. Properties of Ether-Based Fluorinated Polyimide Polymers...................................16 1.13. The Reason Why Polyimide Separator ....................................................................17 1.14. Research Aims...........................................................................................................19 1.15. Thesis structure.........................................................................................................20 Chapter 2.................................................................................................................................21 Literature Review ...................................................................................................................21 2.1. Methods of Material Preparation.............................................................................21 2.2. Electrospinning Method............................................................................................21 2.2.1. Advantages ..........................................................................................................22 2.2.2. Disadvantage of the Electrospinning Method .......................................................23 2.3. Coating Method.........................................................................................................23 2.3.1. Limitations of Coating Methods...........................................................................24 2.4. Phase Inversion Processes.........................................................................................24 2.4.1. Thermal Practice Induced Phase Separation (TIPS)..............................................25 ..........................................................................................................................................26 2.4.2. Non-solvent Vapors Technique ............................................................................26 2.4.3. Evaporation Induced Phase Separation.................................................................27 2.4.4. Non-solvent Immersion........................................................................................28 2.5. Critical Parameters of Phase Inversion Methods and Effects on Membrane Performance.........................................................................................................................29 2.5.1. Choice of Solvent.................................................................................................29 2.5.2. Polymer Concentration.........................................................................................30v 2.5.3. The Precipitant System ........................................................................................30 2.5.4. The Ratio of Nonsolvent and Solvent ...................................................................30 2.5.5. Temperature.........................................................................................................31 Chapter 3.................................................................................................................................32 Methodology............................................................................................................................32 3.1. Experimental Sections...............................................................................................32 3.1.1. Material ...............................................................................................................32 3.1.2. Preparation of PI and FPI Polymer Solution .........................................................32 3.1.3. Fabrication of FPI and PI Separators ....................................................................32 3.2. Material Characterization ........................................................................................34 3.2.1. Membrane Morphology .......................................................................................34 3.2.2. Membrane Porosity..............................................................................................35 3.2.3. Membrane Wettability .........................................................................................35 3.2.4. Mechanical Strength Measurement ......................................................................36 3.2.5. Thermal Stability .................................................................................................36 3.3. Electrochemical Evaluation of the PI Separator......................................................37 3.3.1. Ionic Conductivity Measurements ........................................................................37 3.3.2. Electrochemical Stability .....................................................................................38 3.3.3. Battery Performance Test.....................................................................................39 Chapter 4.................................................................................................................................40 Results and Discussions...........................................................................................................40 4.1. Membrane Characterization ....................................................................................40 4.1.1. Morphology Studies (SEM Results) for FPI and PI Polymer .......................................40 4.2. Electrochemical Stability of 15% of PI and FPI Polymer Membrane ....................42 4.3. Mechanical Stability Tests........................................................................................48 4.4. Flexibility Tests .........................................................................................................49 4.5. Wettability tests.........................................................................................................50 4.6. Thermal Stability Tests.............................................................................................51vi 4.6.1. Thermal Shrinkage...............................................................................................51 4.6.2 Flammability (Ignition Test)......................................................................................53 4.7. Ionic Conductivity Test.............................................................................................54 4.8. Performance Evaluation of PI separator for LIB Application................................56 Chapter 5.................................................................................................................................60 Conclusion ...............................................................................................................................60 Chapter 6.................................................................................................................................62 Future Outlooks ......................................................................................................................62 References................................................................................................................................63

References
1. Kim, Y.-S.; Kriegel, S.; Harris, K. D.; Costentin, C.; Limoges, B.; Balland, V., Evidencing
Fast, Massive, and Reversible H+ Insertion in Nanostructured TiO2 Electrodes at Neutral pH.
Where Do Protons Come From? J. Phys. Chem. C 2017, 121 (19), 10325-10335.
2. Schlenker, C. W.; Thompson, M. E., Current challenges in organic photovoltaic solar energy
conversion. In Unimolecular and Supramolecular Electronics I, Springer: Berlin, Heidelberg,
2011; pp 175-212.
3. Liedel, C., Sustainable battery materials from biomass. ChemSusChem 2020; 3,2110–2141.
4. Lasrado, D.; Ahankari, S.; Kar, K., Nanocellulose‐based polymer composites for energy
applications-A review. J. Appl. Polym. Sci. 2020, 137 (27), 48959.
5. Yu, S.; Wilson, A. J.; Kumari, G.; Zhang, X.; Jain, P. K., Opportunities and challenges of solarenergy-driven carbon dioxide to fuel conversion with plasmonic catalysts. ACS Energy Lett.
2017, 2 (9), 2058-2070.
6. Bi, Z.; Li, X.; Chen, Y.; He, X.; Xu, X.; Gao, X., Large-scale multifunctional electrochromicenergy storage device based on tungsten trioxide monohydrate nanosheets and prussian white.
ACS Appl. Mater. Interfaces 2017, 9 (35), 29872-29880.
7. Gowda, S. R.; Leela Mohana Reddy, A.; Zhan, X.; Ajayan, P. M., Building energy storage
device on a single nanowire. Nano Lett 2011, 11 (8), 3329-3333.
8. Yin, X.; Jennings, J. R.; Tang, W.; Huang, T. J.; Tang, C.; Gong, H.; Zheng, G. W., Largescale color-changing thin film energy storage device with high optical contrast and energy
storage capacity. ACS Appl. Energy Mater 2018, 1 (4), 1658-1663.
9. Li, Y.; Lu, J., Metal–air batteries: will they be the future electrochemical energy storage device
of choice? ACS Energy Lett. 2017, 2 (6), 1370-1377.64
10. Lee, C. S.; Moon, J.; Park, J. T.; Kim, J. H., Highly Inter-connected Nanorods and Nanosheets
Based on Hierarchically Layered MOF for Flexible, High-Performance Energy Storage
Device. ACS Sustainable Chem. Eng. 2020, 8 (9), 3773–3785
11. Mohammadi Zardkhoshoui, A.; Hosseiny Davarani, S. S.; Ashtiani, M. M.; Sarparast, M.,
High-Performance Energy Storage Device Based on Triple-Shelled Cobalt Gallium Oxide
Hollow Spheres and Graphene Wrapped Copper Iron Disulfide Porous Spheres. ACS
Sustainable Chem. Eng. 2019, 7 (8), 7908-7917.
12. Molenaar, S. D.; Mol, A. R.; Sleutels, T. H.; Ter Heijne, A.; Buisman, C. J., Microbial
rechargeable battery: energy storage and recovery through acetate. Environ. Sci. Technol. Lett.
2016, 3 (4), 144-149.
13. Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B.
S.; Weiss, P. S.; Penner, R. M., Electrode Degradation in Lithium-Ion Batteries. ACS nano
2020, 14 (2), 1243–1295
14. Winter, M.; Barnett, B.; Xu, K., Before Li ion batteries. Chem. Rev. 2018, 118 (23), 11433-
11456.
15. Zhang, J.; Yue, L.; Kong, Q.; Liu, Z.; Zhou, X.; Zhang, C.; Xu, Q.; Zhang, B.; Ding, G.; Qin,
B., Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for
high-performance lithium ion battery. Sci Rep. 2014, 4, 3935.
16. Lopez, J.; Mackanic, D. G.; Cui, Y.; Bao, Z., Designing polymers for advanced battery
chemistries. Nat Rev Mater 2019, 4 (5), 312-330.
17. Belanger, R. L.; Commarieu, B.; Paolella, A.; Daigle, J.-C.; Bessette, S.; Vijh, A.; Claverie, J.
P.; Zaghib, K., Diffusion control of organic cathode materials in lithium metal battery. Sci Rep.
2019, 9 (1), 1-8.65
18. Lee, P.-K.; Tan, T.; Wang, S.; Kang, W.; Lee, C.-S.; Yu, D. Y., Robust Micron-Sized Silicon
Secondary Particles Anchored by Polyimide as High-Capacity, High-Stability Li-Ion Battery
Anode. ACS Appl. Mater. Interfaces 2018, 10 (40), 34132-34139.
19. Lim, J.; Lee, K.-K.; Liang, C.; Park, K.-H.; Kim, M.; Kwak, K.; Cho, M., Two-dimensional
infrared spectroscopy and molecular dynamics simulation studies of nonaqueous lithium ion
battery electrolytes. J. Phys. Chem. B 2019, 123 (31), 6651-6663.
20. Li, J.; Murphy, E.; Winnick, J.; Kohl, P., Studies on the cycle life of commercial lithium ion
batteries during rapid charge–discharge cycling. J. of Power Sources 2001, 102 (1-2), 294-301.
21. Chawla, N.; Bharti, N.; Singh, S., Recent advances in non-flammable electrolytes for safer
lithium-ion batteries. Batteries 2019, 5 (1), 19.
22. Chakraborty, A.; Kunnikuruvan, S.; Kumar, S.; Markovsky, B.; Aurbach, D.; Dixit, M.; Major,
D. T., Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies
on LiNi1-x-yCoxMnyO2 and LiNi1-x-yCoxAlyO2. Chem. Mater. 2020, 32, 3, 915–952
23. Van der Ven, A.; Deng, Z.; Banerjee, S.; Ong, S. P., Rechargeable Alkali-Ion Battery
Materials: Theory and Computation. Chem. Rev. 2020.
24. Whittingham, M. S., Electrical energy storage and intercalation chemistry. Science 1976, 192
(4244), 1126-1127.
25. Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B.
S.; Weiss, P. S.; Penner, R. M.; Mullins, C. B., Electrode Degradation in Lithium-Ion Batteries.
ACS Nano 2020, 14, 2, 1243–1295.
26. Whittingham, M. S., Lithium batteries and cathode materials. Chem. Rev. 2004, 104 (10),
4271-4302.66
27. Fergus, J. W., Recent developments in cathode materials for lithium ion batteries. J. of power
sources 2010, 195 (4), 939-954.
28. Hwang, H. J.; Koo, J.; Park, M.; Park, N.; Kwon, Y.; Lee, H., Multilayer graphynes for lithium
ion battery anode. J. Phys. Chem. C 2013, 117 (14), 6919-6923.
29. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Toward safe lithium metal anode in
rechargeable batteries: a review. Chem. Rev. 2017, 117 (15), 10403-10473.
30. Li, L.; Li, S.; Lu, Y., Suppression of dendritic lithium growth in lithium metal-based batteries.
Chem. commun. 2018, 54 (50), 6648-6661.
31. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal
anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7 (2), 513-537.
32. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev.
2004, 104 (10), 4303-4418.
33. Baskoro, F.; Wong, H. Q.; Yen, H.-J., Strategic structural design of a gel polymer electrolyte
toward a high efficiency lithium-ion battery. ACS Appl. Energy Mater. 2019, 2 (6), 3937-3971.
34. Schweikert, N.; Hofmann, A.; Schulz, M.; Scheuermann, M.; Boles, S. T.; Hanemann, T.;
Hahn, H.; Indris, S., Suppressed lithium dendrite growth in lithium batteries using ionic liquid
electrolytes: Investigation by electrochemical impedance spectroscopy, scanning electron
microscopy, and in situ 7Li nuclear magnetic resonance spectroscopy. J. of Power Sources
2013, 228, 237-243.
35. Khurana, R.; Schaefer, J. L.; Archer, L. A.; Coates, G. W., Suppression of lithium dendrite
growth using cross-linked polyethylene/poly (ethylene oxide) electrolytes: a new approach for
practical lithium-metal polymer batteries. J. Am. Chem. Soc. 2014, 136 (20), 7395-7402.67
36. Jeong, Y. K.; Park, S. H.; Choi, J. W., Mussel-inspired coating and adhesion for rechargeable
batteries: a review. ACS Appl. Mater. Interfaces 2017, 10 (9), 7562-7573.
37. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X., A review of recent developments in
membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7 (12),
3857-3886.
38. Wang, W.; Hao, F.; Mukherjee, P. P., Mechanistics of Lithium Metal Battery Performance by
Separator Architecture Design. ACS Appl. Mater. Interfaces 2019, 12, 1, 556–566
39. Rao, E.; McVerry, B.; Borenstein, A.; Anderson, M.; Jordan, R. S.; Kaner, R. B., Roll-to-roll
functionalization of polyolefin separators for high-performance lithium-ion batteries. ACS
Appl. Energy Mater. 2018, 1 (7), 3292-3300.
40. Arora, P.; Zhang, Z., Battery Separators. Chem. Rev. 2004, 104 (10), 4419-4462.
41. Costa, C. M.; Silva, M. M.; Lanceros-Mendez, S., Battery separators based on vinylidene
fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Adv. 2013,
3 (29), 11404-11417.
42. Deimede, V.; Elmasides, C., Separators for lithium‐ion batteries: a review on the production
processes and recent developments. Energy Technol. 2015, 3 (5), 453-468.
43. Shi, C.; Dai, J.; Shen, X.; Peng, L.; Li, C.; Wang, X.; Zhang, P.; Zhao, J., A high-temperature
stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithiumion batteries. J. Membr. Sci. 2016, 517, 91-99.
44. Maceiras, A.; Gören, A.; Sencadas, V.; Costa, C. M.; Vilas, J.; Lanceros-Méndez, S.; Leon,
L., Effect of cyano dipolar groups on the performance of lithium-ion battery electrospun
polyimide gel electrolyte membranes. J. Electroanal. Chem. 2016, 778, 57-65.68
45. Ye, W.; Zhu, J.; Liao, X.; Jiang, S.; Li, Y.; Fang, H.; Hou, H., Hierarchical three-dimensional
micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high
performance lithium-ion battery separators. J. of power sources 2015, 299, 417-424.
46. Wang, H.; Wang, T.; Yang, S.; Fan, L., Preparation of thermal stable porous polyimide
membranes by phase inversion process for lithium-ion battery. Polymer 2013, 54 (23), 6339-
6348.
47. Zhang, H.; Lin, C.-E.; Zhou, M.-Y.; John, A. E.; Zhu, B.-K., High thermal resistance polyimide
separators prepared via soluble precusor and non-solvent induced phase separation process for
lithium ion batteries. Electrochim. Acta 2016, 187, 125-133.
48. Liu, J.; Liu, Y.; Yang, W.; Ren, Q.; Li, F.; Huang, Z., Lithium ion battery separator with high
performance and high safety enabled by tri-layered SiO2@ PI/m-PE/SiO2@ PI nanofiber
composite membrane. J. of Power Sources 2018, 396, 265-275.
49. Waqas, M.; Ali, S.; Feng, C.; Chen, D.; Han, J.; He, W., Recent Development in Separators
for High‐Temperature Lithium‐Ion Batteries. Small 2019, 15 (33), 1901689.
50. Venugopal, G.; Moore, J.; Howard, J.; Pendalwar, S., Characterization of microporous
separators for lithium-ion batteries. J. of power sources 1999, 77 (1), 34-41.
51. Zhang, S. S., A review on the separators of liquid electrolyte Li-ion batteries. J. of power
sources 2007, 164 (1), 351-364.
52. Li, Y.; Li, Q.; Tan, Z., A review of electrospun nanofiber-based separators for rechargeable
lithium-ion batteries. J. of Power Sources 2019, 443, 227262.
53. Nestler, T.; Schmid, R.; Münchgesang, W.; Bazhenov, V.; Schilm, J.; Leisegang, T.; Meyer,
D. C. In Separators-technology review: ceramic based separators for secondary batteries, AIP
Conference Proceedings, American Institute of Physics: 2014; pp 155-184.69
54. Vandezande, P.; Li, X.; Gevers, L. E.; Vankelecom, I. F., High throughput study of phase
inversion parameters for polyimide-based SRNF membranes. J. Membr. Sci. 2009, 330 (1-2),
307-318.
55. Choi, D.; Wang, W.; Yang, Z., Material challenges and perspectives. HOMO 2010, 2, H2O.
56. Yuan, M.; Liu, K., Rational design on separators and liquid electrolytes for safer lithium-ion
batteries. J. Energy Chem. 2020, 43, 58-70.
57. Dong, G.; Liu, B.; Kong, L.; Wang, Y.; Tian, G.; Qi, S.; Wu, D., Neoteric Polyimide Nanofiber
Encapsulated by the TiO2 Armor As the Tough, Highly Wettable, and Flame-Retardant
Separator for Advanced Lithium-Ion Batteries. ACS Sustainable Chem. Eng. 2019, 7 (21),
17643-17652.
58. Jossen, A., Fundamentals of battery dynamics. J. of power sources 2006, 154 (2), 530-538.
59. Huang, X., Separator technologies for lithium-ion batteries. J Solid State Electrochem 2011,
15 (4), 649-662.
60. Xu, Q.; Kong, Q.; Liu, Z.; Wang, X.; Liu, R.; Zhang, J.; Yue, L.; Duan, Y.; Cui, G.,
Cellulose/Polysulfonamide Composite Membrane as a High Performance Lithium-Ion Battery
Separator. ACS Sustainable Chem. Eng. 2014, 2 (2), 194-199.
61. Scott, K., Sustainable and Green Electrochemical Science and Technology. Wiley Online
Library: 2017.
62. Cheng, Q.; He, W.; Zhang, X.; Li, M.; Song, X., Recent advances in composite membranes
modified with inorganic nanoparticles for high-performance lithium ion batteries. RSC
Adv.2016, 6 (13), 10250-10265.70
63. Asghar, M. R.; Anwar, M. T.; Naveed, A., A Review on Inorganic Nanoparticles Modified
Composite Membranes for Lithium-Ion Batteries: Recent Progress and Prospects. Membranes
2019, 9 (7), 78.
64. He, M.; Zhang, X.; Jiang, K.; Wang, J.; Wang, Y., Pure inorganic separator for lithium ion
batteries. ACS Appl. Mater. Interfaces 2015, 7 (1), 738-742.
65. Ozoemena, K. I.; Chen, S., Nanomaterials in advanced batteries and supercapacitors.
Springer: , South Africa, Pretoria, 2016.
66. Peng, H.; Sun, X.; Weng, W.; Fang, X., Polymer Materials for Energy and Electronic
Applications. Academic Press, Shanghai, 2016.
67. Li, D.; Shi, D.; Xia, Y.; Qiao, L.; Li, X.; Zhang, H., Superior thermally stable and
nonflammable porous polybenzimidazole membrane with high wettability for high-power
lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9 (10), 8742-8750.
68. Li, J.; Luo, K.; Yu, J.; Wang, Y.; Zhu, J.; Hu, Z., Promising Free-Standing Polyimide
Membrane via Solution Blow Spinning for High Performance Lithium-Ion Batteries. Ind. Eng.
Chem. Res. 2018, 57 (36), 12296-12305.
69. Maeyoshi, Y.; Ding, D.; Kubota, M.; Ueda, H.; Abe, K.; Kanamura, K.; Abe, H., Long-Term
Stable Lithium Metal Anode in Highly Concentrated Sulfolane-Based Electrolytes with
Ultrafine Porous Polyimide Separator. ACS Appl. Mater. Interfaces 2019, 11 (29), 25833-
25843.
70. Lin, D.; Zhuo, D.; Liu, Y.; Cui, Y., All-integrated bifunctional separator for Li dendrite
detection via novel solution synthesis of a thermostable polyimide separator. J. Am. Chem.
Soc. 2016, 138 (34), 11044-11050.71
71. Ohya, H.; Kudryavsev, V.; Semenova, S. I., Polyimide membranes: applications, fabrications
and properties. CRC Press: 1997.
72. Xu, H.; Li, M.; Han, K.; Xiao, J.; Chen, X.; Li, Y. In Study on preparation and properties of
polyimide lithium battery separator, IOP Conference Series: Materials Science and
Engineering, IOP Publishing: Sanya, 2019; p 012080.
73. Li, M.; Zhang, Z.; Yin, Y.; Guo, W.; Bai, Y.; Zhang, F.; Zhao, B.; Shen, F.; Han, X., Novel
Polyimide Separator Prepared with Two Porogens for Safe Lithium Ion Batteries. ACS Appl.
Mater. Interfaces 2019, 12, 3, 3610–3616
74. Regnier, N.; Guibe, C., Methodology for multistage degradation of polyimide polymer.
Polym. Degrad. Stab. 1997, 55 (2), 165-172.
75. Poe, G.; Farmer, B., Polyimide polymer with oligomeric silsesquioxane. Google Patents: 2009.
76. Auman, B. C.; Trofimenko, S., Fluorinated, Soluble Polyimides with High Glass-Transition
Temperatures Based on a New, Rigid, Pentacyclic Dianhydride: 12, 14-Diphenyl-12, 14-bis-
(trifluoromethyl)-12 H, 14 H-5, 7-dioxapentacene-2, 3, 9, 10-tetracarboxylic Dianhydride.
ACS Publications: Polymers for Microelectronics, Washington, DC, 1994, 537, pp 494-506
77. Jia, M.; Li, Y.; He, C.; Huang, X., Soluble perfluorocyclobutyl aryl ether-based polyimide for
high-performance dielectric material. ACS Appl. Mater. Interfaces 2016, 8 (39), 26352-26358.
78. Lee, K.-S.; Lee, J.-S., Synthesis of highly fluorinated poly (arylene ether sulfide) for polymeric
optical waveguides. Chem. Mater. 2006, 18 (18), 4519-4525.
79. Pan, J.-L.; Zhang, Z.; Zhang, H.; Zhu, P.-P.; Wei, J.-C.; Cai, J.-X.; Yu, J.; Koratkar, N.; Yang,
Z.-Y., Ultrathin and Strong Electrospun Porous Fiber Separator. ACS Appl. Energy Mater.
2018, 1 (9), 4794-4803.72
80. Richard-Lacroix, M.; Pellerin, C., Molecular Orientation in Electrospun Fibers: From Mats to
Single Fibers. Macromolecules 2013, 46 (24), 9473-9493.
81. Chen, Y.; Qiu, L.; Ma, X.; Chu, Z.; Zhuang, Z.; Dong, L.; Du, P.; Xiong, J., Electrospun PMIA
and PVDF-HFP composite nanofibrous membranes with two different structures for improved
lithium-ion battery separators. Solid State Ion 2020, 347, 115253.
82. Sheng, J.; Tong, S.; He, Z.; Yang, R., Recent developments of cellulose materials for lithiumion battery separators. Cellulose 2017, 24 (10), 4103-4122.
83. Shi, X.; Zhou, W.; Ma, D.; Ma, Q.; Bridges, D.; Ma, Y.; Hu, A., Electrospinning of Nanofibers
and Their Applications for Energy Devices. J. Nanomater. 2015, 2015, 140716.
84. Zhu, N.; Chen, X., Biofabrication of tissue scaffolds. Advances in biomaterials science and
biomedical applications, BeloHorizonte, Brazil, 2013, 315-328.
85. Bhardwaj, N.; Kundu, S. C., Electrospinning: a fascinating fiber fabrication technique.
Biotechnol. Adv. 2010, 28 (3), 325-347.
86. Shi, X.; Zhou, W.; Ma, D.; Ma, Q.; Bridges, D.; Ma, Y.; Hu, A., Electrospinning of nanofibers
and their applications for energy devices. Journal of Nanomaterials 2015, 2015, 1-15
87. Yoo, S.; Kim, C., Enhancement of the meltdown temperature of a lithium ion battery separator
via a nanocomposite coating. Ind. Eng. Chem. Res. 2009, 48 (22), 9936-9941.
88. Wu, D.; Deng, L.; Sun, Y.; Teh, K. S.; Shi, C.; Tan, Q.; Zhao, J.; Sun, D.; Lin, L., A highsafety PVDF/Al 2 O 3 composite separator for Li-ion batteries via tip-induced electrospinning
and dip-coating. RSC Adv. 2017, 7 (39), 24410-24416.
89. Shi, C.; Dai, J.; Li, C.; Shen, X.; Peng, L.; Zhang, P.; Wu, D.; Sun, D.; Zhao, J., A modified
ceramic-coating separator with high-temperature stability for lithium-ion battery. Polymers
2017, 9 (5), 159.73
90. Yoo, Y.; Kim, B. G.; Pak, K.; Han, S. J.; Song, H.-S.; Choi, J. W.; Im, S. G., Initiated chemical
vapor deposition (iCVD) of highly cross-linked polymer films for advanced lithium-ion battery
separators. ACS Appl. Mater. Interfaces 2015, 7 (33), 18849-18855.
91. Na, W.; Lee, A. S.; Lee, J. H.; Hwang, S. S.; Kim, E.; Hong, S. M.; Koo, C. M., Lithium
dendrite suppression with UV-curable polysilsesquioxane separator binders. ACS Appl. Mater.
Interfaces 2016, 8 (20), 12852-12858.
92. Warner, J. T., Lithium-Ion Battery Chemistries: A Primer. Elsevier, USA, 2019.
93. Kausar, A., Phase inversion technique-based polyamide films and their applications: A
comprehensive review. Polymer Plast. Technol. Eng. 2017, 56 (13), 1421-1437.
94. Van de Witte, P.; Dijkstra, P.; Van den Berg, J.; Feijen, J., Phase separation processes in
polymer solutions in relation to membrane formation. J. Membr. Sci. 1996, 117 (1-2), 1-31.
95. Lin, D.-J.; Chang, C.-L.; Huang, F.-M.; Cheng, L.-P., Effect of salt additive on the formation
of microporous poly (vinylidene fluoride) membranes by phase inversion from
LiClO4/water/DMF/PVDF system. Polymer 2003, 44 (2), 413-422.
96. Kimmerle, K.; Strathmann, H., Analysis of the structure-determining process of phase
inversion membranes. Desalination 1990, 79 (2-3), 283-302.
97. Zahid, M.; Rashid, A.; Akram, S.; Rehan, Z.; Razzaq, W., A comprehensive review on
polymeric nano-composite membranes for water treatment. J. Membr. Sci. Technol 2018, 8
(1), 1-20.
98. Zare, S.; Kargari, A., Membrane properties in membrane distillation. In Emerging
Technologies for Sustainable Desalination Handbook, Elsevier: 2018; pp 107-156.74
99. Ismail, N.; Venault, A.; Mikkola, J.-P.; Bouyer, D.; Drioli, E.; Kiadeh, N. T. H., Investigating
the potential of membranes formed by the vapor induced phase separation process. J. Membr.
Sci. 2020, 597, 117601.
100. Jiang, L. Y., Asymmetric Membrane. In Encyclopedia of Membranes, Springer, Berlin,
Heidelberg: 2014; pp 1-3.
101. Young, T.-H.; Cheng, L.-P.; Lin, D.-J.; Fane, L.; Chuang, W.-Y., Mechanisms of PVDF
membrane formation by immersion-precipitation in soft (1-octanol) and harsh (water)
nonsolvents. Polymer 1999, 40 (19), 5315-5323.
102. Hołda, A. K.; Vankelecom, I. F., Understanding and guiding the phase inversion process
for synthesis of solvent resistant nanofiltration membranes. J. Appl. Polym. Sci. 2015, 132 (27).
103. Deshmukh, S.; Li, K., Effect of ethanol composition in water coagulation bath on
morphology of PVDF hollow fibre membranes. J. Membr. Sci.1998, 150 (1), 75-85.
104. Ismail, A. F.; Yean, L. P., Review on the development of defect‐free and ultrathin‐skinned
asymmetric membranes for gas separation through manipulation of phase inversion and
rheological factors. J. Appl. Polym. Sci. 2003, 88 (2), 442-451.
105. Feng, C.; Wang, R.; Shi, B.; Li, G.; Wu, Y., Factors affecting pore structure and
performance of poly (vinylidene fluoride-co-hexafluoro propylene) asymmetric porous
membrane. J. Membr. Sci. 2006, 277 (1-2), 55-64.
106. Shao, L.; Chung, T.-S.; Wensley, G.; Goh, S. H.; Pramoda, K. P., Casting solvent effects
on morphologies, gas transport properties of a novel 6FDA/PMDA–TMMDA copolyimide
membrane and its derived carbon membranes. J. Membr. Sci.2004, 244 (1-2), 77-87.75
107. Guillen, G. R.; Pan, Y.; Li, M.; Hoek, E. M., Preparation and characterization of
membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res.
2011, 50 (7), 3798-3817.
108. Rasool, M. A.; Pescarmona, P. P.; Vankelecom, I. F., Applicability of organic carbonates
as green solvents for membrane preparation. ACS Sustainable Chem. Eng. 2019, 7 (16), 13774-
13785.
109. Strathmann, H.; Kock, K., The formation mechanism of phase inversion membranes.
Desalination 1977, 21 (3), 241-255.
110. Tian, L.; Wang, M.; Xiong, L.; Guo, H.; Huang, C.; Zhang, H.; Chen, X., The Effect of
Different Mixed Organic Solvents on the Properties of p (OPal-MMA) Gel Electrolyte
Membrane for Lithium Ion Batteries. Appl. Sci. 2018, 8 (12), 2587.
111. Rezabeigi, E.; Drew, R. A.; Wood-Adams, P. M., Highly porous polymer structures
fabricated via rapid precipitation from ternary systems. Ind. Eng. Chem. Res. 2017, 56 (40),
11451-11459.
112. Hu, Z.; Chen, J.; Guo, Y.; Zhu, J.; Qu, X.; Niu, W.; Liu, X., Fire-resistant, highperformance gel polymer electrolytes derived from poly(ionic liquid)/P(VDF-HFP) composite
membranes for lithium ion batteries. J. Membr. Sci. 2020, 599, 117827.
113. Tan, J.; Kong, L.; Qiu, Z.; Yan, Y., Flexible, high-wettability and thermostable separator
based on fluorinated polyimide for lithium-ion battery. J. Solid State Electrochem. 2018, 22
(11), 3363-3373.
114. Wang, X.; Xu, G.; Wang, Q.; Lu, C.; Zong, C.; Zhang, J.; Yue, L.; Cui, G., A phase
inversion based sponge-like polysulfonamide/SiO2 composite separator for high performance
lithium-ion batteries. Chin. J. Chem. Eng. 2018, 26 (6), 1292-1299.76
115. Wang, Z.; Guo, F.; Chen, C.; Shi, L.; Yuan, S.; Sun, L.; Zhu, J., Self-Assembly of PEI/SiO2
on Polyethylene Separators for Li-Ion Batteries with Enhanced Rate Capability. ACS Appl.
Mater. Interfaces 2015, 7 (5), 3314-3322.
116. Ghosh, A.; Mistri, E. A.; Banerjee, S., Fluorinated polyimides: synthesis, properties, and
applications. In Handbook of Specialty Fluorinated Polymers, Elsevier: 2015; pp 97-185.
117. Kawamura, T.; Okada, S.; Yamaki, J.-i., Decomposition reaction of LiPF6-based
electrolytes for lithium ion cells. J. of power sources 2006, 156 (2), 547-554.
118. Kong, L.; Yan, Y.; Qiu, Z.; Zhou, Z.; Hu, J., Robust fluorinated polyimide nanofibers
membrane for high-performance lithium-ion batteries. J. Membr. Sci. 2018, 549, 321-331.
119. Ree, M., High performance polyimides for applications in microelectronics and flat panel
displays. Macromol. Res. 2006, 14 (1), 1-33.
120. Kong, L.; Li, C.; Jiang, J.; Pecht, M. G., Li-ion battery fire hazards and safety strategies.
Energies 2018, 11 (9), 2191.
121. Wang, Q.; Song, W.-L.; Wang, L.; Song, Y.; Shi, Q.; Fan, L.-Z., Electrospun polyimidebased fiber membranes as polymer electrolytes for lithium-ion batteries. Electrochim. Acta
2014, 132, 538-544.
122. Cai, M.; Yuan, D.; Zhang, X.; Pu, Y.; Liu, X.; He, H.; Zhang, L.; Ning, X., Lithium ion
battery separator with improved performance via side-by-side bicomponent electrospinning of
PVDF-HFP/PI followed by 3D thermal crosslinking. J. of Power Sources 2020, 461, 228123.
123. Li, M.; Zhang, Z.; Yin, Y.; Guo, W.; Bai, Y.; Zhang, F.; Zhao, B.; Shen, F.; Han, X., Novel
Polyimide Separator Prepared with Two Porogens for Safe Lithium-Ion Batteries. ACS Appl.
Mater. Interfaces 2020, 12 (3), 3610-3616.77
124. Ge, H.; Li, N.; Li, D.; Dai, C.; Wang, D., Study on the theoretical capacity of spinel lithium
titanate induced by low-potential intercalation. J. Phys. Chem. C 2009, 113 (16), 6324-6326.

無法下載圖示 全文公開日期 2025/08/26 (校內網路)
全文公開日期 2025/08/26 (校外網路)
全文公開日期 2025/08/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE