簡易檢索 / 詳目顯示

研究生: 顏嘉威
Chia-Wei - Yen
論文名稱: 每秒一億次取樣之十二位元連續漸進式類比數位轉換器設計與實現
Design and Implementation of a 12-bit 100-MS/s SAR ADC
指導教授: 鍾勇輝
Yung-Hui Chung
口試委員: 陳筱青
Hsiao-Chin Chen
陳亮仁
Liang-Jen Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 80
中文關鍵詞: 連續漸進式類比數位轉換器次階漸進式類比數位轉換器
外文關鍵詞: SAR ADC, Sub-ranged SAR ADC
相關次數: 點閱:399下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文實現一個十二位元、每秒一億次取樣之連續漸進式類比數位轉換器(SAR ADC)。為了達到每秒一億次取樣的操作速度,使用次階漸進式 (Sub-Ranged SAR)的架構。主要以連續漸進式類比數位轉換器為基礎,搭配次階式架構的運作,用一個解析度較低但速度較快的二元搜尋式(Binary-Search)類比數位轉換器先解出前五個位元的量化結果,來減輕連續漸進式類比數位轉換架構速度慢的缺點。為了滿足十二位元的線性度要求,在數位類比轉換器(DAC)中使用了電容交換的技術,在相同的電容陣列下,可以得到更好的線性度。
在台積電的65奈米製程下,我們實現了一個十二位元、每秒一億次取樣之連續漸進式類比數位轉換器,晶片面積為0.102 平方毫米。在1.2伏特的操作電壓以及100MHz的取樣頻率下,量測到的動態效能,有效位元(ENOB)為10.0 bit,訊噪失真比(SNDR)為62dB,無雜散動態範圍(SFDR)在使用電容交換技術之後可以達到82dB。而量測到的靜態效能,微分非線性誤差(DNL)為+2.23LSB ~ -0.87LSB,積分非線性誤差(INL)在使用電容交換技術之後為+1.81LSB ~ -1.49LSB。


This thesis presents a 12bit 100MS/s successive approximation register analog to digital converter (SAR ADC). Sub-ranged SAR architecture is used to achieve 100MS/s sampling rate. This ADC design is based on SAR architecture but with sub-ranged operation. A low resolution and high speed binary-search ADC is used to quantize first five MSBs for speeding up. For 12-bit linearity requirement, capacitor swapping technique is used in digital to analog converter (DAC) to prevent the use of large capacitor array.
This ADC was implemented in TSMC 65nm digital CMOS process. The 12-bit ADC occupies an active area of 0.102mm2. At 1.2V supply voltage and 100MHz sampling rate, the measured dynamic performance, ENOB is 10.0 bit and SNDR achieves 62dB. SFDR with capacitor swapping techniques is 82dB. The measured static performance, DNL is from +2.23LSB to -0.87LSB, INL is from +1.81LSB to -1.49LSB.

論文摘要 i Abstract ii 誌謝 iii Contents iv List of Figures vi List of Table ix Chapter 1 Introduction -1- 1.1 Motivation -1- 1.2 Organization of the Thesis -4- Chapter 2 Sub-Ranged SAR ADC -5- 2.1 Binary-Search Sub-Ranged SAR ADC -6- 2.2 Issue of Binary-Search Sub-Ranged SAR ADC -11- 2.2.1 Reference Gain Difference -11- 2.2.2 Sampling Difference -14- 2.2.3 Offset Difference -16- Chapter 3 Circuit Implementation -21- 3.1 A 5-bit Binary Search ADC -22- 3.1.1 Distributed Sample and Hold Circuit -22- 3.1.2 Coarse Comparator -23- 3.1.3 Resistive DAC -26- 3.2 Sample and Hold Circuit -27- 3.3 Digital to Analog Converter -29- 3.3.1 Capacitor Array Size Decision and Architecture -29- 3.3.2 Up-then-Down Switching -31- 3.3.3 Capacitor Swapping Technique -36- 3.4 Fine Comparator -40- 3.5 SAR Control Logic -42- 3.5.1 Self-Timing Loop -42- 3.5.2 Encoder -44- 3.6 Layout Consideration -46- 3.7 Post-Layout Simulation Results -49- Chapter 4 Measurement Results -50- 4.1 Measurement Environment -51- 4.2 ADC Performance -54- 4.2.1 Dynamic Performance -54- 4.2.2 Static Performance -57- 4.2.3 Improvements by Capacitor Swapping Scheme -58- 4.3 Analysis and Brief Summary -60- Chapter 5 Conclusion -63- 5.1 Conclusion -63- 5.2 Future Work -64- Reference -65-

[1]Byeong-Woo Koo, et al., “A Single Amplifier-Based 12-bit 100MS/s 1V 19mW 0.13um CMOS ADC with Various Power and Area Minimized Circuit Techniques,” IEICE Trans. Electron., vol. E94-C, no. 8, pp.1282-1288, 2011.
[2]Soon-Kyun Shin, et al., “A 12b 200MS/s Frequency Scalable Zero-Crossing Based Pipelined ADC in 55nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2011. pp. 1-4.
[3]T. Oh, et al., " A 70MSPS 69.3dB SNDR 38.2fJ per conversion-step time-based pipelined ADC," Symp. on VLSI Circuits Dig. Tech. Papers, pp.96-97, Jun. 2013.
[4]Y. Lim and M. P. Flynn, " A 100MS/s 10.5b 2.46mW Comparator-less Pipeline ADC Using Self-Biased Ring Amplifiers,” ISSCC Dig. Tech. Papers, pp. 202-203, Feb. 2014.
[5]Chun C. Lee, et al., “A SAR-Assisted Two-Stage Pipeline ADC,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 859-869, Apr. 2011.
[6]H.-Y. Lee, et al., “A 31.3fJ/conversion-step 70.4dB SNDR 30MS/s 1.2V Two-Step Pipelined ADC in 0.13m CMOS,” ISSCC Dig. Tech. Papers, pp. 474-475, Feb. 2012.
[7]R. Kapusta, et al., " A 14b 80MSPs SAR ADC with 73.6dB SNDR in 65nm CMOS," ISSCC Dig. Tech. Papers, pp. 472-473, Feb. 2013.
[8]Y. Zhou, et al., " A 12b 160MSps Synchronous Two-Step SAR ADC Achieving 20.7fJ per step FoM with Opportunistic Digital Background Calibration," Symp. on VLSI Circuits Dig. Tech. Papers, pp.96-97, Jun. 2014.
[9]M.-S. Wu, et al., " A 12-bit 8.47-fJ/Conversion-Step 1-MS/s SAR ADC," in A-SSCC Dig. Tech. Papers, pp.157-160, Nov. 2012.
[10]W. Liu, et al., “A 12-bit 50-MS/s 3.3-mW SAR ADC with Background Digital Calibration,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012. pp. 1-4.
[11]T. Morie, et al., “A 71dB-SNDR 50MSPs 4.2mW CMOS SAR ADC by SNR enhancement techniques utilizing noise,” ISSCC Dig. Tech. Papers, pp. 272-273, Feb. 2013.
[12]W. Li, et al., "A 0.45mW 12b 12.5MSps SAR ADC with Digital Calibration," in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2014. pp. 1-4.
[13]W. Liu, Y. Chang, S. K. Hsien, B. W. Chen, Y. P. Lee, W. T. Chen, T. Y. Yang, G. K. Ma, and Y. Chiu, “A 600MS/s 30mW 0.13µ m CMOS ADC array achieving over 60dB SFDR with adaptive digital equalization,” IEEE ISSCC Dig. Tech. Papers, Feb. 2009, pp. 82-83.
[14]Simon M. Louwsma, Ed J.M. van Tuiji, et al., “A 1.35 GS/s, 10b, 175 mW Time-Interleaved AD Converter in 0.13 µ m CMOS,” IEEE Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2007, pp. 62-63.
[15]Z. Cao, S. Yan, and Y. Li, “A 32mW 1.25GS/s 6b 2b/step SAR ADC in 0.13µ m CMOS,” IEEE ISSCC Dig. Tech. Papers, Feb. 2008, pp. 542-543.
[16]D. Draxelmayr, “A 6b 600 MHz 10 mW ADC array in digital 90 nm CMOS,” IEEE ISSCC Dig. Tech. Papers, Feb. 2004, pp. 264-265.
[17]E. Alpman, H. Lakdawala, L.R. Carley, and K.Soumyanath, “A 1.1V 50mW 2.5GS/s 7b Time-Interleaved C-2C SAR ADC in 45nm LP digital CMOS,” IEEE ISSCC Dig. Tech. Papers, Feb. 2009, pp. 76-77.
[18]H.-Y. Tai, Y.-S. Hu, H.-W. Chen, and H.-S. Chen, “A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40 nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 196–197.
[19]Y.-S. Hu, C.-H. Shih, H.-T. Tai, H.-W. Chen, H.-S. Chen , “A 0.6V 6.4fJ/conversion-step 10-bit 150MS/s subranging SAR ADC in 40-nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2014, pp. 81–84
[20]Y.-Z. Lin, S.-J. Chang, Y.-T. Shyu, G.-Y. Huang, and C.-C. Liu, “A 0.9-V 11-bit 25-MS/s binary-search SAR ADC in 90-nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2011, pp. 69–72
[21]Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu and S.-J. Chang,“A 9-bit 150-MS/s 1.53-mW subranged SAR ADC in 90-nm CMOS,” Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2010, pp. 243-244.
[22]S.-S. Wong, U.-F Chio, Y. Zhu, S.-W. Sin, S.-P. U, and R.P. Martins “ A 2.3mW 10-bit 170MS/s Two-Step Binary-Search Assisted Timeinterleaved SAR ADC ,” Solid-State Circuits, IEEE Journal of, vol. 48, no. 8, pp. 1783–1794, 2013.
[23]Y. Z. Lin, S. J. Chang, Y. T. Liu, C. C. Liu, and G. Y. Huang, "An Asynchronous Binary-Search ADC Architecture With a Reduced Comparator Count," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, pp. 1829-1837, 2010.
[24]C. C. Liu, et al., “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010.
[25]Y.-H. Chung, M.-H. Wu, and H.-S. Li, “A 12-bit 8.47-fJ/conversion-step capacitor-swapping SAR ADC in 110-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 1, pp. 10–18, Jan. 2015.
[26]Y. Z. Lin, S. J. Chang, Y. T. Liu, C. C. Liu, and G. Y. Huang, "An Asynchronous Binary-Search ADC Architecture With a Reduced Comparator Count," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, pp. 1829-1837, 2010.
[27]S.-W. M. Chen and R. W. Brodersen, "A 6-bit 600-MS/s 5.3mW asynchronous ADC in O.l3-f.lm CMOS," IEEE JSSC, vol. 41, no. 12, pp. 2669-2680, Dec. 2006.
[28]Si-Seng Wong, et ai, "A Power Effective 5-bit 600 MS/s Binary-Search ADC with Simplified Switching" in IEEE MWSCAS, pp. 80-81, Aug. 2010.
[29]S.-S. Wong, U.-F. Chio, C.-H. Chan, H.-L. Choi, S.-W. Sin, S.-P. U, and R. P. Martins, “A 4.8-bit ENOB 5-bit 500 MS/s binary-search ADC with minimized number of comparators,” in Proc. IEEE Asian Solid State Circuits Conf., Feb. 2011, pp. 73–76.
[30]C.-C. Liu et al., “A 10 b 100 MS/s 1.13 mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 386–387.
[31]J. Elbornsson and J. E. Eklund, "Histogram based correction of matching errors in subranged ADC," Proceedings of the 27th European Solid-State Circuits Conference, Villach, Austria, 2001, pp. 555-558.

QR CODE