簡易檢索 / 詳目顯示

研究生: 洪任勇
Ren-Yong Hung
論文名稱: 應用於生醫訊號感測之雙旁通窗逐漸逼近式轉換器暨適用於類比數位轉換器之具有自適應電源電流高效率輸入驅動器電路設計
Dual Bypass SAR ADC Suitable for Biomedical Signal Sensing Applications and A Power-Efficient ADC Input Driver with Autonomously Adaptive Supply Current
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 陳筱青
Hsiao-Chin Chen
姚嘉瑜
Chia-Yu Yao
彭盛裕
Sheng-Yu Peng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 149
中文關鍵詞: 雙旁通窗逐漸逼近式轉換器適用於類比數位轉換器之輸入驅動器生醫訊號感測自適應電源電流
外文關鍵詞: Dual Bypass SAR ADC, ADC Input Driver, Biomedical Signal Sensing, Autonomously Adaptive Supply Current
相關次數: 點閱:146下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分成兩部分, 第一部分使用了台積電 0.18 μm 1P6M 互補式金氧化物半導體製程實現適用於生理檢測之雙旁通窗逐漸逼近式轉換器,±32 旁通窗是通過電流相關器特性與動態鄰近比較器一起實現,±256 旁通窗是通過次類比數位轉換器實現,它僅在輸入信號沒有 ±32 旁通窗大小時才運行第一階段,因此雙旁通窗機制可以感測更多種類之信號並保持低功耗。此外,利用數位合成在片內實現校準狀態機及透過片內 W-2W 數位類比轉換器以提供雙旁通窗所需之電壓,使晶片能夠自動校準雙旁通窗大小。10 位元,採樣率為 100kS/s,輸入頻率在奈奎斯 (49kHz) 時,在 0.6 V 電源電壓和有效位元 (ENoB) 為 9.0629 位元的情況下,測得的信噪比 (SNDR) 和無雜散動態範圍 (SFDR) 分別為 56.3187 和 63.1661 dB,類比數位轉換器 (ADC) 消耗功耗為 349.86 nW,品質因數 (FoM) 約為 6.54 fJ/conv.-step,ADC 晶片核心面積為 412 X 282.46 μm2。

    論文的第二部分是自主電流自適應 ADC 輸入驅動器 (ACAID)。提議的ACAID 電流將隨著電壓輸出顯著變化以增加迴轉率而自主增加。當電壓差接近平衡值時,高電源電流將逐漸恢復到低靜態電流。該電路還使用懸浮閘技術來提供電路可編程性。此外,ACAID 可以構造成全差分電容電荷放大器,不會造成額外的靜態功耗,使電路起到自適應電源的作用。ACAID 結合了編程電路和採樣頻率為 200kS/s 的 10 位元 SAR ADC,採用台積電 0.35μm 2P4M 互補氧化金半導體工藝實現製造。通過將相當於 0.5pF 的 ADC 負載加到 ACAID 的輸出端,在 2.8Vpp的輸入振幅和 100kHz 的輸入頻率下,總諧波失真達到-70.1dB。ADC 在奈奎斯特速率下測得的 SNDR 和 SFDR 分別為 56.51dB 和 60.53dB,測得的 ENoB 約為 9.1位。當輸入頻率增加和跟踪時間減少時,所提出的 ACAID 將比傳統的望遠鏡放大器節省更多的功率。當輸入頻率為 100kHz 且跟踪佔空比為 10% 時,原型驅動電路可節省 49.5% 功耗。當輸入頻率為 1MHz,跟踪時間僅佔整個週期的 10%時,節電率為 76.2%。

    本篇論文最後另外介紹另一種可重構的差分轉單端自主電流自適應緩衝放大器 (ACABA)。ACABA 透過懸浮閘的技術,其輸出直流電平和帶寬可以透過編程浮動節點上的電荷來調節。在不改變輸出直流電平的情況下,可以通過切換不同數量的電容器來改變增益。在沒有額外的傳感和控制電路的情況下,當輸入信號變化很快或很大時,所提出的 ACABA 的電流消耗會自發增加,從而實現高轉換率。當輸出電壓達到平衡時,電源電流自動減小回低靜態電平。因此,所提出的 ACABA 是節能的,適合處理生理信號。當加載一個 10 pF 電容器時,它消耗3 µW 以實現 100 kHz 的單位增益帶寬,測得的 IIP2 值為 52.66 dBV,轉換速率為7.86 V/μs。ACABA 已於 2021 年發表於 TBioCAS 期刊,然而因在設計中所觀察到轉換率瓶頸的問題,額外提出了一種瞬態增強型電路,整體增強了 ACABA 的瞬態響應,從而實現了更快的階躍響應、更高的電源效率以及良好的線性度。所提出的電路採用 0.35 μm CMOS 工藝設計並製造了原型芯片。根據測量結果,所提出的電路將建立時間縮短了 62.1%,將轉換速率提高了 3.1 倍,並將總諧波失真
    (THD) 降低了 17 dB,而無需額外的靜態功耗。使用 2.5V 電源電壓時,建議的緩衝放大器允許最大輸入信號幅度為 2.3V,THD 低於 −60dB。此外,與其他最先進的設計相比,增強型緩衝放大器在小信號和大信號性能方面均表現出最佳功率效率。


    This thesis is divided into two parts, the first part implements a dual bypass-switching-successive approximation(DBSSA) register ADC, which is suitable for biomedical signal sensing, using the TSMC 0.18 μm 1P6M complementary metal oxide semiconductor processes. The ±32 window is implemented with the dynamic proximity comparator through the current correlator characteristic. The ±256 window is implemented with the sub-ADC, which only operate when the input signal is without the ±32 window size at the first phase, so the dual bypass window can sense more kind of signals and maintain the low power consumption. Besides, a calibration state machine is implemented on-chip using digital synthesis and the on-chip W-2W digital-to-analog converter so that the chip can automatically calibrate the dual bypass window size. The 10-bit 100kS/s input frequency at Nyquist rate (49 kHz), with a supply voltage of 0.6 V and the Effective Number of Bits (ENoB) is 9.0629-bit, the measured signal-to-noise-distortion ratio (SNDR) and spurious-free dynamic range (SFDR) are 56.3187 and 63.1661 dB. The ADC consumes power is 349.86 nW. The figure of merit (FoM) is around 6.54 fJ/conv.-step, and the ADC chip core area is 412 × 282.46 μm2.

    The second part of the thesis is the autonomous current adaptive ADC input driver
    (ACAID). The proposed ACAID current will increase autonomously as the voltage output changes significantly to increase the slew rate. The high power supply current will
    gradually recover to the low quiescent current when the voltage difference is close to the equilibrium value. The circuit additionally uses floating gate technology to provide circuit programmability. In addition, ACAID can be constructed as a fully differential capacitive charge amplifier, which does not cause additional static power consumption, and enables the circuit to function as an adaptive power supply. The ACAID combines a programming circuit and a 10-bit SAR ADC with a sampling frequency of 200kS/s, which are implemented and manufactured using TSMC’s 0.35 μm 2P4M complementary gold oxide semiconductor process. Through the ADC load equivalent to 0.5pF added to the output of ACAID, the total harmonic distortion reaches -70.1dB under an input amplitude of 2.8Vpp and input frequency of 100kHz. The SNDR measured by the ADC at the Nyquist rate and SFDR are 56.51dB and 60.53dB, respectively, and the measured ENoB is about 9.1 bits. When the input frequency increases and the tracking time decreases, the proposed ACAID will save more power than the traditional telescope amplifier. The prototyped driver circuit can save 49.5% power consumption when the input frequency is 100 kHz with a 10% duty cycle for tracking. When the input frequency is 1MHz and the tracking time only accounts for 10% of the overall cycle, the power saving rate is 76.2%.

    Another reconfigurable differential-to-single-ended autonomous current-adaptive buffer amplifier (ACABA) is introduced at the end of this thesis. ACABA uses floating gate technology, and its output DC level and bandwidth can be adjusted by programming the charge on the floating node. The gain can be varied by switching different numbers of capacitors without changing the output DC level. Without additional sensing and control circuits, the current consumption of the proposed ACABA increases spontaneously when the input signal changes quickly or greatly, thus achieving a high slew rate. When the output voltages are balanced, the supply current is automatically reduced back to a low quiescent level. Therefore, the proposed ACABA is energy-efficient and suitable for processing physiological signals. When loaded with a 10 pF capacitor, it dissipates 3 µW to achieve a unity-gain bandwidth of 100 kHz, with a measured IIP2 value of 52.66 dBV and a slew rate of 7.86 V/μs. ACABA has been published in TBioCAS journal in 2021. However, due to the conversion rate bottleneck problem observed in the design, an additional transient enhancement circuit is proposed, which enhances the transient response of ACABA as a whole, thereby achieving faster order jump response, higher power efficiency, and good linearity. The proposed circuit was designed and a prototype chip was fabricated in a 0.35 μm CMOS process. According to the measured results, the proposed circuit shortens the settling time by 62.1%, increases the slew rate by a factor of 3.1, and reduces the total harmonic distortion (THD) by 17 dB without requiring additional static
    power consumption. The proposed buffer amplifier allows a maximum input signal amplitude of 2.3V with a THD below −60dB when using a 2.5V supply voltage. In addition, the enhanced buffer amplifier exhibits the best power efficiency in both small-signal and large-signal performance compared to other state-of-the-art designs.

    Contents Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation of Dual bypass SAR ADC . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation of ACAID . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Background Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Single-ended SAR ADC . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Differential SAR ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Split Capacitor Switching SAR ADC . . . . . . . . . . . . . . . 14 2.2.2 Monotonic Switching SAR ADC . . . . . . . . . . . . . . . . . 15 2.2.3 Switchback Switching SAR ADC . . . . . . . . . . . . . . . . . 19 2.2.4 Bypass Window Switching SAR ADC . . . . . . . . . . . . . . . 21 2.3 Floating Gate Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Fowler-Nordheim Tunneling . . . . . . . . . . . . . . . . . . . . 25 2.3.2 Hot-Electron Injection . . . . . . . . . . . . . . . . . . . . . . . 27 3 10-Bit-100KS/s Dual bypass SAR ADC in 180nm Implementation . . . . . . . 30 3.1 Dual bypass SAR ADC Architecture . . . . . . . . . . . . . . . . . . . . 31 3.2 Operation principle of the dual bypass window . . . . . . . . . . . . . . 33 3.3 Sample-and-Hold Circuit Design . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Dynamic Proximity Comparator Design . . . . . . . . . . . . . . . . . . 39 3.4.1 Current Correlator . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.2 Two-Stage Dynamic Comparator . . . . . . . . . . . . . . . . . 40 3.4.3 Dynamic Proximity Comparator . . . . . . . . . . . . . . . . . . 41 3.5 Bypass Window Size Design and Analysis . . . . . . . . . . . . . . . . . 43 3.6 Dual bypass Window Consideration . . . . . . . . . . . . . . . . . . . . 46 3.7 Dual Bypass Switching SAR Logic . . . . . . . . . . . . . . . . . . . . . 48 3.8 Code Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.9 Capacitive Array Design . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.10 Power Saving Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.11 Dual bypass Window Calibration . . . . . . . . . . . . . . . . . . . . . . 57 3.11.1 Operation of the ±32 LSBs Window Size Calibration State Machine 58 3.11.2 Operation of the ±256 LSBs Window Size Calibration State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.12 Layout and Measurement Results . . . . . . . . . . . . . . . . . . . . . . 63 3.12.1 Digital Synthesis Layout . . . . . . . . . . . . . . . . . . . . . . 65 3.12.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4 A Input Driver for SAR ADC in 350nm Implementation . . . . . . . . . . . . . 72 4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1.1 Decrease the ∆Vmax . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1.2 Extend the TS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.1.3 Reduce the CL Value . . . . . . . . . . . . . . . . . . . . . . . . 77 4.1.4 Summary of Aforementioned Approaches . . . . . . . . . . . . . 78 4.2 Circuit Implementation of The ACAID . . . . . . . . . . . . . . . . . . . 79 4.2.1 Operating Principle of The ACAID . . . . . . . . . . . . . . . . 81 4.3 Capacitive Feedback Charge Amplifier Model . . . . . . . . . . . . . . . 84 4.4 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.5 Discussion and Comparison . . . . . . . . . . . . . . . . . . . . . . . . 92 5 Introduction of A Transient-Enhanced Autonomous Current Adaptation Buffer Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2 Review of Prior ACABA . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2.1 Circuit Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2.2 Operating Principles . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3 Slew Rate Degradation and Proposed Solution . . . . . . . . . . . . . . . 100 5.3.1 Cause of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 100 5.3.2 Transient-Enhanced ACABA . . . . . . . . . . . . . . . . . . . 103 5.4 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6 Conclusion and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    [1] H. Bindra, J. Lechevallier, A. Annema, S. Louwsma, E. van Tuijl, and B. Nauta,
    “Range pre-selection sampling technique to reduce input drive energy for sar adcs,”
    IEEE Asian Solid-State Circuits Conference, pp. 217–220, 2017.
    [2] L. Wei, X. H. Pan, C. H. Chan, Y. Zhu, and R. P. Martins, “Input correlated swapsampling technique for input driver power reduction in a 12b 25ms/s sar adc,” IEEE
    Proceedings of the International Symposium on Circuits and Systems, pp. 1–5, 2019.
    [3] H. S. Bindra, A. J. Annema, S. M. Louwsma, E. V. Tuijl, and B. Nauta, “An energy
    reduced sampling technique applied to a 10bits 1ms/s sar adcs.,” in IEEE European
    Solid-State Circuits Conference, pp. 235–238, 2017.
    [4] X. Zou, L. Liu, J. H. Cheong, L.Yao, P. Li, M. Y. Cheng, W. L. Goh, R. Rajkumar,
    G. S. Dawe, K. W. Cheng, and M. Je, “A 100-channel 1-mw implantable neural
    recording ic,” IEEE Transactions on Circuits and Systems I: Fundamental Theory
    and Applications, vol. 60, no. 10, pp. 2584–2596, 2013.
    [5] M. J. Kramer, E. Janssen, K. Doris, and B. Murmann, “A 14 b 35 ms/s sar adc
    achieving 75 db sndr and 99 db sfdr with loop embedded input buffer in 40 nm
    cmos,” IEEE Journal of Solid–State Circuits, vol. 50, no. 12, pp. 2891–2900, 2015.
    [6] T. Kim and Y. Chae, “A 2mhz bw buffer-embedded noise-shaping sar adc achieving
    73.8db sndr and 87.3db sfdr,” IEEE Proceedings of the Custom Integrated Circuits
    Conference, 2019.
    [7] Z.-J. Lo, Y.-C. Wang, Y.-J. Huang, R.-Y. Hung, Y.-H. Wu, T.-Y. Wang, Y.-J. Huang,
    H.-C. Huang, Y.-C. Lu, S.-Y. Peng, C.-Y. Chang, W.-S. Lai, and Y.-J. Hsu, “A reconfigurable differential-to-single-ended autonomous current adaptation buffer amplifier suitable for biomedical applications,” IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 6, pp. 1405–1418, 2021.
    [8] Zhang and Dai, “A 53-nw 9.1-enob 1-ks/s sar adc in 0.13-um cmos for medical
    implant devices,” IEEE Journal of Solid–State Circuits, vol. 47, no. 7, pp. 1585–
    1593, 2021.
    [9] D. Gangopadhyay and E. G. Allstot, “Compressed sensing analog front-end for biosensor applications,” IEEE Journal of Solid–State Circuits, vol. 49, no. 2, pp. 426–
    438, 2014.
    [10] G.-Y. Huang, S.-J. Chang, C.-C. Liu, and Y.-Z. Lin, “A 1-uW 10-bit 200-kS/s SAR
    ADC with a bypass window for biomedical applications,” IEEE Journal of Solid–
    State Circuits, vol. 47, no. 11, pp. 2783–2795, 2012.
    [11] P.-C. Lee, J.-Y. Lin, and C.-C. Hsieh, “A 0.4 V 1.94 fj/conversion-step 10 bit 750 kS/
    s SAR ADC with input-range-adaptive switching,” IEEE Transactions on Circuits
    and Systems I: Fundamental Theory and Applications, vol. 63, no. 12, pp. 2149 –
    2157, 2016.
    [12] J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, “A 0.5-V 1- µw successive
    approximation ADC,” Proceedings of the Symposium on VLSI Circuits, pp. 236–
    237, 2009.
    [13] M. Chae, W. Liu, Z. Yang, T. Chen, J. Kim, M. Sivaprakasam, and M. Yuce, “A 128-
    channel 6mw wireless neural recording ic with on-the-fly spike sorting and uwb tansmitter.,” International Solid-State Circuits Conference-Digest of Technical, pp. 146–
    603, 2008.
    [14] K. M. A.-Ashmouny, S. I. Chang, and E. Yoon, “A 4uw/ch analog front-end module
    with moderate inversion and power-scalable sampling operation for 3-d neural microsystems.,” IEEE Transactions on Biomedical Circuits and Systems, pp. 403–413,
    2012.
    [15] C. M. Lopez, D. Prodanov, D. Braeken, I. Gligorijevic, W. Eberle, and C. Bartic,
    “A multichannel integrated circuit for electrical recording of neural activity, with
    independent channel programmability,” IEEE Transactions on Biomedical Circuits
    and Systems, pp. 101–110, 2012.
    [16] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S. U, R. P. Martins, and F. Maloberti, “A
    10-bit 100-ms/s reference-free sar adc in 90 nm cmos,” IEEE Journal of Solid–State
    Circuits, pp. 1111–1121, 2010.
    [17] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and Huang, “A 10b 100ms/s 1.13
    mw sar adc with binary-scaled error compensation,” IEEE International Solid-State
    Circuits Conference, pp. 386–387, 2010.
    [18] Liu, M., van Roermund, A. H., and H. P., “A 7.1-fj/conversion-step 88-db sfdr sar
    adc with energy-free swap to reset,” IEEE Journal of Solid–State Circuits, pp. 2979–
    2990, 2017.
    [19] B. Murmann, “Limits on adc power dissipation.,” Analog Integrated Circuits and
    Signal Processing, pp. 351–367, 2006.
    [20] Z. J. Lo, Y. C. Wang, Y. J. Huang, R. Y. Hung, Y. H. Wu, T. Y. Wang, and Y. J. Hsu,
    “A reconfigurable differential-to-single-ended autonomous current adaptation buffer
    amplifier suitable for biomedical applications,” IEEE Transactions on Biomedical
    Circuits and Systems, pp. 1405–1418, 2021.
    [21] B. P. Ginsburg and A. P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS with
    split capacitor array DAC,” IEEE Journal of Solid–State Circuits, vol. 42, no. 4,
    pp. 739–747, 2007.
    [22] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC
    with a monotonic capacitor switching procedure,” IEEE Journal of Solid–State Circuits, vol. 45, no. 4, pp. 731–740, 2010.
    [23] G.-Y. Huang, C.-C. Liu, C.-C. Liu, and Y.-Z. Lin, “10-bit 30-MS/s SAR ADC using a
    switchback switching method,” IEEE Transactions on Very Large Scale Integration
    Systems, vol. 21, no. 3, pp. 584–588, 2013.
    [24] S.-H. Wan, C.-H. Kuo, S.-J. Chang, G.-Y. f, C.-P. Huang, G.-J. Ren, K.-T. Chiou, and
    C.-H. Ho, “A 10-bit 50-ms/s sar adc with techniques for relaxing the requirement
    on driving capability of reference voltage buffers,” IEEE Asian Solid-State Circuits
    Conference, pp. 293–296, 2013.
    [25] Srinivasan, V., Serrano, G. J., Gray, J., Hasler, and P., “A precision cmos amplifier
    using floating-gate transistors for offset cancellation.,” IEEE Journal of Solid–State
    Circuits, pp. 280–291, 2007.
    [26] Graham, D. W., Hasler, P. E., C. R., and P. D. Smith, “A low-power programmable
    bandpass filter section for higher order filter applications.,” IEEE Transactions on
    Circuits and Systems I: Fundamental Theory and Applications, pp. 1165–1176, 2007.
    [27] Ozalevli, E., Hasler, and P. E., “Tunable highly linear floating-gate cmos resistor
    using common-mode linearization.,” IEEE Transactions on Circuits and Systems I:
    Fundamental Theory and Applications, pp. 999–1010, 2008.
    [28] S.-Y. Peng, P. E. Hasler, and D. V. Anderson, “An analog programmable multidimensional radial basis function based classifier,” IEEE Transactions on Circuits and
    Systems I: Fundamental Theory and Applications, vol. 54, pp. 2148–2158, 2007.
    [29] P. Hasler, “Foundations of learning in analog vlsi, ph.d. thesis,” California Institute
    of Technology, 1997.
    [30] B. Degnan, C. Duffy, and P. Hasler, “Crossbar switch matrix for floating-gate programming over large current ranges.,” IEEE Proceedings of the International Symposium on Circuits and Systems, 2010.
    [31] T.-Y. Wang, H.-Y. Li, Z.-Y. Ma, Y.-J. Huang, and S.-Y. Peng, “A bypass-switching
    SAR ADC with a dynamic proximity comparator for biomedical applications,” IEEE
    Journal of Solid–State Circuits, vol. 53, no. 6, pp. 1743–1754, 2018.
    [32] B. Razavi, “The bootstrapped switch,” IEEE Solid-State Circuits Magazine, vol. 7,
    no. 3, pp. 12–15, 2015.
    [33] T. Delbruck, “Bump circuits for computing similarity and dissimilarity of analog
    voltage,” in IEEE Proceedings of the International Neural Network Society, pp. 475–
    479, Oct. 1991.
    [34] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink, and
    B. Nauta, “A 10-bit charge-redistribution ADC consuming 1.9 µw at 1 MS/s,” IEEE
    Journal of Solid–State Circuits, vol. 45, no. 5, pp. 1007–1015, 2010.
    [35] Liu, C. C., S. J. Chang, G. Y. Huang, Lin, Y. Z., and Huang, “A 1v 11fj/conversionstep 10bit 10ms/s asynchronous sar adc in 0.18 µm cmos,” Proceedings of the Symposium on VLSI Circuits, pp. 241–242, 2010.
    [36] S. Gupta and et al., “W–2W current steering dac for programming phase change
    memory,” Workshop on Microelectronics and Electron Devices, 2009.
    [37] J. Jin, Y. Gao, and E. Sanchez-Sinencio, “An energy-efficient time-domain asynchronous 2 b/step SAR ADC with a hybrid R-2R/C-3C DAC structure,” IEEE Journal of Solid–State Circuits, vol. 49, no. 6, pp. 1383–1396, 2014.
    [38] H. Tang, Z. C. Sun, K. W. R. Chew, and L. Siek, “A 1.33uW 8.02-ENOB 100 kS/s
    successive approximation adc with supply reduction technique for implantable retinal prosthesis,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 6,
    pp. 844–856, 2014.
    [39] Z. Zhu and Y. Liang, “A 0.6-V 38-nW 9.4-ENOB 20-kS/s SAR ADC in 0.18-um
    CMOS for medical implant devices,” IEEE Transactions on Circuits and Systems I:
    Fundamental Theory and Applications, vol. 62, no. 9, pp. 2167–2176, 2015.
    [40] H. Lee, S. Park, C. Lim, and C. Kim, “A 100-nW 9.1-ENOB 20-ks/s SAR ADC for
    portable pulse oximeter,” IEEE Transactions on Circuits and Systems II: Analog and
    Digital Signal Processing, vol. 62, no. 4, pp. 357–361, 2015.
    [41] P. Harikumar, J. JacobWikner, and A. Alvandpour, “A 0.4-V subnanowatt 8-bit 1-kS/
    s SAR ADC in 65-nm CMOS for wireless sensor applications,” IEEE Transactions
    on Circuits and Systems II: Analog and Digital Signal Processing, vol. 63, no. 8,
    pp. 743–747, 2016.
    [42] Y. Zhang, E. Bonizzoni, and F. Maloberti, “A 10-b 200-ks/s 250-na Self–Clocked
    coarse-fine SAR ADC,” IEEE Transactions on Circuits and Systems II: Analog and
    Digital Signal Processing, vol. 63, no. 10, pp. 924–928, 2016.
    [43] Y. Song, Z. Xue, Y. Xie, S. Fan, and L. Geng, “A 0.6-V 10-bit 200-ks/s fully differential SAR ADC with incremental converting algorithm for energy efficient applications,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and
    Applications, vol. 63, no. 4, pp. 449–458, 2016.
    [44] H. Zhang and et al., “A 0.6v 10-bit 200–kS/s SAR ADC with higher side-reset-andset switching scheme and hybrid CAP-MOS DAC,” IEEE Transactions on Circuits
    and Systems I: Fundamental Theory and Applications, vol. 65, pp. 3639–3650, 2018.
    [45] Y.-H. Ou-Yang and et al., “An energy-efficient SAR ADC with event-triggered error correction,” IEEE Transactions on Circuits and Systems II: Analog and Digital
    Signal Processing, vol. 65, pp. 723–727, 2019.
    [46] J. Liu, X. Tang, W. Zhao, L. Shen, and N. Sun, “A 13-bit 0.005-mm2 40-ms/s sar adc
    with kt/c noise cancellation,” IEEE Journal of Solid–State Circuits, vol. 55, no. 12,
    pp. 3260–3269, 2020.
    [47] Tobias-Delbruck, “Bump circuits for computing similarity and dissimilarity of analog voltage,” IJCNN-91-Seattle International Joint Conference on Neural Networks,
    1991.
    [48] R. S. Assaad and J. Silva-Martinez, “The recycling folded cascode: A general enhancement of the folded cascode amplifier,” IEEE Journal of Solid–State Circuits,
    vol. 44, no. 9, pp. 2535–2542, 2009.
    [49] S.-Y. Peng, M. S. Quershi, P. E. Hasler, A. Basu, and F. L. Degertekin, “A chargebased low-power high-snr capacitive sensing interface circuit,” IEEE Transactions
    on Circuits and Systems I: Fundamental Theory and Applications, vol. 55, pp. 1863–
    1872, 2008.
    [50] S. B. Prakash and P. Abshire, “A fully differential rail-to-rail cmos capacitance sensor with floating-gate trimming for mismatch compensation,” IEEE Transactions
    on Circuits and Systems I: Fundamental Theory and Applications, vol. 56, no. 5,
    pp. 975–986, 2009.
    [51] D. Du and K. M. Odame, “A bandwidth-adaptive preamplifier,” IEEE Journal of
    Solid–State Circuits, vol. 48, no. 9, pp. 2142–2153, 2013.
    [52] S.-J. Jung, S.-K. Hong, and O.-K. Kwon, “Low-power low-noise amplifier using
    attenuation-adaptive noise control for ultrasound imaging sysems,” IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 5, pp. 108–116, 2017.
    [53] S. Mondal, C.-L. Hsu, R. Jafari, and D. A. Hall, “A dynamically reconfigurable ecg
    analog front-end with a 2.5x data-dependent power reduction,” IEEE Transactions
    on Biomedical Circuits and Systems, vol. 15, no. 5, pp. 1066–1078, 2021.
    [54] Z.-J. Lo, B. Nath, Y.-C. Wang, Y.-J. Haung, H.-C. Haung, and S.-Y. Peng, ““a
    floating-gate-based four-channel reconfigurable analog front-end integrated circuit,”
    IEEE Proceedings of the International Symposium on Circuits and Systems.
    [55] T.-Y. Wang, M.-R. Lai, C. M. Twigg, and S.-Y. Peng, “A fully reconfigurable lownoise biopotential sensing amplifier with 1.96 noise efficiency factor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 3, pp. 411 – 422, 2014.
    [56] P. S.-Y., L. L.-H., C. P.-K., W. T.-Y., and L. H.-Y., “A power-efficient reconfigurable output-capacitor-less low-drop-out regulator for low-power analog sensing
    front-end,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and
    Applications, vol. 64, no. 6, pp. 1318 – 1327, 2017.
    [57] S.-Y. Peng, Y.-H. Lee, T.-Y. Wang, H.-C. Huang, M.-R. Lai, C.-H. Lee, and L.-H.
    Liu, “A power-efficient reconfigurable OTA-C filter for low-frequency biomedical
    applications,” IEEE Transactions on Circuits and Systems I: Fundamental Theory
    and Applications, vol. 65, no. 2, pp. 543 – 555, 2018.
    [58] T.-Y. Wang, H.-Y. Li, Z.-Y. Ma, Y.-J. Huang, and S.-Y. Peng, “A bypass-switching
    SAR ADC with a dynamic proximity comparator for biomedical applications,” IEEE
    Journal of Solid–State Circuits, vol. 53, no. 6, pp. 1743–1754, 2018.
    [59] Z. J. Lo, B. Nath, Y. C. Wang, Y. J. Haung, H. C. Haung, and S. Y. Peng, “A
    floating-gate-based four-channel reconfigurable analog front-end integrated circuit,”
    May 2021.
    [60] K. M. A.-Ashmouny, S. I. Chang, and E. Yoon, “A 4uW/Ch analog front-end module
    with moderate inversion and power-scalable sampling operation for 3-D neural mi125
    crosystems,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 5,
    pp. 403–413, 2012.
    [61] C. M. Lopez, D. Prodanov, D. Braeken, I. Gligorijevic, W. Eberle, C. Bartic,
    R. Puers, and G. Gielen, “Multichannel integrated circuit for electrical recording
    of neural activity, with independent channel programmability,” IEEE Transactions
    on Biomedical Circuits and Systems, vol. 6, no. 2, pp. 101–110, 2012.
    [62] D. Du and K. M. Odame, “A bandwidth-adaptive preamplifier,” IEEE Journal of
    Solid–State Circuits, vol. 48, no. 9, pp. 2142–2153, 2013.
    [63] S. Mondal, C.-L. Hsu, R. Jafari, and D. A. Hall, “A dynamically reconfigurable ECG
    analog front-end with a 2.5x data-dependent power reduction,” IEEE Transactions
    on Biomedical Circuits and Systems, vol. 15, no. 5, pp. 1066–1078, 2021.
    [64] R. Carvajal, J. Ramirez-Angulo, A. Lopez-Martin, A. Torralba, J. Galan, A. Carlosena, and F. Chavero, “The flipped voltage follower: a useful cell for low-voltage
    low-power circuit design,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 52, no. 7, pp. 1276 – 1291, 2005.
    [65] A. L.-Martin, M. P. Garde, J. M. Algueta, C. A. C. Blas, R. G. Carvajal, and J. R.-
    Angulo, “Enhanced single-stage folded cascode OTA suitable for large capacitive
    loads,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
    Processing, vol. 65, no. 4, pp. 441–445, 2018.
    [66] A. J. L.-Martin, S. Baswa, J. R.-Angulo, and R. G.-Carvajal, “Low-voltage super
    class AB CMOS OTA cells with very high slew rate and power efficiency,” IEEE
    Journal of Solid–State Circuits, vol. 40, no. 5, pp. 1068–1077, 2005.
    [67] M. Garde, A. Lopez-Martin, R.G.Carvajal, and J.Ramirez-Angulo, “Super classAB recycling folded cascode OTA,” IEEE Journal of Solid–State Circuits, vol. 53,
    no. 22, pp. 2614–2623, 2018.
    [68] B. A. Minch, “An inverted CMOS class-AB transconductor featuring rail-to-rail
    common-mode input range and constant transconductance gain,” pp. 428–431, Oct.
    2014.
    [69] R. S. Assaad and J. Silva-Martinez, “The recycling folded cascode: A general enhancement of the folded cascode amplifier,” IEEE Journal of Solid–State Circuits,
    vol. 44, no. 9, pp. 2535–2542, 2009.

    無法下載圖示 全文公開日期 2028/04/28 (校內網路)
    全文公開日期 2028/04/28 (校外網路)
    全文公開日期 2028/04/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE