簡易檢索 / 詳目顯示

研究生: 吳承修
Cheng-Siou Wu
論文名稱: 優化矽基光柵耦合器之光學同調斷層掃描縱向解析度
Axial Resolution Optimization in Grating Coupler-based Optical Coherence Tomography on Silicon Platform
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 李三良
San-Liang Lee
廖顯奎
Shien-Kuei Liaw
徐世祥
Shih-Hsiang Hsu
宋峻宇
Jiun-Yu Sung
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 133
中文關鍵詞: 矽光子光學同調斷層掃描
外文關鍵詞: silicon photonics, optical coherence tomography
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究矽光子平台技術如何應用於生醫感測中的光學同調斷層掃描,得力於近年來的晶片製程技術發展快速,矽光子受到越來越多關注與進展,使用矽波導當作光的載體,可以良好地實現各種光學元件,例如:定向耦合器、分佈式波導布拉格光柵、陣列式波導光柵等等。隨著實驗室的發展,希望將 光學同調斷層掃描所需之光學元件全部積體化並且在減少架構體積的同時保有影像解析度及清晰度等等。在此論文中著重於積體化光學中的元件對於光學同調斷層掃描影響之研究與探討,解決晶片型光學同調斷層掃描所遇到的問題。利用RSoft和OptSim等光子元件模擬工具模擬不同矽光子元件特性並且可將各個元件組合以探討晶片型光學同調斷層掃描架構。最後利用光子元件工具所產生之光譜結果帶入MATLAB以進行光學同調斷層掃描影像訊號處理。
    此論文探 馬赫-曾德爾定向耦合分光能量器的各個參數影響,藉由光學模擬軟體逐步計算及設計優化。在傳統定向耦合中導入馬赫-曾德爾干涉儀使改善原本製程敏感的缺點以及各波長中耦合能量不平衡的問題。
    在討論完馬赫-曾德爾定向耦合分光器後將進一步探討如何應用於晶片型光學同調斷層掃描中,在晶片型光學同調斷層掃描當中,所需用到的元件主要有光柵耦合器與能量分光器/結合器。其中光柵耦合器為光纖入光至晶片中的重要元件,能量分光器/結合器為光學同調斷層掃描中重要的元件。我們將使用馬赫-曾德爾定向耦器合來當作晶片型光學同調斷層掃描的能量分光器/結合器。
    最後由於光柵耦合器在物理結構上以及理論上的限制,對於波長是敏感的,對於晶片型光學同調斷層掃描將導致縱向解析度降低,在此論文也將馬赫-曾德爾定向耦合進一步推廣為晶格濾波器用以補償晶片型光學同調斷層掃描所使用的光纖光柵耦合器所帶來光源不平坦造成解析度上下降之問題。
    在本研究中使用馬赫-曾德爾定向耦器分光器模擬晶片型光學同調斷層掃描,解析度可改善至20.3微米。模擬中使用晶格濾波器補償光纖光柵耦合器,可使解析度進一步下降為13.2 微米。在實際晶片量測中,使用掃頻式光學同調斷層掃描量測架構原本使用光柵耦合器系統的解析度為47.2微米,而經由晶格濾波器補償後可進一步下降至38.25微米。


    This thesis mainly studies how silicon photonics platform technology is applied to optical coherence tomography (OCT) in biomedical sensing. Powered by rapid advancements in chip manufacturing technology in recent years, silicon photonics has made enormous progress and garnered increasing attention. Using silicon waveguides as the light carrier allows for excellent realization of various optical components, such as directional couplers, distributed waveguide Bragg grating, array waveguided grating, etc. As the laboratory develops, the goal is to fully integrate all the optical components required for OCT (Optical Coherence Tomography) while reducing the overall system size, maintaining image resolution and clarity, and so on. This thesis focuses on the research and exploration of the integration of optical components and their impact on OCT, aiming to address the issues encountered in chip-based OCT. Different silicon photonics components are simulated using photonics simulation tools such as RSoft and OptSim, and their combinations are analyzed to investigate chip-based OCT architectures. Finally, the spectral results generated by the photonics simulation tools are imported into MATLAB to process OCT image signals further.

    This thesis explores the impact of various parameters on the Mach-Zehnder directional coupler (MZDC) for splitting optical power, utilizing optical simulation software for step-by-step calculation and design optimization. Incorporating the Mach-Zehnder interferometer into the traditional directional coupler aims to improve the drawbacks associated with process sensitivity and address the issue of energy coupling imbalance at different wavelengths.

    After the MZDC splitter’s study, the applications in chip-based OCT will be further explored. The critical components of the silicon wafer are the grating coupler and the energy splitter/combiner. The grating coupler is crucial for coupling light from the optical fiber into the chip, while the energy splitter/combiner plays a vital role in OCT. We will utilize the MZDC as the energy splitter/combiner in the chip-based OCT setup.

    Finally, due to the physical and theoretical limitations of the grating coupler, it is sensitive to the wavelength, which can result in axial resolution reduction for chip-based OCT. In this thesis, the MZDC will also be further extended as a lattice filter to compensate for the resolution degradation caused by the non-uniformity of the light source introduced by the grating coupler used in chip-based OCT.

    This study used the MZDC splitter to simulate chip-based OCT, and the resolution was improved to 20.3 micrometers. The simulation using the lattice filter to compensate for the grating coupler could enhance the resolution to 13.2 micrometers. The original resolution with the grating coupler system was 47.2 micrometers in actual chip measurements using the SS-OCT setup. After compensation with the lattice filter, it was further improved to 38.25 micrometers.

    中文摘要 4 ABSTRACT 6 致謝 8 第一章緒論 22 1-1研究背景 22 1-2研究動機 22 第二章基礎理論 24 2-1光波導理論 24 2-2矽光子元件介紹 30 2-2-1 directional coupler 31 2-2-2 Multi mode interferometer 34 2-2-3 fiber grating coupler 35 2-3光學同調斷層掃描介紹 36 2-3-1傅立葉光學同調斷層掃描原理 37 第三章模擬分析方法及CONERSTONE製程元件設計 42 3-1模擬分析方法 42 3-1-1 FullWAVE 42 3-1-2 BeamPROP 44 3-1-3 FemSIM 45 3-2 CONERSTONE製程之波導建模結構設計參數 46 3-2-1 Conerstone矽光子平台結構參數 47 3-2-2模擬波導材料參數設定 48 3-2-3 Conerstone波導模態分析 51 3-2-4 Conerstone製程directional coupler耦合分析 54 3-3 CONERSTONE製程之MZDC架構及模擬流程 57 3-4 CONERSTONE MULTI MODE INTERFEROMETER(MMI)模擬設計 58 3-5 不同種類分光能量器於OCT影響之模擬 59 3-6 LATTICE FILTER架構分析及模擬流程 60 3-7 LATTICE FILTER補償FIBER GRATING COUPLER於OCT之架構分析及模擬流程 61 第四章 模擬實驗結果與分析 63 4-1 半耦合DIRECTIONAL COUPLER FDTD模擬結果 63 4-2 全耦合DIRECTIONAL COUPLER FDTD模擬結果 64 4-3 MACH ZEHNDER DIRECTIONAL COUPLER FDTD模擬結果 66 4-4 MACH ZEHNDER DIRECTIONAL COUPLER OPTISIM模擬結果 69 4-5 MACH ZEHNDER DIRECTIONAL COUPLER 改變波導寬度FDTD模擬結果分析 71 4-6 MMI模擬結果分析 77 4-7 不同種類分光能量器於OCT干涉影響之模擬結果-不包含FIBER GRATING COUPLER 79 4-8 不同種類分光能量器於OCT干涉影響之模擬結果-包含FIBER GRATING COUPLER 82 4-9 使用LATTICE FILTER光譜與補償FIBER GRATING COUPLER模擬結果 85 4-10 使用LATTICE FILTER補償FIBER GRATING COUPLER光譜於不同分光能量器之OCT干涉影響之模擬結果 88 4-11 使用LATTICE FILTER補償FIBER GRATING COUPLER光譜於SS-OCT量測晶片結果 91 第五章結論 93 附錄一CONERSTONE半耦合DC元件光譜圖 95 附錄二CONERSTONE全耦合DC元件光譜圖 102 附錄三 CONERSTONE不同DC長度之MZDC光譜圖 FDTD模擬 106 附錄四CONERSTONE不同DC長度之MZDC光譜圖 OPTISIM模擬 110 附錄五 MZDC 改變波導寬度為0.38M FDTD模擬結果 114 附錄六 MZDC 改變波導寬度為0.39M FDTD模擬結果 118 附錄七 MZDC 改變波導寬度為0.41M FDTD模擬結果 122 附錄八 MZDC 改變波導寬度為0.42M FDTD模擬結果 126 參考文獻 130 PUBLICATIONS 133

    [1] Graham T. Reed, and Andrew P. Knights. Silicon photonics: an introduction. John Wiley & Sons, 2004.
    [2] Andrew Michaels, Ming C. Wu, and Eli Yablonovitch. "Hierarchical design and optimization of silicon photonics." IEEE Journal of Selected Topics in Quantum Electronics 26.2 (2019): 1-12.
    [3] Ramesh K. Gupta, Sujith Chandran, and Bijoy Krishna Das. "Wavelength-independent directional couplers for integrated silicon photonics." Journal of Lightwave Technology 35.22 (2017): 4916-4923.
    [4] Dan-Xia Xu, Jens H. Schmid, Graham T. Reed, Goran Z. Mashanovich, David J. Thomson, Milos Nedeljkovic, Xia Chen, Dries Van Thourhout, Shahram Keyvaninia, and Shankar K. Selvaraja. "Silicon photonic integration platform—have we found the sweet spot?." IEEE Journal of Selected Topics in Quantum Electronics 20.4 (2014): 189-205.
    [5] William A. Zortman, Douglas C. Trotter, and Michael R. Watts. "Silicon photonics manufacturing." Optics express 18.23 (2010): 23598-23607.
    [6] David E. Hagan, and Andrew P. Knights. "Mechanisms for optical loss in SOI waveguides for mid-infrared wavelengths around 2 μm." Journal of Optics 19.2 (2016): 025801.
    [7] Vladimir Stojanović, Rajeev J. Ram, Milos Popović, Sen Lin, Sajjad Moazeni, Mark Wade, Chen Sun, Luca Alloatti, Amir Atabaki, Fabio Pavanello, Nandish Mehta, and Pavan Bhargava. "Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes." Optics express 26.10 (2018): 13106-13121.
    [8] E. A. J. Marcatili. "Dielectric rectangular waveguide and directional coupler for integrated optics." Bell System Technical Journal 48.7 (1969): 2071-2102.
    [9] Daoxin Dai. "Advanced passive silicon photonic devices with asymmetric waveguide structures." Proceedings of the IEEE 106.12 (2018): 2117-2143.
    [10] R. G. Hunsperger Integrated Optics: Theory and Technology, 3rd edn, Springer-Verlag, Berlin(1991)
    [11] S. Somekh, E. Garmire, A. Yariv, H. L. Garvin and R. G. Hunsperger‘Channel optical waveguide directional couplers’, Appl. Phys. (1973) Lett., 22,46–47
    [12] Amnon Yariv. “Coupled-mode theory for guided-wave optics”. IEEE Journal of Quantum Electronics 9.9 (1973), pp. 919–933 (cit. on pp. 92, 108).
    [13] Amnon Yariv and Yeh Pochi. Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering). Oxford University Press, Inc.(2006)(cit. on p. 92).
    [14] Erika Andersson, Tommaso Calarco, Ron Folman, Mauritz Andersson, Björn Hessmo, and Jörg Schmiedmayer. "Multimode interferometer for guided matter waves." Physical review letters 88.10 (2002): 100401.
    [15] Dirk Taillaert, Frederik Van Laere, Melanie Ayre, Wim Bogaerts, Dries Van Thourhout, Peter Bienstman and Roel Baets "Grating couplers for coupling between optical fibers and nanophotonic waveguides." Japanese Journal of Applied Physics 45.8R (2006): 6071.
    [16] B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, and M. Young. "Comparison of time-resolved and-unresolved measurements of deoxyhemoglobin in brain." Proceedings of the National Academy of Sciences 85.14 (1988): 4971-4975.
    [17] Dan P. Popescu, Lin-P’ing Choo-Smith, Costel Flueraru, Youxin Mao, Shoude Chang, John Disano, Sherif Sherif and Michael G. Sowa. "Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications." Biophysical reviews 3 (2011): 155-169.
    [18] David Huang, Eric A. Swanson, Charles P. Lin, Joel S. Schuman, William G. Stinson, Warren Chang, Michael R. Hee, Thomas Flotte, Kenton Gregory, Carmen A. Puliafito and James G. Fujimoto. "Optical coherence tomography." science 254.5035 (1991): 1178-1181.
    [19] Michael R. Hee, Joseph A. Izatt, Eric A. Swanson, David Huang, Joel S. Schuman, Charles P. Lin, Carmen A. Puliafito and James G. Fujimoto. "Optical coherence tomography of the human retina." Archives of ophthalmology 113.3 (1995): 325-332.
    [20] Adolf Friedrich Fercher. "Optical coherence tomography." Journal of biomedical optics 1.2 (1996): 157-173.
    [21] Peter Andretzky, Michael W. Lindner, Juergen M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter and Gerd Haeusler. "Optical coherence tomography by spectral radar: dynamic range estimation and in-vivo measurements of skin," Optical and Imaging Techniques for Biomonitoring IV, 3567, SPIE, (1999).
    [22] J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, Fujimoto, J. G. and Swanson, E. A. "Optical coherence tomography: a new tool for glaucoma diagnosis." Current opinion in ophthalmology 6.2 (1995): 89-95.
    [23] Kane Yee. "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media." IEEE Transactions on antennas and propagation 14.3 (1966): 302-307.
    [24] R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert. "Numerical techniques for modeling guided-wave photonic devices." IEEE Journal of Selected Topics in Quantum Electronics 6.1 (2000): 150-162.
    [25] Jian-Ming Jin. The finite element method in electromagnetics. John Wiley & Sons, 2015.
    [26] Kunimasa Saitoh, and Masanori Koshiba. "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers." IEEE Journal of Quantum Electronics 38.7 (2002): 927-933.
    [27] Brent E. Little, and Tom Murphy. "Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures." IEEE Photonics Technology Letters 9.12 (1997): 1607-1609.
    [28] K. inguji, N. Takato, A. Sugita and M. Kawachi. "Mach-Zehnder Interferometer Type Wavelength-Flattened Coupling Optical Waveguide Coupler With Ratio." Electronic Letters 26.17 (1990): 1326-1327.
    [29] Serge Bidnyk, Dazeng Feng, Ashok Balakrishnan, Matt Pearson, Mae Gao, Hong Liang, Wei Qian, Cheng-Chih Kung, Joan Fong, Jeremy Yin, and Mehdi Asghari. "Silicon-on-insulator-based planar circuit for passive optical network applications." IEEE Photonics Technology Letters 18.22 (2006): 2392-2394.

    無法下載圖示 全文公開日期 2025/08/09 (校內網路)
    全文公開日期 2025/08/09 (校外網路)
    全文公開日期 2025/08/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE