簡易檢索 / 詳目顯示

研究生: 張弘
Hung Chang
論文名稱: 多晶鑽石在線放電加工之綜合指標優化研究
Multi-objective optimization in wire-electrical discharge machining of polycrystalline diamond
指導教授: 郭俊良
Chun-Liang Kuo
口試委員: 陳炤彰
Chao-Chang A. Chen
鍾俊輝
Chun-Hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 54
中文關鍵詞: 多晶鑽石線放電加工材料移除率表面粗糙度加工表面波動層刀尖半徑多指標最佳化
外文關鍵詞: surface asperity, edge radius
相關次數: 點閱:529下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用線放電加工切削多晶鑽石 (Polycrystalline diamond),並設計夾持治具配合操作參數進行切削。在L18田口實驗 (Taguchi method) 中,操作參數區間為開路電壓80-180 V、引弧電流 0.4-0.9 A、脈衝時間0.1-0.3 µs、脈衝休止時間10-20 µs對材料移除率 (Material removal rate)、表面粗糙度 (Surface roughness)、加工表面波動層 (Surface asperity) 及刀尖半徑 (Edge radius) 進行觀測。在變異數分析 (Analysis of Variance, ANOVA) 中,判斷參數對各項指標顯著性,並建議單一指標優化組合。此外,利用迴歸方程式 (Regression equations) 建立參數與指標之關係模型,在均等權重滿足各量化指標以達成綜合指標優化。實驗結果顯示在操作參數區間內較高的脈衝時間 (0.3 µs) 可以得到較高材料移除率 (22.9 mg/min),較低的脈衝時間 (0.1 µs) 可以得到較佳的表面粗糙度 (Ra 1.42 µm)。綜合指標優化中,在操作參數於開路電壓126 V、引弧電流0.9 A、脈衝時間0.1 µs、脈衝休止時間20 µs之條件,演算模型與實驗值在各指標的比對之下,誤差在材料移除率為10.3%、表面粗糙度為3.04%、加工面波動層為26.09%。


This work is to evaluate the machining performance in multiple objectives when cutting of polycrystalline dick using wire electrode discharging method. The 2 μm polycrystalline with 8-15% cobalt having weak conductivity (1.8×10-4 (Ωm)-1) and necessitated a bespoke feature to couple with preferable parameter sets for discharging actions. In this experiment, the influences of open voltage (80-180 V), ignition intensity (0.4-0.9 A), pulse on-time (0.1-0.3 µs), pulse off-time (10-20 µs) on the material removal rate, surface roughness, surface asperity and edge radius was resolved with statistical methods (ANOVA) in an orthogonal array (Taguchi L18). The developed empirical model suggests the preferable parameter sets for the multi-objective optimization while equal weightings are given to each objective. The results suggest the high pulse on-time (0.3 µs) produce higher material removal rate (22.9 mg/min) and the lower pulse on-time (0.1 µs) produce lower surface roughness (Ra 1.42 µm) whilst the lower open voltage (80 V) leads to lower surface asperity (0.63µm) and small edge radius (32.6 µm) on the machined surface. When compared the experimental results to the modelling values, the least error for material removal rate, surface roughness and surface asperity are 10.3%、3.04%、26.09% respectively under the preferable parameters of open voltage (126 V), ignition intensity (0.9 A), pulse on-time (0.1 µs), and pulse off-time of (20 µs).

摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 研究介紹 1 1.1 研究背景與目標 1 第二章 文獻回顧 2 2.1 多晶鑽石之加工方法 2 2.2 線切割/放電加工對於多晶鑽石之研究 4 2.3 放電加工成品之幾何研究 7 2.4 放電加工製程之參數最佳化 7 2.5 田口實驗方法及變異數分析 9 2.6 信賴區間 10 第三章 實驗工作 11 3.1 實驗工作簡介 11 3.2 實驗材料 11 3.3 等距離放電加工治具 13 3.4 實驗設備 14 3.5.1 實驗設置 14 3.5.2 波形量測 15 3.5.3 材料移除率量測 17 3.5.4 表面粗糙度量測 17 3.5.5 加工面之波動層與刀尖半徑量測 18 3.5 實驗設計 19 3.5.1 電熱效應 19 3.5.2 部分因子實驗規劃 22 3.6 統計與檢定 25 第四章 實驗結果與討論 27 4.1 放電加工之電壓與電流波形 27 4.2 材料移除率 29 4.3 表面粗糙度 32 4.4 加工表面之波動層 35 4.5 多晶鑽石之刀尖半徑 40 4.6 驗證實驗 (Confirmation test) 42 4.7 綜合指標最佳化 (Multi-objective optimization) 43 第五章 結論與未來展望 49 5.1 文獻回顧總結 49 5.2 研究結果總結 49 5.3 未來展望 50 參考文獻 51 附錄一 54

[1] Bai Q, Yao Y, Chen S. Research and development of polycrystalline diamond woodworking tools. International Journal of Refractory Metals and Hard Materials 2002;20(5–6):395-400.
[2] Cook MW, Bossom PK. Trends and recent developments in the material manufacture and cutting tool application of polycrystalline diamond and polycrystalline cubic boron nitride. International Journal of Refractory Metals and Hard Materials 2000;18(2–3):147-52.
[3] Axinte DA, Srinivasu DS, Kong MC, Butler-Smith PW. Abrasive waterjet cutting of polycrystalline diamond: A preliminary investigation. International Journal of Machine Tools and Manufacture 2009;49(10):797-803.
[4] Tso P-L, Liu Y-G. Study on PCD machining. International Journal of Machine Tools and Manufacture 2002;42(3):331-4.
[5] Dold C, Henerichs M, Bochmann L, Wegener K. Comparison of Ground and Laser Machined Polycrystalline Diamond (PCD) Tools in Cutting Carbon Fiber Reinforced Plastics (CFRP) for Aircraft Structures. Procedia CIRP 2012;1:178-83.
[6] Ogawa Y, Ota M, Nakamoto K, Fukaya T, Russell M, Zohdi TI, Yamazaki K, Aoyama H. A study on machining of binder-less polycrystalline diamond by femtosecond pulsed laser for fabrication of micro milling tools. CIRP Annals - Manufacturing Technology 2016;65(1):245-8.
[7] Sandeep K. Current Research Trends in Electrical Discharge Machining: A Review. Research Journal of Engineering Sciences 2013;2(2):56-60.
[8] Jahan MP, Rahman M, Wong YS. Micro-Electrical Discharge Machining (Micro-EDM). 2014;333-71.
[9] Ho KH, Newman ST, Rahimifard S, Allen RD. State of the art in wire electrical discharge machining (WEDM). International Journal of Machine Tools and Manufacture 2004;44(12–13):1247-59.
[10] Zhang Z, Peng H, Yan J. Micro-cutting characteristics of EDM fabricated high-precision polycrystalline diamond tools. International Journal of Machine Tools and Manufacture 2013;65:99-106.
[11] Gao C, Zhan Z, Wang S, He N, Li L. Research on WEDM Process Optimization for PCD Micro Milling Tool. Procedia CIRP 2013;6:209-14.
[12] Hsu FC, Tai TY, Vo VN, Chen SY, Chen YH. The Machining Characteristics of Polycrystalline Diamond (PCD) by Micro-WEDM. Procedia CIRP 2013;6:261-6.
[13] Yan MT, Fang GR, Liu YT, Li JR. Fabrication of Polycrystalline Diamond Wheels by Micro Wire-EDM using a Novel Pulse Generator. Procedia CIRP 2013;6:203-8.
[14] Galindo-Fernandez M, Diver C, Leahy W. The Prediction of Surface Finish and Cutting Speed for Wire Electro-discharge Machining of Polycrystalline Diamond. Procedia CIRP 2016;42:297-304.
[15] Iwai M, Ninomiya S, Suzuki K. EDM Properties of Newly Developed PCD Made Up of Electrically Conductive Diamond Particles. Procedia CIRP 2013;6:140-5.
[16] Fonda P, Katahira K, Kobayashi Y, Yamazaki K. WEDM condition parameter optimization for PCD microtool geometry fabrication process and quality improvement. The International Journal of Advanced Manufacturing Technology 2012;63(9):1011-9.
[17] Kozak J, Rajurkar KP, Chandarana N. Machining of low electrical conductive materials by wire electrical discharge machining (WEDM). Journal of Materials Processing Technology 2004;149(1–3):266-71.
[18] Kunieda M, Lauwers B, Rajurkar KP, Schumacher BM. Advancing EDM through Fundamental Insight into the Process. CIRP Annals - Manufacturing Technology 2005;54(2):64-87.
[19] Sanchez JA, Rodil JL, Herrero A, de Lacalle LNL, Lamikiz A. On the influence of cutting speed limitation on the accuracy of wire-EDM corner-cutting. Journal of Materials Processing Technology 2007;182(1–3):574-9.
[20] Conde A, Sanchez JA, Plaza S, Ramos JM. On the Influence of Wire-lag on the WEDM of Low-radius Free-form Geometries. Procedia CIRP 2016;42:274-9.
[21] Puri AB, Bhattacharyya B. An analysis and optimisation of the geometrical inaccuracy due to wire lag phenomenon in WEDM. International Journal of Machine Tools and Manufacture 2003;43(2):151-9.
[22] Tosun N, Cogun C, Tosun G. A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method. Journal of Materials Processing Technology 2004;152(3):316-22.
[23] Singh V, Pradhan SK. Optimization of WEDM Parameters Using Taguchi Technique and Response Surface Methodology in Machining of AISI D2 Steel. Procedia Engineering 2014;97:1597-608.
[24] Selvakumar G, Sornalatha G, Sarkar S, Mitra S. Experimental investigation and multi-objective optimization of wire electrical discharge machining (WEDM) of 5083 aluminum alloy. Transactions of Nonferrous Metals Society of China 2014;24(2):373-9.
[25] Roy R, A Primer on the Taguchi Method, 1st ed., Society of manufacturing engineers. 1990.
[26] Marafona J, Chousal J.A.G. A finite element model of EDM based on the Joule effect. International Journal of Machine Tools & Manufacture 2006;46:595-602.

QR CODE