簡易檢索 / 詳目顯示

研究生: 黃明彥
MING-YEN HUANG
論文名稱: 不鏽鋼材SUS304之橢圓杯引伸成形製程分析
An Analysis of Elliptical Cup Drawing Process of SUS304 Stainless Metal
指導教授: 黃佑民
You-Min Huang
口試委員: 徐瑞坤
Ray-Quan Hsu
向四海
Su-Hai Hsiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 119
中文關鍵詞: 橢圓杯引伸彈塑性有限元素成形極限
外文關鍵詞: Elliptical Cup Drawing, elasto-plastic, finite element, the forming limit etc.
相關次數: 點閱:209下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採用Prandtl-Reuss塑流法則和von Mises的降伏條件,結合有限變形理論及updated Lagrangian formulation (ULF)的觀念建立一增量型彈塑性大變形三維有限元素分析程式,並應用四邊形四節點退化殼元素(degenerated shell element)所推導之形狀函數偶合入剛性矩陣中,組成三維有限元素之分析模式,以及使用廣義 法則處理板材成形時,元素降伏之判斷、最大容許應變增量、最大容許旋轉增量、料片與模具間節點之接觸或分離等問題。
    為驗證此有限元素程式之可信度及準確度,本研究以材料拉伸試驗所得之試片破斷面厚度為數值分析之破裂判斷準則,探討橢圓杯引伸成形製程之沖頭負荷與衝程之關係、工件厚度變化、主應力分佈、等價應變分佈、變形歷程及成形極限等。
    由數值分析與實驗結果比較得知,沖頭負荷隨著沖頭衝程之增加而遞增,直到成形為止負荷才趨於平緩。成形工件在主應力與等價應變分佈的變化可區分為三階段,最小厚度值集中在工件與沖頭長軸接觸之區域,而工件短軸區域則因為曲率半徑較大,所承受之周向拉伸應力較小,故厚度變化不大。經由橢圓柱沖頭周長與初始料片周長所定義之極限引伸比得知,其橢圓杯成形之極限引伸比為2.136。隨著料片尺寸之加大,其破裂發生之部位對應於相對位置可發現有逐漸下降之趨勢。


    A methodology of formulating an elasto-plastic three-dimensional finite element model, which is based on Prandtl-Reuss flow rule and von Mises’s yield criterion respectively, associated with an updated Lagrangian formulation, is developed to simulation sheet metal flanging process. The shape function derived from a four-node quadrilateral degenerated shell element associated into the stiffness matrix to constitute the finite element model. An extended rmin algorithm is proposed to formulate the boundary condition, such as nodal penetration and separation, strain increment and rotation increment and altered elasto-plastic state of material.
    In order to verify the reliability and accuracy of the FEM code, the fractured thickness of a specimen in the simple tension test is adopted as the fracture criterion of forming limit in simulation. The numerical simulation results include relationship between punch load and punch stroke, distribution of the thickness, distribution of the maximum principal stress, distribution of the normal strain, deformation history and the forming limit etc. in elliptical cup drawing process.
    According to the simulation and experiment results, the maximum punch load decrease as the punch stroke, until final drawing punch load becomes to smooth and steady; drawing piece in distribution of the maximum principal stress and distribution of the normal strain can be divided into three stages, the minimum thickness are concentrated on the contact regions between workpiece and punch major axis, because camber radius is relatively large in minor axis, the ones that bear are relatively small to the circular tensile stress, so the thickness does not change much. The limiting drawing ratio (LDR) is defined between the circumference of elliptical punch profile and the circumference of the initial of the blanks. The LDR amounts to about 2.136 for penetration in elliptical cup drawing process of this study. With initial blank of increasing of size, the position taken place to break it correspondent to relative position can is it have trend to of the decline gradually.

    摘要I ABSTRACTII 誌 謝IV 目錄V 符號索引IX 圖表索引XV 第一章 緒論1 1.1前言1 1.2研究動機與目的3 1.3文獻回顧4 1.4本論文之構成7 第二章 基本理論9 2.1基本假設與理論9 2.2有限變形之應變與應變率9 2.3有限變形之應力與應力率11 2.4有限變形之updated Lagrangian formulation14 2.5材料之彈塑性構成關係式15 第三章 有限元素分析21 3.1簡介21 3.2虛功原理之離散化24 3.3退化殼元素(degenerated shell element)25 3.4不同積分法則推導退化殼元素之剛性矩陣28 3.5摩擦處理30 3.6廣義 法之增量步驟的計算34 3.7三維曲度修正方程式37 3.8除荷之設定38 3.9靜態顯函(static explict)38 第四章 材料簡介與拉伸試驗43 4.1 不鏽鋼SUS304簡介43 4.2拉伸試驗46 4.2.1真應力-真應變46 4.2.2加工硬化指數(hardening exponet , n )47 4.3 材料拉伸試驗結果48 4.3.1塑性強度係數與加工硬化指數48 4.3.2不鏽鋼之參數49 第五章 板材成形實驗與數值分析52 5.1實驗設備與實驗模具52 5.2成形原理與實驗步驟53 5.3數值模擬分析56 5.3.1實體模型之建立56 5.3.2有線元素之網格分割與鋪設57 5.3.3製程模擬之邊界條件58 5.4數值模擬與實驗結果之比較59 5.4.1沖頭負荷之比較59 5.4.2工件主應力分佈之比較60 5.4.3工件等價應變分佈之比較61 5.4.4工件厚度變化之比較62 5.4.5橢圓杯引伸之成形歷程63 5.5橢圓杯引伸之成形極限分析64 5.5.1不同成形比下沿工件長軸厚度之數值分析與實驗結果之比較65 5.5.2不同成形比下沿工件短軸厚度之數值分析與實驗結果之比較66 5.5.3不同成形比下橢圓杯引伸成形之成品幾何外觀66 第六章 結論90 6.1結論90 6.2未來展望92 參考文獻94 作者簡介98

    1. Yamada, Y., Yoshimura, N. and Sakurai, T., “ Plastic Stress Strain Matrix and its Application for the Solution of Elastic-Plastic problems by the Finite Element Method,” International Journal of Mechanical Sciences, Vol. 10, pp. 343-354 (1968).
    2.Zienkiewicz, C., Valliappan, S. and King, I. P., “ Elasto-Plastic Solution of Engineering Problems, Initial-Stress, Finite Element Approach,” International Journal of Numerical Methods for Engineering, Vol. 1, pp. 75-100(1969).
    3.Lee, C. H. and Kobayashi, S., “ Elastoplastic Analysis of Plane Strain and Axisymmetric Flat Punch Indentation by the Finite Element Method,” International Journal of Mechanical Sciences, Vol. 12, pp. 349-370(1970).
    4.McMeeking, R. M. and Rice, J. R., “ Finite-Element Formulation for Problems of Large Elastic-Plastic Deformation,” International Journal of Solid Structure, Vol. 11, pp. 601-616(1975).
    5.Hayashi,Y. and Takagi, M., “ Control of Side Wall Curl in Draw-bending of High Strength Steel Sheets,” Proceeding of Advance Technology of plasticity, Vol. 1, pp. 735-740(1984).
    6.Makinouchi, A., “ Finite Element Modeling of Draw-Bending Process of Sheet Metal,” Proceeding of the NUMIFORM’86 Conference,Gothenburg, Vol. 25-29, August, pp. 327-332(1986).
    7.Makinouchi, A. and Kawka, M., “ Process simulation in sheet metal forming,” Journal of Materials Processing Technology, Vol.46, pp. 291-307 (1994).
    8.Kawka, M. and Makinouchi, A., “ Shell-element formulation in the static explicit FEM code for the simulation of sheet stamping,” Journal of Materials Processing Technology, Vol.50, pp. 105-115 (1995).
    9.Zaky, A. M., Nassr, A. B. and EL-Sebaie, M. G., “ Optimum blank shape of cylindrical cups in deep drawing of anisotropic sheet metals,” Journal of Materials Processing Technology, Vol.76, pp. 203-211(1998).
    10.Hah, Hoon, Kim, Se-Ho and Kim, Seung-Ho, “ Process Design For Multi-Stage Elliptic Cup Drawing with the Large Aspect Ratio,” European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona. pp. 11-14 September 2000.
    11.Kim, J. B., Yoon, J. W., Yang, D. Y. and Barlat, F., “ Investigation into wrinkling behavior in the elliptical cup deep drawing process by finite element analysis using bifurcation-theory,” Journal of Materials Processing Technology, Vol 111, pp. 170-174(2001).
    12.Irons, B. M. and Zienkiewicz, O. C., “ Analysis of Thick and Thin Shell Structures by Curved Finite Element,” International Journal for Numerical Methods in Engineering, Vol.2, No.3, pp. 419-451 (1970).
    13.Hughes, T. J. R. and Liu, W. K., “ Nonlinear Finite Element Analysis of Shells : Part I. Three-Dimensional Shells,” Computer Methods in Applied Mechanics and Engineering, Vol.26, No.3, pp. 331-362 (1981).
    14.Hughes, T. J. R., Cohen, M. and Haroun, M., “ Reduced and Selective Integration Techniques in the Finite Element Analysis of Plates,” Nuclear Engineering and Design, Vol.46, pp. 203-222 (1978).
    15.Makinouchi, A., Teodosiu, C. and Nakagawa, T., “ Advance in FEM Simulation and its Related Technologies in Sheet Metal Forming,” CIRPAnnals-Manufacturing Technology, Vol.47, No.2, pp. 641-649 (1998).
    16.Friz, D. M., “ Alfried Krupp und Berthold Beitz - der Erbe und sein Statthalter ,” Orell-F5ussli 1988, 國際標準書號: 3-280-01852-8.
    17.Bernsten, I.M., Peckner, D. and Hill R., McGraw., Handbook of Stainless Steels, New York﹐1977.
    18.ASTM Standard, Designation:E646-93, “ Standard Test Method for Tensile Strain-Hardening Exponents (n-values) of Metallic Sheet Materials ,” Vol.1402, pp. 558-564 (1996).
    19.Park, D. H., Kang, S. S. and Park, S. B., “ A Study on the improvement of formability for elliptical deep drawing processes,” Journal of Materials Processing Technology, Vol.113, pp. 662-665(2001).
    20.Kim, Se-Ho, Kim, Seung-Ho and Huh, Hoon, “ Design modification in a multi-stage with a large aspect ratio by an elasto-plastic finite element analysis,” Journal of Materials Processing Technology, Vol.113, pp. 766-773(2001).
    21.Lee, S. W., “ A study on the bi-directional springback of sheet metal stamping,” Journal of Materials Processing Technology, Vol.167, pp. 33-40(2005).
    22.游正晃編譯,“沖床與沖模”,科技圖書股份有限公司(1993).
    23.戴宜傑編著,“沖壓加工與沖模設計”,新陸出版社(1987).
    24.林守儀編譯,“金屬塑性加工理論”,全華科技圖書股份有限公司(1987).
    25.賴子雄、賴子邨、楊義雄共同編譯,“沖壓加工便覽”,機械技術出版社(1991).
    26.黃新春、陳昌順、王進猷共同編譯,“塑性加工學”,文京圖書股份有限公司(1989).
    27.蘇貴福、陳煌湶、林宏仁共同編譯,“沖壓成形難易指南”,全華科技圖書股份有限公司(1991).
    28.邱雲堯、陳佳萬、張安欣等共同編譯,“機械製造”, 文京圖書股份有限公司(1998).
    29.李永洲,“金屬板材U型彎曲彈回現象之分析”,國立台灣科技大學機研所碩士論文(1993).
    30.陳聰嘉,“金屬板材V型彎曲成形製程馬鞍現象之研究”,國立台灣科技大學機研所博士論文(2004).
    31.黃誌雄,“金屬板材橢圓孔凸緣成形製程之分析”,國立台灣科技大學機研所碩士論文(2006).

    QR CODE