簡易檢索 / 詳目顯示

研究生: Francisca Tania Deviani Wijaya
Francisca Tania Deviani Wijaya
論文名稱: 單原子之二維雙摻雜觸媒應用於陰離子交換膜燃料電池
2-Dimensional Dual-Doped Single Atomic Electrocatalyst for Anion-Exchange Membrane Fuel Cell
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 郭俞麟
Yu-Lin Kuo
黃信智
Hsin-Chih Huang
林律吟
Lu-Yin Lin
林昇佃
Shawn D. Lin
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 61
中文關鍵詞: 陰離子交換膜燃料電池氮磷共摻雜碳單原子活性位點氧還原反應電催化劑
外文關鍵詞: AEMFC, N-P co-doped carbon, Single-atomic active site, Oxygen reduction reaction, Electrocatalyst
相關次數: 點閱:254下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

長期以來,能源一直被認為是日常生活中最重要的必需品之一。由於我們嚴重依賴化石燃料來生產能源,隨著能源需求逐年增加,二氧化碳排放量也隨之增加。因此,我們必須轉而發展可更永續的能源,以減少二氧化碳排放。燃料電池為綠色可再生能源,受到科學家們的歡迎,但燃料電池的主要問題是氧氣還原反應之速率緩慢,目前大多採用鉑基觸媒,使成本大幅增加。在這項研究中,我們合成了一種二維多孔奈米片觸媒來幫助陰離子交換膜燃料電池中的氧氣還原反應,當中鐵單原子活性位點由氮磷共摻雜碳材料支撐。
利用三聚氰胺和雙氰胺作為氮摻雜的碳前驅體,並與二苯基膦酸以濕式合成法混合,經 1000°C 碳化下,形成具有足夠缺陷數量的多孔碳奈米片結構。XPS 證明了吡啶氮和石墨氮以及磷物種等存在,透過添加 4 wt% 的鐵前驅體,並在 800°C 的氮氣和氨氣下進行熱處理,即可得到最佳鐵單原子觸媒。單原子特性可藉由 XRD 中無任何峰出現、 XAS 中沒有 Fe-Fe 鍵以及 TEM 成像等得到證明。在鹼性條件下,MDP-4-Fe-800 樣品的 Eonset 為 0.97 V、E1/2 為 0.86 V、Jlimiting 為 5.5 mA/cm2、其電化學活性超過了商用 Pt/C。此外,在30,000次循環後、其穩定性良好、Jlimiting 僅下降 0.39 mA/cm2、Eonset 和 E1/2 均僅下降 30 mV。儘管 MDP-4-Fe-800 的 AEMFC 燃料電池結果尚未超過商業化的 Pt/C 、但它可以達到 244 mW/cm2 的最大功率密度。


Energy has long been considered one of the most important necessities in our daily lives. Because we rely heavily on fossil fuels to generate energy, CO2 emissions rise proportionally as energy demand rises year after year. As a result, we must shift to more sustainable energy production to reduce CO2 emissions. Hydrogen fuel cells are a type of green and renewable energy that has gained popularity among scientists. The main issue for the hydrogen fuel cell is the slow ORR rate, which currently employs Pt-based catalysts, increasing the cost significantly. Researchers are primarily attempting to create low-cost electrocatalysts to replace Pt. In this research, we have synthesized a 2D porous nanosheet electrocatalyst to aid ORR in AEMFC with Fe single atomic active sites being supported by an N-P co-doped carbon material.
Melamine and dicyandiamide were used as the N-doped carbon precursor, which was then mixed with diphenyl phosphinic acid in a wet synthesis method. The mixtures were then carbonized at the temperature of 1000°C to create the porous carbon nanosheet structure with an adequate number of defects, as proven by SEM, XRD, and Raman. The existence of pyridinic-N and graphitic-N, as well as P species, was proven by XPS. The best results were then used as carbon supports for the Fe single-atomic catalyst by adding 4 wt% of Fe precursor and heat treating them at 800°C in N2 and NH3 environments. The single-atomic property of the electrocatalyst could be proven by the non-existent peak in XRD, the lack of Fe-Fe bonding in XAS, as well as TEM imaging. The electrochemical activity of the material was shown by the MDP-4-Fe-800 sample with an Eonset of 0.97 V, an E1/2 of 0.86 V, and a Jlimiting of 5.5 mA/cm2 in an alkaline condition, which surpasses the commercial Pt/C in the same condition. It also has good stability after 30,000 cycles with only a 0.39 mA/cm2 decrease in Jlimiting and a 30 mV decrease of both Eonset and E1/2. Even though the AEMFC fuel cell result of MDP-4-Fe-800 has not surpassed that of commercialized Pt/C, it could reach 244 mW/cm2.

ABSTRACT I 中文摘要 III ACKNOWLEDGEMENTS IV TABLE OF CONTENTS V LIST OF FIGURES VII LIST OF TABLES X CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Hydrogen Fuel Cell 3 1.2.1 Types of Hydrogen Fuel Cells 5 1.2.2 Anion-Exchange Membrane Fuel Cell 6 1.2.3 Electrochemistry of Oxygen Reduction Reaction 7 1.3 Electrocatalyst for ORR 11 CHAPTER 2 LITERATURE REVIEW 13 2.1 Non-Precious Metal-based Electrocatalysts for ORR 13 2.1.1 Iron-based Single Atomic Catalysts for ORR 18 2.2 Metal-free Electrocatalytic Materials for ORR 21 2.2.1 Dual-doped N, P Catalysts for ORR 23 CHAPTER 3 EXPERIMENTAL DETAILS 25 3.1 Materials and Chemicals 25 3.2 Experimental Procedure 26 3.2.1 Synthesis of N, P-doped Carbon 26 3.2.2 Synthesis of Fe Single Atomic Catalyst 27 3.3 Characterization of Materials and Basic Principle of Instruments 28 3.3.1 X-Ray Diffraction 28 3.3.2 Scanning Electron Microscopy 29 3.3.3 Transmission Electron Microscopy 29 3.3.4 X-Ray Photoelectron Spectroscopy 30 3.3.5 X-Ray Absorption Spectroscopy 31 3.3.6 Brunauer-Emmett-Teller Analysis 32 3.4 Electrochemical Test Measurements 32 CHAPTER 4 RESULTS AND DISCUSSION 35 4.1 N, P-Doped Carbon 35 4.1.1 Different Heat Treatment Temperature 35 4.1.2 Different N-C Precursors 39 4.2 Fe Single Atomic Catalyst 44 4.2.1 Different Carbon Supports (MDP and DDP) 44 4.2.2 Different Weight Percentages of Fe Precursor 51 4.2.3 Stability and Single-Cell Test 54 CHAPTER 5 CONCLUSION 56 BIBLIOGRAPHY 58

[1] CO2 Emissions in 2022 – Analysis, IEA. (n.d.). https://www.iea.org/reports/co2-emissions-in-2022 (accessed July 4, 2023).
[2] BP plc., BP Statistical Review of World Energy 2019, BP plc, London, 2019. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf. (accessed March 10, 2021).
[3] BP plc., BP Statistical Review of World Energy 2021, BP plc, London, 2021. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf.
[4] BP plc., BP Statistical Review of World Energy 2022, BP plc, London, 2022. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf.
[5] S. Sabihuddin, A.E. Kiprakis, M. Mueller, A Numerical and Graphical Review of Energy Storage Technologies, Energies. 8 (2015) 172–216. https://doi.org/10.3390/en8010172.
[6] S. Sabihuddin, A Numerical and Graphical Review of Energy Storage and Energy Production Technologies, (2014). https://doi.org/10.6084/m9.figshare.1096289.v3.
[7] N. Ghasem, A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors, International Journal of Molecular Sciences. 23 (2022) 16064. https://doi.org/10.3390/ijms232416064.
[8] U. Bossel, B. Eliasson, Energy and the Hydrogen Economy, (n.d.).
[9] B.G. Pollet, I. Staffell, J.L. Shang, Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects, Electrochimica Acta. 84 (2012) 235–249. https://doi.org/10.1016/j.electacta.2012.03.172.
[10] M.A. Aminudin, S.K. Kamarudin, B.H. Lim, E.H. Majilan, M.S. Masdar, N. Shaari, An overview: Current progress on hydrogen fuel cell vehicles, International Journal of Hydrogen Energy. 48 (2023) 4371–4388. https://doi.org/10.1016/j.ijhydene.2022.10.156.
[11] Parts of a Fuel Cell, Energy.Gov. (n.d.). https://www.energy.gov/eere/fuelcells/parts-fuel-cell (accessed December 26, 2019).
[12] G. Das, J.-H. Choi, P.K.T. Nguyen, D.-J. Kim, Y.S. Yoon, Anion Exchange Membranes for Fuel Cell Application: A Review, Polymers (Basel). 14 (2022) 1197. https://doi.org/10.3390/polym14061197.
[13] G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, Journal of Membrane Science. 377 (2011) 1–35. https://doi.org/10.1016/j.memsci.2011.04.043.
[14] J.R. Varcoe, R.C.T. Slade, Prospects for Alkaline Anion-Exchange Membranes in Low Temperature Fuel Cells, Fuel Cells. 5 (2005) 187–200. https://doi.org/10.1002/fuce.200400045.
[15] B. Paul, J. Andrews, PEM unitised reversible/regenerative hydrogen fuel cell systems: State of the art and technical challenges, Renewable and Sustainable Energy Reviews. 79 (2017) 585–599. https://doi.org/10.1016/j.rser.2017.05.112.
[16] B. Sørensen, ed., Chapter 3 - Fuel Cells, in: Hydrogen and Fuel Cells (Second Edition), Academic Press, Boston, 2012: pp. 95–200. https://doi.org/10.1016/B978-0-12-387709-3.50003-6.
[17] B. Viswanathan, Fuel Cells, in: 2017: pp. 329–356. https://doi.org/10.1016/B978-0-444-56353-8.00014-9.
[18] A. Kirubakaran, S. Jain, R.K. Nema, A review on fuel cell technologies and power electronic interface, Renewable and Sustainable Energy Reviews. 13 (2009) 2430–2440.
[19] L. Giorgi, F. Lecesse, Fuel Cells: Technologies and Applications, TOFCJ. 6 (2013). https://doi.org/10.2174/1875932720130719001.
[20] H. Sotouchi, A. Hagiwara, Phosphoric Acid Fuel Cells, Energy Carriers and Conversion Systems with Emphasis on Hydrogen. 2 (2008) 333–340.
[21] M.P. Hogarth, G.A. Hards, Direct Methanol Fuel Cells, Platinum Metals Rev. 40 (1996) 150–159.
[22] G. Hoogers, ed., Fuel cell technology handbook, CRC Press, Boca Raton, Fla, 2003.
[23] K. Benmouiza, A. Cheknane, Analysis of proton exchange membrane fuel cells voltage drops for different operating parameters, International Journal of Hydrogen Energy. 43 (2018) 3512–3519. https://doi.org/10.1016/j.ijhydene.2017.06.082.
[24] S.C. Ramírez, R.R. Paz, S.C. Ramírez, R.R. Paz, Hydroxide Transport in Anion-Exchange Membranes for Alkaline Fuel Cells, in: New Trends in Ion Exchange Studies, IntechOpen, 2018. https://doi.org/10.5772/intechopen.77148.
[25] Md.M. Hossen, Md.S. Hasan, Md.R.I. Sardar, J. bin Haider, Mottakin, K. Tammeveski, P. Atanassov, State-of-the-art and developmental trends in platinum group metal-free cathode catalyst for anion exchange membrane fuel cell (AEMFC), Applied Catalysis B: Environmental. 325 (2023) 121733. https://doi.org/10.1016/j.apcatb.2022.121733.
[26] Q. He, E.J. Cairns, Review—Recent Progress in Electrocatalysts for Oxygen Reduction Suitable for Alkaline Anion Exchange Membrane Fuel Cells, J. Electrochem. Soc. 162 (2015) F1504. https://doi.org/10.1149/2.0551514jes.
[27] W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Earth-Abundant Nanomaterials for Oxygen Reduction, Angewandte Chemie International Edition. 55 (2016) 2650–2676. https://doi.org/10.1002/anie.201504830.
[28] Z. Li, Z. Zheng, L. Xu, X. Lu, A review of the applications of fuel cells in microgrids: opportunities and challenges, BMC Energy. 1 (2019) 8. https://doi.org/10.1186/s42500-019-0008-3.
[29] O.T. Holton, J.W. Stevenson, The Role of Platinum in Proton Exchange Membrane Fuel Cells, Platinum Metals Rev. 57 (2013) 259. https://doi.org/10.1595/147106713x671222.
[30] J.M. Jaksic, N.M. Ristic, N.V. Krstajic, M.M. Jaksic, Electrocatalysis for hydrogen electrode reactions in the light of fermi dynamics and structural bonding FACTORS—I. individual electrocatalytic properties of transition metals, International Journal of Hydrogen Energy. 23 (1998) 1121–1156. https://doi.org/10.1016/S0360-3199(98)00014-7.
[31] V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Nørskov, Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure, Angewandte Chemie International Edition. 45 (2006) 2897–2901. https://doi.org/10.1002/anie.200504386.
[32] Y. Yang, C.R. Peltier, R. Zeng, R. Schimmenti, Q. Li, X. Huang, Z. Yan, G. Potsi, R. Selhorst, X. Lu, W. Xu, M. Tader, A.V. Soudackov, H. Zhang, M. Krumov, E. Murray, P. Xu, J. Hitt, L. Xu, H.-Y. Ko, B.G. Ernst, C. Bundschu, A. Luo, D. Markovich, M. Hu, C. He, H. Wang, J. Fang, R.A.Jr. DiStasio, L.F. Kourkoutis, A. Singer, K.J.T. Noonan, L. Xiao, L. Zhuang, B.S. Pivovar, P. Zelenay, E. Herrero, J.M. Feliu, J. Suntivich, E.P. Giannelis, S. Hammes-Schiffer, T. Arias, M. Mavrikakis, T.E. Mallouk, J.D. Brock, D.A. Muller, F.J. DiSalvo, G.W. Coates, H.D. Abruña, Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies, Chem. Rev. 122 (2022) 6117–6321. https://doi.org/10.1021/acs.chemrev.1c00331.
[33] Y. Wang, G. Wang, G. Li, B. Huang, J. Pan, Q. Liu, J. Han, L. Xiao, J. Lu, L. Zhuang, Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect?, Energy Environ. Sci. 8 (2014) 177–181. https://doi.org/10.1039/C4EE02564D.
[34] Z. Wang, H. Zhou, J. Xue, X. Liu, S. Liu, X. Li, D. He, Ultrasonic-assisted hydrothermal synthesis of cobalt oxide/nitrogen-doped graphene oxide hybrid as oxygen reduction reaction catalyst for Al-air battery, Ultrasonics Sonochemistry. 72 (2021) 105457. https://doi.org/10.1016/j.ultsonch.2020.105457.
[35] X. Zhang, Q. Liu, S. Liu, E. Wang, Manganese-doped cobalt spinel oxide as bifunctional oxygen electrocatalyst toward high-stable rechargeable Zn-air battery, Electrochimica Acta. 437 (2023) 141477. https://doi.org/10.1016/j.electacta.2022.141477.
[36] Z. Han, W. Cai, S. Zhao, Y. Zhao, J. Bai, Q. Chen, Y. Wang, Iron carbide nanoparticles supported on an N-doped carbon porous framework as a bifunctional material for electrocatalytic oxygen reduction and supercapacitors, Nanoscale. 14 (2022) 18157–18166. https://doi.org/10.1039/D2NR05620H.
[37] B. Zhang, J. Chen, H. Guo, M. Le, H. Guo, Z. Li, L. Wang, Iron Carbide Nanoparticles Supported by Nitrogen-Doped Carbon Nanosheets for Oxygen Reduction, ACS Appl. Nano Mater. 4 (2021) 8360–8367. https://doi.org/10.1021/acsanm.1c01542.
[38] A. Radwan, H. Jin, B. Liu, Z. Chen, Q. Wu, X. Zhao, D. He, S. Mu, 3D-ZIF scaffold derived carbon encapsulated iron nitride as a synergistic catalyst for ORR and zinc-air battery cathodes, Carbon. 171 (2021) 368–375. https://doi.org/10.1016/j.carbon.2020.09.024.
[39] H. Xu, D. Cheng, D. Cao, X.C. Zeng, A universal principle for a rational design of single-atom electrocatalysts, Nat Catal. 1 (2018) 339–348. https://doi.org/10.1038/s41929-018-0063-z.
[40] J. Hu, W. Liu, C. Xin, J. Guo, X. Cheng, J. Wei, C. Hao, G. Zhang, Y. Shi, Carbon-based single atom catalysts for tailoring the ORR pathway: a concise review, J. Mater. Chem. A. 9 (2021) 24803–24829. https://doi.org/10.1039/D1TA06144E.
[41] X. Xie, L. Shang, X. Xiong, R. Shi, T. Zhang, Fe Single-Atom Catalysts on MOF-5 Derived Carbon for Efficient Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells, Advanced Energy Materials. 12 (2022) 2102688. https://doi.org/10.1002/aenm.202102688.
[42] M. Zhao, H. Liu, H. Zhang, W. Chen, H. Sun, Z. Wang, B. Zhang, L. Song, Y. Yang, C. Ma, Y. Han, W. Huang, A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn–air batteries, Energy Environ. Sci. 14 (2021) 6455–6463. https://doi.org/10.1039/D1EE01602D.
[43] A. Zhang, Y. Liang, H. Zhang, Z. Geng, J. Zeng, Doping regulation in transition metal compounds for electrocatalysis, Chem. Soc. Rev. 50 (2021) 9817–9844. https://doi.org/10.1039/D1CS00330E.
[44] F. Qin, P. Zuo, N. Li, S. Qu, W. Shen, 3D Flower-Like Carbon Spheres with Hierarchical Pore Structure: An Efficient Asphaltene-Based Metal-Free Catalyst for ORR, Advanced Materials Interfaces. n/a (n.d.) 2201157. https://doi.org/10.1002/admi.202201157.
[45] S. Jiang, Y. Sun, H. Dai, J. Hu, P. Ni, Y. Wang, Z. Li, Z. Li, Nitrogen and fluorine dual-doped mesoporous graphene: a high-performance metal-free ORR electrocatalyst with a super-low HO2− yield, Nanoscale. 7 (2015) 10584–10589. https://doi.org/10.1039/C5NR01793A.
[46] R. Gutru, Z. Turtayeva, F. Xu, G. Maranzana, R. Thimmappa, M. Mamlouk, A. Desforges, B. Vigolo, Recent progress in heteroatom doped carbon based electrocatalysts for oxygen reduction reaction in anion exchange membrane fuel cells, International Journal of Hydrogen Energy. 48 (2023) 3593–3631. https://doi.org/10.1016/j.ijhydene.2022.10.177.
[47] K. Yuan, D. Lützenkirchen-Hecht, L. Li, L. Shuai, Y. Li, R. Cao, M. Qiu, X. Zhuang, M.K.H. Leung, Y. Chen, U. Scherf, Boosting Oxygen Reduction of Single Iron Active Sites via Geometric and Electronic Engineering: Nitrogen and Phosphorus Dual Coordination, J. Am. Chem. Soc. 142 (2020) 2404–2412. https://doi.org/10.1021/jacs.9b11852.
[48] J. Zhu, M. Xiao, P. Song, J. Fu, Z. Jin, L. Ma, J. Ge, C. Liu, Z. Chen, W. Xing, Highly polarized carbon nano-architecture as robust metal-free catalyst for oxygen reduction in polymer electrolyte membrane fuel cells, Nano Energy. 49 (2018) 23–30. https://doi.org/10.1016/j.nanoen.2018.04.021.

無法下載圖示
全文公開日期 2024/08/28 (校外網路)

QR CODE