簡易檢索 / 詳目顯示

研究生: 劉上瑋
Shang-Wei Liu
論文名稱: 以三維數值分析探討軟弱夾層對潛盾隧道受震行為之影響
Studying the effects of weak interlayer on the seismic behavior of shield tunnel by 3D numerical analysis
指導教授: 陳堯中
Yao-Chung Chen
口試委員: 陳希舜
Xi-Shun Chen
陳韋志
Wei-Zhi Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 151
中文關鍵詞: 數值分析潛盾隧道剪力波速受震反應勁度比軟弱夾層
外文關鍵詞: numerical analysis, earthquake
相關次數: 點閱:181下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究軟弱夾層對潛盾隧道受震行為之影響。土層強弱以剪力波速表達,潛盾機開挖過程納入模擬,並考量土壤與結構互制作用,以勁度比定義不同剪力波速地層與隧道之勁度關係,探討潛盾隧道在不同剪力波速地層中之受震行為。是故,本文選用三維數值分析軟體,藉由建立假設案例的數值模型,並確認輸入的土壤模型參數、結構模型參數的適用性後,以不同地層剪力波速的土層做為控制因子,最後加入地震力,觀察隧道環片的軸力變化和彎矩變化,因此,本研究使用三種方案: 方案一(單一土層)、方案二(夾層為10m軟黏土,隧道完全位於軟弱夾層中)、方案三(夾層為4m軟黏土,土層厚度小於隧道直徑)進行分析。
    分析結果顯示:(1) 不同剪力波速地層會改變潛盾隧道之存在對土層及地表建物的影響程度。(2) 當隧道完全位於軟弱黏土夾層當中,其軸力與彎矩變化比例變化不大,觀測得知隧道的內力變化的影響與接觸的周圍土壤有較大的直接關係。 (3) 軟弱夾層厚度小於隧道時,勁度比對潛盾隧道受地震力作用的影響程度極大,且地層與隧道間勁度比越低,也就是地層相對於隧道越軟時,將會放大隧道受地震力作用的程度。


    In this paper, the influence of the seismic response of the submerged shield tunnel located in the weak interlayer is studied. The excavation process of the submerged shield machine is included in the simulation, the interaction between soil and structure is considered, and the change of the bending moment of the tunnel lining under soil layers with different shear wave velocities is studied. The effects of different shear wave velocity on the seismic behavior of submerged shield tunnels are investigated. In this paper, three-dimensional numerical analysis software is used. By establishing a numerical model of a hypothetical case, and after confirming the applicability of the input soil model parameters and structural model parameters, the soil layers of different shear wave velocities are used as control factors. Finally, seismic forces are added to observe the change of axial forces and bending moments of the tunnel lining. Therefore, this study will use three schemes: scheme 1 (single soil layer), scheme 2 (weak interlayer is 10m soft clay), scheme 3 (weak interlayer is 4m soft clay) for analysis.
    The analysis results show that: (1) The stratum with different shear wave velocities will change the influence degree of the existence of the submerged shield tunnel on the seismic response of the soil strata and surface structures. (2) When the tunnel is located in the soft clay interlayer, the change ratio of the axial force and the bending moment does not change much. It is observed that the change of the internal force of the tunnel is directly related to the surrounding soil in contact. (3) Foe scheme 3, the stiffness ratio has a great influence on the seismic force of the submerged shield tunnel. In practice, when designing the tunnel lining, it should be avoided to only increase the stiffness of the lining.

    摘要 II Abstract III 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 第1章 緒論 1 1.1 研究動機及目的 1 1.2 研究方法及內容 1 1.3 論文架構 2 第2章 文獻回顧 4 2.1 潛盾隧道 4 2.1.1 潛盾隧道工法 4 2.1.2 環片類型與型式 5 2.1.3 潛盾機輪進開挖進程 6 2.2 潛盾隧道受震分析 7 2.2.1 土壤-結構互制法 7 2.2.2 數值分析 11 2.3 開挖擾動影響 18 2.3.1 開挖擾動研究回顧 19 2.3.2 輪進不同階段之擾動 21 2.3.2.1 盾首土體擾動影響因素 21 2.3.2.2 盾殼土體擾動影響因素 24 2.3.2.3 盾尾土體擾動影響因素 25 2.4 土壤動態性質與模擬 26 2.4.1 動態下的土壤性質 26 2.4.2 等效線性法 27 2.4.3 完全非線性法 27 2.4.4 等效線性法與完全非線性法比較回顧 29 2.4.5 阻尼比較回顧 30 2.4.6 剪力波速影響 32 第3章 數值分析法 36 3.1 有限元素法PLAXIS 36 3.1.1 土壤硬化模式 37 3.1.2 土壤硬化小應變模式 39 3.2 等效線性法ProShake 45 3.2.1 ProShake運算理論 45 3.3 地震波濾波程式Dynamic Input Wizard 47 第4章 潛盾隧道靜態開挖數值模擬 49 4.1 工作規劃 49 4.2 三維分析模型建立 51 4.3 材料參數與假設 56 4.3.1 土體假設及參數 56 4.3.2 結構假設及參數 57 4.4 施工流程 58 4.5 靜態分析結果與討論 60 4.5.1環片軸力受力情形 60 4.5.2環片彎矩受力情形 66 第5章 潛盾隧道動態數值模擬 72 5.1動態土壤參數與假設 72 5.2 動態邊界條件 73 5.3 地震波與分析網格處理 74 5.4 數值模擬阻尼參數 77 5.5 動態分析結果與討論 79 5.5.1 潛盾隧道存在之影響 80 5.5.1.1 峰值加速度之變化 80 5.5.1.2 地表加速度傅立葉頻譜變化 86 5.5.1.3 地表加速度反應譜之變化 92 5.5.2 隧道受震內力變化與探討 99 5.5.2.1 隧道受震軸力變化歷時 99 5.5.2.2 受震引致軸力變化 105 5.5.2.3 隧道受震彎矩變化歷時 117 5.2.2.4 受震引致彎矩變化 122 5.5.2.5 勁度比對潛盾隧道受震之影響 135 5.5.2.6 環片受震數值解與理論解比較 137 第6章 結論與建議 139 6.1 結論 139 6.2 建議 140 參考文獻 142 附錄 委員意見回覆表 147

    1. 中華民國內政部營建署(2011)。建築物耐震設計規範及解說(94版)。詹氏出版。台北。
    2. 胡庭豪(2010)。捷運工程技術服務之回顧與展望。中興工程季刊。107 ,303-327。
    3. 陳正勳(2010)。岩石隧道受震行為及襯砌破壞機制之研究。[博士論文]。國立台灣大學。
    4. 陳伯興與余旭洲(2014)。潛盾隧道受鄰近工區近接施工影響評估及分析。捷運技術半年刊。48。 213-234.。
    5. 陳秉睿(2021)。以三維數值分析初步探討潛盾隧道在不同剪力波速地層中之受震行為。[碩士論文]。國立台灣科技大學。
    6. 翁孟嘉、陳錦清、蔡明欣、蔡冀樹勇(2005)。地震時潛盾隧道與既有建築物之互制行為。第11屆大地工程學術研究討論會。
    7. 臺北市政府捷運工程局(2019)。土木工程設計準則 (2019 年1 月版)。
    8. Anagnostou, G., Linard, C., and Ramoni, M. (2009). “About the Advancing Face – Spatial Effects in Tunnel Engineering.” Rocksoil’s 30th Anniversary Conference.The Evolution of Design and Construction Approaches in the Field of Underground Projects.
    9. Babendererde, T., and Elsner, P. (2014). “Keeping the Face Support in SoftGround TBM Tunnelling.” Geotechnical Aspects of UndergroundConstruction in Soft Ground - Proceedings of the 8th Int. Symposium onGeotechnical Aspects of Underground Construction in Soft Ground, TC204 ISSMGE - IS-SEOUL 531–537.
    10. Brinkgreve, RBJ. Kappert, MH. and Bonnier, P.G. (2007). “Hysteretic damping. in asmall-strain stiffness model” Numerical Models in Geomechanics - NUMOG X-Pande & Pietruszezak (eds).
    11. Cai, M., and Kaiser, P. K. (2005). “Assessment of Excavation Damaged ZoneUsing a Micromechanics Model.” Tunnelling and Underground SpaceTechnology, 20(4), 301–310.
    12. Dobry, R. (1976). “Simplified Procedures for Estimating the Fundamental Period of a Soil Profile.” Bulletin of the Seismological Society of America, vol. 66 (4).1293–1321.
    13. Do, N., Dias, D., Oreste, P., and Maigre. (2015). “Behaviour of Segmental Tunnel Linings under Seismic Loads Studied with the Hyperstatic Reaction Method.” Soil Dynamics and Earthquake Engineering, vol. 79, 108–117.
    14. Fabozzi, S., and Bilotta, E. (2016).. “Behaviour of a Segmental Tunnel Lining Under. Seismic Actions.” Procedia Engineering, vol. 158, 230–235.
    15. Ghaboussi, J., and Gioda, G. (1977).. “On the Time-Dependent Effects inAdvancing Tunnels.” International Journal for Numerical & AnalyticalMethods in Geomechanics, vol. 1, 249–269.
    16. Hardin, B. O. and Black, W. L. (1969). “Closure to vibration modulus of normally consolidated clays”. Proc. ASCE: Journal of the Soil Mechanics and Foundations Division, 95(SM6) 1531–1537.
    17. Hardin, B.O. and Druevich, V. P. (1972). “Shear modulus and damping in soils:Measurement and parameter effects”, Journal of Soil Mechanics and Foundations.Division, ASCE,vol 98, 603-624.
    18. Hashash, Y. M. A., Hook, J. J., Schmidt, B., and Yao, J. I.C. (2001) “Seismic Design and Analysis of Underground. Structures.” Tunnelling and Underground Space Technology,vol. 16, 247–293.
    19. Von, S, P..(1980) “Properties of Soil and Rock (in German)” In Grund bautaschenbuch. Part4, Edition 4, Ernst & Sohn,Berlin,.
    20. Liu, Y., Hou, S., Li, C., Zhou, H., Jin, F., Qin, P., and Yang, Q. (2020). “Study on Support Timein Double-Shield TBM Tunnel Based on Self-Compacting ConcreteBackfilling Material.” Tunnelling and Underground Space Technology, vol.96.
    21. Lysmer, J, and Kuhlemeyer, R. L. (1969). “Finite Dynamic Model for Infinite Media.” Journal of Engineering Mechanics Division, 859-878.
    22. Martino, J.B., and Chandler, N.A. (2004). “Excavation-Induced Damage Studiesat the Underground Research Laboratory.” International Journal of RockMechanics and Mining Sciences, vol. 41(8) SPEC.ISS., 1413–1426.
    23. Mazaheri, A., Seifabad, C. M., Mahdavi, S., and Dehghani, B. (2021).“Seismic Sensitivity Analysis of Rigidity and Thickness of Tunnel Lining by Using Ground_Structure Interaction Method Case Study: Roudbar Lorestan Dam.” Geotechnical and Geological Engineering, vol. 39(2).1557–1582.
    24. Pan, H. K., Wang, G.B., and Wang, Y.X. (2005). “Preliminary Analysis of the Influence of Longitudinal Non-Uniform Distribution of Soil Parameters on the Seismic Response of a Shield Tunnel” China Earthquake Engineering Journal, vol. 37 (3).
    25. Peck, R.B., Hendron, A.J., and Mohraz, B. (1972). “State of the Art of Soft-Ground Tunneling.” International Proceedings of the North AmericanRapid Excavation and Tunneling Conference, vol. 1, 259–286.
    26. PLAXIS. (2020). “PLAXIS 3D Material Models CONNECT Edition V20.04.
    27. Power, M.S., Rosidi, D., and Kaneshiro, J. (1996). “Vol. III Strawman: screening, evaluation, and retrofit design of tunnels.” Report Draft. National Center for Earthquake Engineering Research.
    28. Ramoni, M., and Anagnostou, G.(2006). “On the Feasibility of TBM Drives in Squeezing Ground.” Tunnelling and Underground Space Technology, vol. 21, no. 3–4, 262.
    29. Ramoni, M., and Anagnostou, G. (2007).. “The Effect of Advance Rate on ShieldLoading in Squeezing Ground.” Proceedings of the 33rd ITA-AITES WorldTunnel Congress - Underground Space - The 4th Dimension ofMetropolises, vol. 1, 673–677.
    30. Schwartz, C.W., and Einstein, H.H. (1980). Improved Design of Tunnel Supports:Volume 1 - Simplified Analysis for Ground-Structure Interaction inTunneling.DOT-TSC-UMTA-80-27-I,United States. Urban MassTransportation Administration.
    31. Sato, T., Kikuchi, T., and Sugihara, K. (2000). “In-Situ Experiments on anExcavation Disturbed Zone Induced by Mechanical Excavation in NeogeneSedimentary Rock at Tono Mine, Central Japan.” Engineering Geology,vol. 56, no. 1–2, 97–108.
    32. Salvatore, M., and Lillis, A. de. (2019). “Predicted and Observed SettlementsInduced by the Mechanized Tunnel Excavation of Metro Line C near S.Giovanni Station in Rome.” Tunnelling and Underground SpaceTechnology, vol. 86, 236–246.
    33. Shahrour, I., Khoshnoudian, F, and Sadek, M., and Mroueh,H. (2010). “Elastoplastic Analysis of the Seismic Response of Tunnels in SoftSoils.” Tunnelling and Underground Space Technology, vol. 25(4), 478–482.
    34. Sliteen, I., Mroueh, H., and Sadek, M. (2011). “Three-Dimensional Modelingof the Behavior of Shallow Tunnel under Seismic Loading.” 20eme Congres Francais de Mechanique.
    35. Santos, J.A. and Gomes, C. A. (2000). “Shear modulus of soils under cyclic loading at small and medium strain level.” 12'h World Conference on Earthquake Engineering, paper no. 0530, Auckland, New Zealand.
    36. Stefania, F. and Emilio, B. (2016). “Behaviour of a segmental tunnel lining under seismic actions. ” VI italian conference of researchers in geotechnical engineering - Geotechnical Engineering in Multidisciplinary Research: from Microscale to Regional Scale.
    37. Von, S. P. (1980). “Properties of Soil and Rock (in German)” In Grund bautaschenbuch. Part4, Edition 4, Ernst & Sohn,Berlin,.
    38. Vonk, M. (2020). Grouting the tail void: Analysis of the tail void grouting process at the North/South line. M.S., Delft University of Technology, Delft.
    39. Vucetic, M., and Dobry, R. (1991). “Effects of Soil Plasticity on Cyclic Response.” Journal of Geotechnical Engineering, vol. 117(1), 89–107.
    40. Wang,J.N. (1993).Seismic Design of Tunnel-A simple State-of-the-Art DesignApproach. Parsons Brinckerhoff Quade & Douglas Inc.
    41. Wang,J.N.,and Munfakh, G.A. (2001). “Seismic Design of Tunnels.” Transactionson the Built Environment, vol. 57, 589–598.
    42. Wang, Z, Ma, Z and Dang, F. (2013). “Seismic Response Analysis of Soil Layer Using Equivalent Linear or Nonlinear Method.” Journal of Xian University of Technology, vol. 29(4), 421–427.
    43. Xu, R., and Fatahi, B. (2015). “Three Dimensional Numerical Analysis of Seismic Soil-Structure Interaction Considering Soil Plasticity.” 6th International Co Nference on Earthquake Geotechnical Engineering.
    44. Yang, Y, Yu, H, and Yuan, Y. (2019). “Comparative Study onSeveral Soil Ground Simulation Schemes in Seismic Analysis ofUnderground Structures.” Journal of Disaster Prevention and MitigationEngineering, vol. 399(2), 244–257.
    45. Yu, H, Zhang, Z, Chen, J, Bobet, A, Zhao, M, and Yuah, Y. (2018). “Analytical Solution for Longitudinal Seismic Response of Tunnel Liners with Sharp Stiffness Transition.” Tunnelling and Underground Space Technology, vol. 77, 103–114.

    QR CODE