簡易檢索 / 詳目顯示

研究生: 黃詩喬
Shi-Qiao Huang
論文名稱: 聚醚-聚乳酸雙團聯共聚物水溶液中自組裝及電解質效應
Self-assembly of Polyether-Poly(L-lactic acid) Diblock Copolymers in Aqueous Solutions and Effect of Electrolytes
指導教授: 胡孝光
Shiaw-Guang Hu
口試委員: 許貫中
Kung-Chung Hsu
高震宇
Chen-Yu Kao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 82
中文關鍵詞: 電解質微胞自組裝團聯共聚物
外文關鍵詞: electrolyte, micelle, self-assembly, block copolymer
相關次數: 點閱:286下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用聚乙二醇單甲醚與左旋-丙交酯以開環聚合方法合成聚乙二醇單甲醚-聚乳酸(mPEG-PLLA)雙團聯共聚物。將其中親水段mPEG聚合度固定為113,並合成兩種PLLA疏水段(聚合度為308及96)的共聚物。首先利用凝膠滲透層析儀(GPC)和質子核磁共振儀(1H-NMR)對共聚物進行分子量與特徵結構的分析。
    共聚物加入去離子水和電解質(NaCl或NaI)水溶液中,並改變電解質濃度及溶液的環境溫度,使用螢光探針法量測臨界微胞濃度,利用臨界微胞濃度計算其微胞化熱力學參數。接著以動態光散射儀(DLS)、穿透式電子顯微鏡(TEM)測量微胞粒徑。探討溫度、電解質濃度、電解質物種及高分子疏水鏈段聚合度對臨界微胞濃度、微胞化熱力學性質及微胞粒徑之影響。
    實驗發現臨界微胞濃度隨著溫度上升而增加;隨著疏水鏈段聚合度愈大而下降。當電解質濃度增加時,臨界微胞濃度下降,其中最特別的是,在低濃度(0~ 0.005 M)的NaI水溶液中,臨界微胞濃度已有較大量降低,至0.1~ 0.5 M,下降則較不明顯。利用salting係數(ks)來比較不同共聚物在不同的電解質溶液中salting效果,得知ks隨著溫度上升而增加;共聚物的疏水鏈段聚合度減小,salting係數會增加,鹽析(salting out)效果愈明顯。共聚物在NaI溶液測得ks較大,對臨界微胞濃度有明顯影響。
    微胞化熱力學參數的計算結果得知,隨著電解質濃度上升,微胞化自由能(負值)之絕對值及微胞化熵(正值)增加,而微胞化焓(負值)之絕對值會減少。微胞化自由能為負值,表示共聚物在水溶液中的微胞化為自發性過程,且是由微胞化熵所主導。共聚物中PLLA鏈段聚合度愈大,微胞化自由能及微胞化焓之絕對值隨之愈大。且微胞化自由能和熵受到碘化鈉的影響較氯化鈉明顯;△Hmic值在NaCl溶液中的變化較明顯。
    DLS測得微胞平均粒徑隨電解質濃度上升;電解質濃度較高時,微胞產生聚集。由於TEM測量經乾燥脫水而收縮的微胞,得到小於DLS測得微胞粒徑。接著分析微胞標度關係後,得知共聚物在純水中的標度指數(a)為0.23,介於0.16 ≤ a ≤ 0.67的極限範圍;標度指數隨著NaCl濃度上升而增加,表示共聚物鏈段在溶液中傾向於crew-cut。


    This study is methoxypoly(ethylene glycol)-poly(L-lactide) (mPEG-PLLA) diblock copolymers were synthesized by ring-opening polymerization of L -lactide in the presence of mPEG. Copolymers with fixed mPEG length (degree of polymerization= 113) and various PLLA segment lengths (degree of polymerization= 308 and 96). Above all, the copolymers were characterized by using gel permeation chromatography (GPC) and 1H-NMR.
    We use fluorescent probe to determine the critical micelle concentration (CMC) of diblock copolymer solutions with various concentrations of sodium chloride or sodium iodide at 25 to 45℃, and calculate subsequently thermodynamic parameters of micellization. Also, the micelle size is measured with dynamic light scattering (DLS) and transmission electron microscopy (TEM). We research the effects of degree of polymerization, electrolyte species and concentrations on the critical micelle concentration, thermodynamic properties of micellization and the particle size of micelles.
    Experimental results show that critical micelle concentration increase with rising temperature, and decrease with increasing the degree of polymerization of hydrophobic block chain. The CMC value is lower with the higher concentration of electrolyte solution. It should not be neglected that various CMC are dramatically in the range from 0 to 0.005 M NaI solutions, and CMC tend to be less significant in the range from 0.1 to 0.5 M NaI solutions.
    The salting coefficient (ks) is used to signify the effect of salting in solutions of various electrolytes and diblock copolymers. It is indicated that the salting out effect is pronounced as the salting coefficient increases with rising temperature, decreasing the degree of polymerization of hydrophobic block in copolymer. The greater value of salting coefficient on NaI solution means the electrolyte effect on CMC is more pronounced.
    Calculated thermodynamic parameters of micellization show that the absolute values of Gibbs energy of micellization (△Gmic, negative value), entropy of micellization (△Smic, positive value) increase but enthalpy of micellization (△Hmic, negative value) decreases with electrolyte concentration. The negative Gibbs energy indicates that micellization process is spontaneous and the micellization is driven by entropy. There are absolute values of △Gmic and △Hmic increasing with increasing the degree of polymerization of PLLA chain. Moreover, △Gmic and △Smic are affected more significantly by sodium iodide than sodium chloride. △Hmic is affected in the opposite way.
    DLS experiment reveals the mean size of micelle increases with increasing the electrolyte concentration. The micelle size determined by TEM is smaller than by DLS due to dehydration and shrinkage during drying. The index (a) of scaling in pure water is 0.23 by analyzing scaling relation of micelle size against hydrophobic segment length, which is in the limiting range of 0.16 to 0.67. The effect of NaCl concentration on the micelle size makes the index of scaling increase, indicating the chain of polymer in electrolyte solution tends to be the crew-cut.

    中文摘要I 英文摘要 III 誌謝V 目錄VI 圖表索引IX 一、前言 1 二、實驗方法8 2.1合成mPEG-PLLA雙團聯共聚物8 2.2凝膠滲透層析儀分析9 2.3質子核磁共振光譜分析10 2.4測量水溶液中臨界微胞濃度10 2.4.1配製待測臨界微胞濃度之共聚物溶液10 2.4.2螢光光譜測量臨界微胞濃度11 2.5測量水溶液中微胞粒徑11 2.5.1配製待測微胞粒徑之共聚物溶液11 2.5.2動態光散射測量微胞粒徑12 2.5.3穿透式電子顯微鏡測量微胞粒徑13 三、結果與討論14 3.1 mPEG-PLLA雙團聯共聚物之聚合反應14 3.2 mPEG-PLLA雙團聯共聚物之組成分析15 3.2.1凝膠滲透層析儀之分析15 3.2.2質子核磁共振光譜之分析16 3.3 mPEG-PLLA雙團聯共聚物之臨界微胞濃度17 3.3.1臨界微胞濃度之探討17 3.3.2臨界微胞濃度之分析18 3.3.3高分子效應19 3.3.4電解質對臨界微胞濃度之影響20 3.3.5電解質物種效應21 3.3.6電解質效應分析I22 3.3.7電解質效應分析 II27 3.4 mPEG-PLLA雙團聯共聚物之微胞熱力學性質29 3.4.1微胞熱力學性質之探討29 3.4.2微胞熱力學性質之分析31 3.4.3電解質對微胞化熱力學性質之影響32 3.4.4高分子效應33 3.4.5電解質物種效應33 3.5 mPEG-PLLA雙團聯共聚物之微胞粒徑35 3.5.1微胞粒徑之分析35 3.5.2 微胞半徑與微胞疏水鏈段聚合度的標度關係38 四、結論40 五、參考文獻42 附錄一 符號對照表79 附錄二 salting係數與溫度81 附錄三 pyrene在微胞相的分佈82

    1.Yang L, Zhao Z, Wei J, El Ghzaoui A, Li S, Micelles Formed by Self-assembling of Polylactide/Poly(ethylene glycol) Block Copolymers in Aqueous Solutions. Journal of Colloid and Interface Science 314, 470-7 (2007).
    2.Lee W-C, Li Y-C, Chu IM, Amphiphilic Poly(D,L-lactic acid)/Poly(ethylene glycol)/Poly(D,L-lactic acid) Nanogels for Controlled Release of Hydrophobic Drugs. Macromolecular Bioscience 6, 846-54 (2006).
    3.Vila A, Sanchez A, Pérez C, Alonso MJ, PLA‐PEG Nanospheres: New Carriers for Transmucosal Delivery of Proteins and Plasmid DNA. Polymers for Advanced Technologies 13, 851-8 (2002).
    4.Adams ML, Lavasanifar A, Kwon GS, Amphiphilic Block Copolymers for Drug Delivery. Journal of pharmaceutical sciences 92, 1343-55 (2003).
    5.Riley T, Stolnik S, Heald CR, et al., Physicochemical Evaluation of Nanoparticles Assembled from Poly(lactic acid)−Poly(ethylene glycol) (PLA−PEG) Block Copolymers as Drug Delivery Vehicles. Langmuir 17, 3168-74 (2001).
    6.Hagan S, Coombes A, Garnett M, et al., Polylactide-poly (ethylene glycol) Copolymers as Drug Delivery Systems. 1. Characterization of water dispersible micelle-forming systems. Langmuir 12, 2153-61 (1996).
    7.Rösler A, Vandermeulen GWM, Klok H-A, Advanced Drug Delivery Devices via Self-assembly of Amphiphilic Block Copolymers. Advanced Drug Delivery Reviews 53, 95-108 (2001).
    8.Li S, Vert M, Synthesis, Characterization, and Stereocomplex-Induced Gelation of Block Copolymers Prepared by Ring-opening Polymerization of L (D)-lactide in the presence of Poly (ethylene glycol). Macromolecules 36, 8008-14 (2003).
    9.Rosen M. Surfactants and Iinterfacial Phenomena, Hoboken. In.: John Wiley & Sons, Inc (2004).
    10.Anderson JL, Pino V, Hagberg EC, Sheares VV, Armstrong DW, Surfactant Solvation Effects and Micelle Formation in Ionic Liquids. Chemical Communications, 2444-5 (2003).
    11.Inoue T, Ebina H, Dong B, Zheng L, Electrical Conductivity Study on Micelle Formation of Long-chain Imidazolium Ionic Liquids in Aqueous Solution. Journal of Colloid and Interface Science 314, 236-41 (2007).
    12.Schott H, Solubilization of a Water-Insoluble Dye as a Method for Determining Micellar Molecular Weights. The Journal of Physical Chemistry 70, 2966-73 (1966).
    13.Li X, Ji J, Wang X, Wang Y, Shen J, Stability and Drug Loading of Spontaneous Vesicles of Comb-Like PEG Derivates. Macromolecular Rapid Communications 28, 660-5 (2007).
    14.Kabanov AV, Nazarova IR, Astafieva IV, et al., Micelle Formation and Solubilization of Fluorescent Probes in Poly(oxyethylene-b-oxypropylene -b-oxyethylene) Solutions. Macromolecules 28, 2303-14 (1995).
    15.Zhao CL, Winnik MA, Riess G, Croucher MD, Fluorescence Probe Techniques Used to Study Micelle Formation in Water-soluble Block Copolymers. Langmuir 6, 514-6 (1990).
    16.Wilhelm M, Zhao CL, Wang Y, et al., Poly (styrene-ethylene oxide) Block Copolymer Micelle Formation in Water: a Fluorescence Probe Study. Macromolecules 24, 1033-40 (1991).
    17.Gao Z, Eisenberg A, a Model of Micellization for Block Copolymers in Solutions. Macromolecules 26, 7353-60 (1993).
    18.Kalyanasundaram K, Thomas J, Environmental Effects on Vibronic Band Intensities in Pyrene Monomer Fluorescence and their Application in Studies of Micellar Systems. Journal of the American Chemical Society 99, 2039-44 (1977).
    19.Moghaddam SZ, Thormann E, Hofmeister Effect of Salt Mixtures on Thermo-responsive Poly (propylene oxide). Physical Chemistry Chemical Physics 17, 6359-66 (2015).
    20.Dai Z, Piao L, Zhang X, Deng M, Chen X, Jing X, Probing the Micellization of Diblock and Triblock Copolymers of Poly(l-lactide) and Poly(ethylene glycol) in Aqueous and NaCl Salt Solutions. Colloid and Polymer Science 282, 343-50 (2004).
    21.Astafieva I, Zhong XF, Eisenberg A, Critical Micellization Phenomena in Block Polyelectrolyte Solutions. Macromolecules 26, 7339-52 (1993).
    22.Astafieva I, Khougaz K, Eisenberg A, Micellization in Block Polyelectrolyte Solutions. 2. Fluorescence Study of the Critical Micelle Concentration as a Function of Soluble Block Length and Salt Concentration. Macromolecules 28, 7127-34 (1995).
    23.Mata J, Majhi P, Guo C, Liu H, Bahadur P, Concentration, Temperature, and Salt-induced Micellization of a Triblock Copolymer Pluronic L64 in Aqueous Media. Journal of Colloid and Interface Science 292, 548-56 (2005).
    24.Alexandridis P, Holzwarth JF, Differential Scanning Calorimetry Investigation of the Effect of Salts on Aqueous Solution Properties of an Amphiphilic Block Copolymer (Poloxamer). Langmuir 13, 6074-82 (1997).
    25.Aswal V, Kohlbrecher J, Entropy-induced Micellization of Block Copolymer in Aqueous Solution in Presence of Selective Additives. Chemical physics letters 425, 118-22 (2006).
    26.Carale TR, Pham QT, Blankschtein D, Salt Effects on Intramicellar Interactions and Micellization of Nonionic Surfactants in Aqueous Solutions. Langmuir 10, 109-21 (1994).
    27.Su Y-L, Wei X-F, Liu H-Z, Effect of Sodium Chloride on Association Behavior of Poly (ethylene oxide)–Poly (propylene oxide)–Poly (ethylene oxide) Block Copolymer in Aqueous Solutions. Journal of Colloid and Interface Science 264, 526-31 (2003).
    28.Pandit N, Trygstad T, Croy S, Bohorquez M, Koch C, Effect of Salts on the Micellization, Clouding, and Solubilization Behavior of Pluronic F127 Solutions. Journal of Colloid and Interface Science 222, 213-20 (2000).
    29.Hu Y, Jiang X, Ding Y, et al., Preparation and Drug Release Behaviors of Nimodipine-Loaded Poly (caprolactone)–Poly (ethylene oxide)–Polylactide Amphiphilic Copolymer Nanoparticles. Biomaterials 24, 2395-404 (2003).
    30.Denkova A, Mendes E, Coppens M-O, Effects of Salts and Ethanol on the Population and Morphology of Triblock Copolymer Micelles in Solution. The Journal of Physical Chemistry B 112, 793-801 (2008).
    31.Zhang L, Eisenberg A, Morphogenic Effect of Added Ions on Crew-cut Aggregates of Polystyrene-b-Poly (acrylic acid) Block Copolymers in Solutions. Macromolecules 29, 8805-15 (1996)
    32.Adams DJ, Butler MF, Weaver AC, Effect of Block Length, Polydispersity, and Salt Concentration on PEO-PDEAMA Block Copolymer Structures in Dilute Solution. Langmuir 22, 4534-40 (2006).
    33.Beaudoin E, Gourier C, Hiorns RC, François J, Structure and Properties of Hydrophobically End-capped Poly (ethylene oxide) Solutions in the Presence of Monovalent and Divalent Cations. Journal of Colloid and Interface Science 251, 398-408 (2002).
    34.De Gennes P, in Solid State Physics, Suppl. 14, Academic Press, New York (1978).
    35.Halperin A, Polymeric Micelles: a Star Model. Macromolecules 20, 2943-6 (1987).
    36.Dong DC, Winnik MA, The Py Scale of Solvent Polarities. Canadian Journal of Chemistry 62, 2560-5 (1984).
    37.Jongpaiboonkit L, Zhou Z, Ni X, Wang Y-Z, Li J, Self-association And Micelle Formation of Biodegradable Poly (ethylene glycol)-Poly (L-lactic acid) Amphiphilic Di-block Co-polymers. Journal of Biomaterials Science, Polymer Edition 17, 747-63 (2006).
    38.Masterton WL, Lee TP, Salting Coefficients from Scaled Particle Theory. The Journal of Physical Chemistry 74, 1776-82 (1970).
    39.Debye P, Mcaulay J, Das elektrische Feld der Ionen und die Neutralsalzwirkung. Physik. Z 26, 22-9 (1925).
    40.Conway BE, Desnoyers JE, Smith A, On the Hydration of Simple Ions and Polyions. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 256, 389-437 (1964) .
    41.Mcdevit W, Long F, The Activity Coefficient of Benzene in Aqueous Salt Solutions. Journal of the American Chemical Society 74, 1773-7 (1952).
    42.Bockris JM, Bowler-Reed J, Kitchener J, The Salting-in Effect. Trans. Faraday Soc. 47, 184-92 (1951).
    43.Collins KD, Charge Density-dependent Strength of Hydration and Biological Structure. Biophysical Journal 72, 65 (1997).
    44.Joshi SC, Sol-Gel Behavior of Hydroxypropyl Methylcellulose (HPMC) in Ionic Media Including Drug Release. Materials 4, 1861-905 (2011).
    45.Lund M, Vrbka L, Jungwirth P, Specific Ion Binding to Nonpolar Surface Patches of Proteins. Journal of the American Chemical Society 130, 11582-3 (2008).
    46.Zangi R, Hagen M, Berne BJ, Effect of Ions on the Hydrophobic Interaction between Two Plates. Journal of the American Chemical Society 129, 4678-86 (2007).
    47.Baldwin RL, How Hofmeister Ion Interactions Affect Protein Stability. Biophysical Journal 71, 2056 (1996).
    48.Lee H-G, Chemical Thermodynamics for Metals and Materials, Imperial College Press London, Ch. 5 (1999).
    49.Malmberg C, Maryott A, Dielectric Constant of Water from 0 to 100 ℃. Journal of research of the National Bureau of Standards 56, 1-8 (1956).
    50.Chu B, Zhou Z, in Nonionic Surfactants, Vol. 60, Marcel Dekker, New York, USA (1987).
    51.Hall D, in Nonionic Surfactants: Physical Chemistry, (ed. Schick, MJ) Marcel Dekker, New York, USA, Ch. 5 (1987).
    52.Holtzer A, Holtzer MF, Use of the van't Hoff Relation in Determination of the Enthalpy of Micelle Formation. The Journal of Physical Chemistry 78, 1442-3 (1974).
    53.Attwood D, Florence AT, Surfactant Systems: their Chemistry, Pharmacy, and Biology. Chapman and Hall, Ch. 3 (1983).
    54.Van Oss CJ, Long‐range and Short‐range Mechanisms of Hydrophobic Attraction and Hydrophilic Repulsion in Specific and Aspecific Interactions. Journal of Molecular Recognition 16, 177-90 (2003).
    55.Pilcher G, Jones M, Espada L, Skinner H, Enthalpy of Micellization I. Sodium N-dodecylsulphate. The Journal of Chemical Thermodynamics 1, 381-92 (1969).
    56.Price C, Kendall K, Stubbersfield R, Wright B, Thermodynamics of Micellization of a Polystyrene-b-poly (ethylene/propylene) Block Copolymer in N-decane. Polymer communications 24, 326-8 (1983).
    57.Mukherjee K, Moulik S, Mukherjee D, Thermodynamics of Micellization of Aerosol OT in Polar and Nonpolar Solvents. A Calorimetric Study. Langmuir 9, 1727-30 (1993).
    58.Hiemenz PC, Principles of Colloid and Surface Chemistry, Second Edition., Marcel Dekker, Ch. 12 (1986).
    59.Israelachvili JN, Intermolecular and Surface Forces: Revised Third Edition, Academic Press, Ch. 14 ( 2011).

    無法下載圖示
    全文公開日期 2025/07/28 (校外網路)
    全文公開日期 2025/07/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE