簡易檢索 / 詳目顯示

研究生: 張博源
Po-Yuan Chang
論文名稱: 合成與表徵複合的奈米纖維素細絲
Synthesis and Characterization of Composite Cellulose Nanofibril Filaments
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 今榮東洋子
Toyoko Imae
氏原真樹
Masaki Ujihara
周宏隆
Hong-Long Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 43
中文關鍵詞: 纖維素奈米纖維原黃素濕式紡絲原黃素-纖維素奈米纖維細絲紡織
外文關鍵詞: cellulose nanofiber, proflavine, wet spinning, proflavine - cellulose nanofiber filaments, textile
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本研究中,成功製造出複合的纖維素細絲去取代石油產品的使用。纖維素 奈米纖維的製備是透過 TEMPO 氧化法,最終的產物被稱作 TOCNF。再者,經 由醯胺化反應在 TOCNF 中添加稱作 Proflavine 的螢光染劑,獨特的複合線材就 可以被成功製備。
TOCNF 中的羧基含量由導電度滴定法得出。通過傅里葉變換紅外吸收光譜 檢查確定了醯胺化反應。用普通模式及螢光模式下的光學影像去量測複合細絲的 直經及螢光性質。經由掃描式電子顯微鏡及能量色散 X 射線譜的元素分析分別 可以確認細絲的表面跟細絲的元素分析。透過量測 TOCNF@dye 的界達電位可以 推敲出其電雙層外表面的電荷分佈。除此之外,複合細絲的水接觸角、在水中的 穩定性及水膨脹係數也被量測。結果顯示複合細絲具有疏水性且在水中也很穩定。 含不同染劑量的複合細絲也做了拉伸測試。結果包含楊氏係數、最大應力及最大 應變,並得出利用[-NH2]/[-COOH] 0.05 所做的細絲有最強的機械強度。另外,不 同射出速率所做成的細絲也進行了拉伸測試,顯示出相比其他,射出速率為 15 ml/h 的細絲有較佳的機械強度。最後,也測量了複合細絲的螢光光譜。雖然螢光 強度並不和染劑濃度成正比,但也顯示出了複合細絲的螢光特性。


In this study, the composite cellulose filaments were made to replace the usage of petroleum products. Cellulose nanofibers were prepared through 2,2,6,6-tetramethyl-1- piperdinyloxy free radical (TEMPO)-oxidation process and the final product was called TEMPO-oxidized cellulose nanofibril (TOCNF). Furthermore, by adding a fluorescent dye called proflavine into TOCNF via amidation reaction, unique composite filaments can be prepared.
The carboxylate content of TOCNF was determined by the conductivity titration method. The amidation reaction was confirmed using Fourier transform infrared absorption spectroscopy. The optical images under normal mode and fluorescence mode were both used to determine the diameter of a composite filament and then check the fluorescence property. Scanning electron microscope and energy-dispersive X-ray spectroscopy elemental analysis were done to check the surface of filament and to see the elemental contains of filaments, respectively. The pH dependence of zeta potential was measured to speculate the charge state of TOCNF@dye. Additionally, water contact angle, water stability, and water swelling ratio of composite filaments were measured. The results indicated that the composite filaments are hydrophobic and stable in water. Tensile test of composite filaments with different dye contents was done. The results containing Young’s modulus, tensile strength, and breaking strain, pointed out that the filaments with [-NH2]/[-COOH] = 0.05 has the best mechanical properties. Tensile test on filaments with different extrusion rates indicates that the filaments made under extrusion rate = 15 ml/h had superior mechanical properties compared with others. Then, the fluorescence spectra of filaments were measured. Although the intensity is inversely proportional to the dye content, the results showed that the composite filaments have the fluorescence property.

1-1. Chapter 1: Introduction ............................................................................................ 1 1-1. Plastic pollutions: nowadays ....................................................................... 1 1-2. Green chemistry ............................................................................................ 2 1-2.1. Cellulose as green material.......................................................................... 2 1-2.2. Chemical modification of hydroxyl groups..............................................3 1-2.3. Reaction with functionalized groups ......................................................... 4 1-2.4. Proflavine ........................................................................................................ 5 1-3. Motivation and objective of This Research..............................................6 Chapter 2: Experimental Section .................................................................................... 7 2-1. Materials ........................................................................................................... 7 2-2. Synthesis Procedure...................................................................................... 7 2-2.1. Preparation of TEMPO-oxidized cellulose gel ........................................ 7 2-2.2. Preparation of TEMPO-oxidized cellulose nanofiber (TOCNF).........8 2-2.3. Preparation of TOCNF filaments including chemically bond proflavine..................................................................................................................... 9 2-2.4. Continuous system for making filaments ............................................... 11 2-2.5. Quantitative determination of carboxyl group......................................12 2-3. Instruments .................................................................................................. 12 Chapter 3: Results and Discussion................................................................................14 3-1. Carboxylate content in TOCNF ............................................................... 14 3-2. Characterization of TOCNF and their composites with Fourier transform infrared (FTIR) absorption spectra..................................................17 IV 3-3. Physical properties of filaments ............................................................... 20 3-4. Topography properties of composite filaments.....................................23 3-5. Mechanical properties of composite filaments ...................................... 24 3-5.1. Effect of different dye contents.................................................................24 3-5.2. Effect of different extrusion speeds ......................................................... 29 3-6. Florescence spectra of composite filaments ........................................... 33 3-7. Water contact angle .................................................................................... 36 3-8. Stability of composite filaments in water................................................37 3-9. Water swelling ratio of composite filaments..........................................38 3-10. Characteristics of TOCNF@dye gels by zeta potential ....................... 39 Chapter 4: Conclusion.....................................................................................................41

1. Derraik, J. G. (2002). The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull., 44(9), 842-852.

2. Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol., 42(13), 5026-5031.

3. Teuten, E. L., Rowland, S. J., Galloway, T. S., & Thompson, R. C. (2007). Potential for plastics to transport hydrophobic contaminants. Environ. Sci. Technol., 41(22), 7759-7764.

4. Teuten, E. L., Saquing, J. M., Knappe, D. R., Barlaz, M. A., Jonsson, S., Björn, A., ... & Takada, H. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. Lond., B, Biol. Sci. PHILOS T R SOC B, 364(1526), 2027-2045.

5. Pan, D., Su, F., Liu, C., & Guo, Z. (2020). Research progress for plastic waste management and manufacture of value-added products.Adv. Compos. Mater., 3(4), 443-461.

6. Zanchetta, E., Damergi, E., Patel, B., Borgmeyer, T., Pick, H., Pulgarin, A., & Ludwig, C. (2021). Algal cellulose, production and potential use in plastics: Challenges and opportunities. Algal Res., 56, 102288.

7. Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., ... & Russell, A. E. (2004). Lost at sea: where is all the plastic?. Science, 304(5672), 838-838.

8. Isogai, A., Saito, T., & Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofiber. nanoscale, 3(1), 71-85.

9. Isogai, A. (2018). Development of completely dispersed cellulose nanofibers. Proc. Jpn. Acad., Ser. B, 94(4), 161-179.

10. Calderón-Vergara, L. A., Ovalle-Serrano, S. A., Blanco-Tirado, C., & Combariza, M. Y. (2020). Influence of post-oxidation reactions on the physicochemical properties of TEMPO-oxidized cellulose nanofibers before and after amidation. Cellulose, 27(3), 1273-1288.

11. Gatasheh, M. K., Kannan, S., Hemalatha, K., & Imrana, N. (2017). Proflavine an acridine DNA intercalating agent and strong antimicrobial possessing potential properties of carcinogen. Karbala Int. J. Mod. Sci., 3(4), 272-278.

12. Basu, A., & Kumar, G. S. (2016). A microcalorimetric study on the binding of proflavine with tRNAphe. J. Chem. Thermodyn., 97, 173-178.

13. Pandey, A. K., Shukla, D. V., Mishra, V. N., Singh, V., Yadav, O. P., & Dwivedi, A. (2022). Molecular docking, experimental FT-IR spectra, UV–Vis spectra,
vibrational analysis, electronic properties, Fukui function analysis of a potential
bioactive agent–Proflavine. J. Indian Chem. Soc., 99(4), 100396.

14. Masruchin, N., Park, B. D., & Causin, V. (2015). Influence of sonication treatment on supramolecular cellulose microfibril-based hydrogels induced by ionic
interaction. Ind. Eng. Chem. Res., 29, 265-272.

15. Benkaddour, A., Journoux-Lapp, C., Jradi, K., Robert, S., & Daneault, C. (2014).
Study of the hydrophobization of TEMPO-oxidized cellulose gel through two
routes: amidation and esterification process. J. Mater. Sci., 49(7), 2832-2843.

16. Kim, H. C., Kim, D., Lee, J. Y., Zhai, L., & Kim, J. (2019). Effect of wet spinning and stretching to enhance mechanical properties of cellulose nanofiber
filament. Int. J. Precis. Eng. Manuf. - Green Technol., 6(3), 567-575.

17. Ono, Y., Fukui, S., Funahashi, R., & Isogai, A. (2019). Relationship of distribution of carboxy groups to molar mass distribution of TEMPO-oxidized algal, cotton,
and wood cellulose nanofibrils. Biomacromolecules, 20(10), 4026-4034.

18. Okita, Y., Saito, T., & Isogai, A. (2010). Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules, 11(6),
1696-1700.

19. Zhang, C., Guo, J., Zou, X., Guo, S., Guo, Y., Shi, R., & Yan, F. (2021). Acridine‐
Based Covalent Organic Framework Photosensitizer with Broad‐Spectrum Light Absorption for Antibacterial Photocatalytic Therapy. Adv. Healthy. Mater., 10(19), 2100775.

20. Zheng, Q., & Lü, C. (2014). Size effects of surface roughness to superhydrophobicity. Procedia IUtam, 10, 462-475.

21. Krathumkhet, N., Ujihara, M., & Imae, T. (2021). Self-standing films of octadecylaminated-TEMPO-oxidized cellulose nanofibrils with antifingerprint properties. Carbohydr. Polym., 256, 117536.

22. Zhang, Y., Zhao, X., Yang, W., Jiang, W., Chen, F., & Fu, Q. (2020). Enhancement of mechanical property and absorption capability of hydrophobically associated polyacrylamide hydrogels by adding cellulose nanofiber. Mater. Res. Express, 7(1), 015319.

無法下載圖示 全文公開日期 2032/12/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2120/12/14 (國家圖書館:臺灣博碩士論文系統)
QR CODE