簡易檢索 / 詳目顯示

研究生: 許雅婷
Nga-Ting Hui
論文名稱: 探討白蛋白微氣泡對比劑包覆薄荷醇並結合超音波誘發穴蝕效應於下咽癌治療之可行性研究
Investigating the Feasibility of Ultrasound Mediated Menthol Loaded Microbubbles Cavitation for Hypopharyngeal Cancer Treatment
指導教授: 廖愛禾
Ai-Ho Liao
口試委員: 朱永祥
Yueng-Hsiang Chu
莊賀喬
Ho-Chiao Chuang
沈哲州
Che-Chou Shen
廖愛禾
Ai-Ho Liao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 74
中文關鍵詞: 薄荷醇微氣泡對比劑超音波下咽癌穴蝕效應
外文關鍵詞: Menthol, Microbubbles, Ultrasound, Hypopharyngeal cancer, Cavitation
相關次數: 點閱:317下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,愈來愈多的研究表明薄荷醇具有明顯的抗癌效果,可抑制多種惡性腫瘤的生長。已知薄荷醇具有多種藥理活性,如抗炎鎮痛、清涼止癢、抗真菌等,目前在臨床上被廣泛應用。研究發現薄荷醇其受體TRPM8在腫瘤細胞中高度表達,薄荷醇能激活腫瘤細胞上的TRPM8通道,允許鈣離子進入腫瘤細胞,增加細胞內的鈣濃度,降低細胞活力從而誘導腫瘤細胞死亡。然而,薄荷醇具有高揮發性、難溶於水等的局限性。本研究使用人類血清白蛋白作為藥物載體,將薄荷醇與人類血清白蛋白結合製作成包覆薄荷醇之白蛋白微氣泡對比劑 (Menthol-MBs),以提升薄荷醇的穩定度。結合施打超音波能量可誘發包覆薄荷醇之白蛋白微氣泡破裂釋放藥物並產生穴蝕效應以增強藥物輸送效率,促進藥物導致的腫瘤細胞死亡。
本研究將薄荷醇與人類血清白蛋白結合,製作出包覆薄荷醇之白蛋白微氣泡 (Menthol-MBs),經測量分析顯示平均粒徑為3.45 ± 0.25 µm,藥物包覆率為26.93 ± 0.39%。為探討包覆薄荷醇之白蛋白微氣泡結合超音波能量對腫瘤細胞生存率的影響,本研究採用實驗組別 (1) 控制組 (Control);(2) 微氣泡對比劑 (MBs);(3) 薄荷醇 (Menthol);(4) 薄荷醇混合微氣泡 (Menthol+MBs);(5) 薄荷醇包覆於微氣泡 (Menthol-MBs) 分別進行有無施打超音波能量之細胞實驗。實驗結果證實了薄荷醇與人類血清白蛋白結合能夠穩定薄荷醇,增強毒殺效果。加上超音波能量施打造成微氣泡破裂導致穴蝕效應使腫瘤細胞通透度增加,有助包覆於微氣泡球殼上的薄荷醇釋放進入細胞,誘發細胞死亡。因此包覆薄荷醇之白蛋白微氣泡結合超音波能量施打可達到治療效果最佳化 (p<0.001)。本研究將首創探討白蛋白微氣泡包覆薄荷醇結合超音波能量誘發穴蝕效應以提升薄荷醇於頭頸癌治療效果的可行性。


Recently, many evidences show the obvious anticancer effect of menthol which can inhibit the growth of malignant tumors. It has been found that menthol has many pharmacological properties such as anti-inflammatory, analgesic, cooling and relieving itching etc. Menthol is currently widely used in clinical applications. TRPM8, the receptor of menthol, is a nonselective cation channel which is highly expressed in tumor cells. It can be activated by menthol to allow calcium ions entering tumor cells. Increased calcium ion concentration in tumor cells result in reducing tumor cell viability, and inducing tumor cell death. However, limitations of menthol are high volatility and low solubility in water. In this thesis, human serum albumin (HSA) is used as a drug carrier to encapsulate menthol and produce menthol-loaded microbubbles (Menthol-MBs). Combined with ultrasound energy application, the menthol-loaded microbubbles could expanse and then collapse, resulting a cavitation effect to enhance the tumor cells death.
The average particle diameter of the menthol-loaded microbubbles is 3.45 ± 0.25 µm, and the encapsulation efficiency is 26.93 ± 0.39%. In order to investigate the feasibility of ultrasound mediated menthol-loaded microbubbles in cancer treatment, our thesis designed the in vitro cell experiments in five groups: (1) no treatment (Control), (2) microbubbles contrast agents (MBs), (3) Menthol, (4) Menthol mixed with microbubbles (Menthol+MBs), (5) Menthol-loaded microbubbles (Menthol-MBs) with or without ultrasound energy. The experimental results proved that the combination of menthol and HSA can stabilize menthol and enhance its pharmacological activity. In addition, ultrasound energy induces the collapsion of the microbubbles, causing the cavitation effect. It increases the permeability of the cancer cells, which enhances drug delivery into the tumor cells, hence induces cell death significantly. Therefore, the combination of menthol-loaded microbubbles and ultrasound energy can achieve the best therapeutic effect (p < 0.001). The feasibility of menthol-loaded microbubbles combined with ultrasound energy inducing cavitation to enhance the therapeutic effect on hypopharyngeal cancer was firstly investigated.

中文摘要 1 Abstract 2 目錄 3 圖目錄 7 表目錄 9 第1章、 緒論 10 1.1 癌症 10 1.1.1 頭頸癌 10 1.2 治療癌症之發展 11 1.2.1 外科手術 11 1.2.2 放射療法 12 1.2.3 化學療法 12 1.2.4 標靶療法 12 1.3 薄荷醇簡介 13 1.3.1 藥理作用機制 14 1.3.2 毒性與禁忌 15 1.4 人類血清白蛋白簡介 16 1.4.1 人類血清白蛋白作為載體相關之研究 17 1.5 人類血清白蛋白與薄荷醇結合機制 17 1.6 微氣泡對比劑 19 1.7 超音波結合微氣泡對比劑增加局部治療 21 1.7.1 超音波簡介 21 1.7.2 藥物傳輸機制 22 1.7.3 穴蝕效應 23 1.8 研究動機 25 第2章、 材料與方法 26 2.1 研究架構 26 2.2 藥品與設備 27 2.2.1 藥品 27 2.2.2 設備 28 2.3 無菌人類血清白蛋白包覆薄荷醇微氣泡對比劑之備製 29 2.4 白蛋白微氣泡對比劑之物理性質分析 30 2.4.1 粒徑分析 30 2.4.2 電位分析 31 2.4.3 濃度分析 32 2.4.1 光學定性分析 32 2.4.2 高解析度場發射掃描式電子顯微鏡拍攝 33 2.5 白蛋白球殼包覆藥物之定量定性分析 34 2.6 體外藥物釋放實驗 36 2.7 高頻超音波影像系統模擬打破效率 38 2.7.1 模擬細胞實驗於 24-well 細胞培養盤中之打破效率 39 2.8 體外細胞毒殺實驗 40 2.8.1 細胞株及繼代培養 40 2.8.2 細胞計數 41 2.8.3 培養液配製 42 2.8.4 冷凍細胞及解凍細胞 43 2.8.5 細胞實驗設計 44 2.9 統計分析 49 第3章、 實驗結果 50 3.1 微氣泡物理性質 50 3.1.1 粒徑分析 50 3.1.2 電位分析 51 3.1.3 濃度分析 52 3.1.4 光學定性影像 53 3.1.5 高解析度場發射掃描式電子顯微鏡表面觀察 54 3.2 白蛋白球殼包覆藥物之定量定性分析 55 3.3 體外藥物釋放實驗 56 3.4 高頻超音波影像分析超音波能量打破效率之參數評估 57 3.5 體外細胞實驗 59 3.5.1 細胞體外試驗於不同超音波對於細胞的影響 59 3.5.2 FaDu cell IC50試驗 60 3.5.3 細胞毒殺分析 61 第4章、 討論 63 第5章、 結論 66 參考文獻 67

[1] World Health Organization. (2018). Cancer. Retrieved from https://www.who.int/en/news-room/fact-sheets/detail/cancer. Retrieved 21 Feb, 2021.

[2] Cancer Council NSW. (n.d.). What is cancer? Retrieved from
https://www.cancercouncil.com.au/cancer-information/understanding-cancer/what-is-cancer/. Retrieved 21 Feb, 2021.

[3] National Cancer Institute. (2017). Head and Neck Cancers. Retrieved from
https://www.cancer.gov/types/head-and-neck/head-neck-fact-sheet. Retrieved 21 Feb, 2021.

[4] Cancer Council NSW. (2019). Understanding Head and Neck Cancers. ISBN 978 1 925651 66 9.

[5] G. Zachary White. (2020). 10 Symptoms of Head and Neck Cancer. Retrieved from
https://www.bronsonhealth.com/news/10-symptoms-of-head-and-neck-cancer/
. Retrieved 21 Feb, 2021.

[6] Sabatini, M.E., Chiocca, S. (2020). Human papillomavirus as a driver of head and neck cancers. Br J Cancer 122, 306–314.

[7] Höckel, M. (2012). Cancer permeates locally within ontogenetic compartments: clinical evidence and implications for cancer surgery. Future Oncology, 8(1), 29–36. doi:10.2217/fon.11.128

[8] Sudhakar, A. (2009). History of cancer, ancient and modern treatment methods. Journal of cancer science & therapy, 1(2), 1.

[9] Malhotra, V., & Perry, M. C. (2003). Classical chemotherapy: mechanisms, toxicities and the therapeutc window. Cancer biology & therapy, 2(sup1), 1-3.

[10] National Cancer Institute. (2021). Targeted Cancer Therapies Fact Sheet.Retrieved from https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies
/targeted-therapies-fact-sheet. Retrieved 28 Feb, 2021.

[11] Chen, C., Liu, Z.-G., Wang, S.-L., Sheng, X.-B., Wer, Z.-H., Yang, Z.-C., Chen, W.-X,, Wang, A.-Y., Zheng, S.-Z., Jiang, G.-R., Lu, Y. (2015). Research progress in the role of menthol and its receptor TRPM8 in tumor. Chinese Pharmacological Bulletin, 31(3): 312-314.

[12] Nathan, M., & Scholten, R. (1999). The Complete German Commission E Monographs: Therapeutic Guide to Herbal Medicines.

[13] A. Farco, J., & Grundmann, O. (2013). Menthol - Pharmacology of an Important Naturally Medicinal “Cool.” Mini Reviews in Medicinal Chemistry, 13(1), 124–131.

[14] Werley, M. S., Coggins, C. R., & Lee, P. N. (2007). Possible effects on smokers of cigarette mentholation: a review of the evidence relating to key research questions. Regulatory Toxicology and Pharmacology, 47(2), 189-203.

[15] Kim, S. H., Nam, J. H., Park, E. J., Kim, B. J., Kim, S. J., So, I., & Jeon, J. H. (2009). Menthol regulates TRPM8-independent processes in PC-3 prostate cancer cells. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1792(1), 33-38.

[16] Li, Q., Wang, X., Yang, Z., Wang, B., & Li, S. (2009). Menthol induces cell death via the TRPM8 channel in the human bladder cancer cell line T24. Oncology, 77(6), 335-341.

[17] Faridi, U., Sisodia, B. S., Shukla, A. K., Shukla, R. K., Darokar, M. P., Dwivedi, U. N., & Shasany, A. K. (2011). Proteomics indicates modulation of tubulin polymerization by L‐menthol inhibiting human epithelial colorectal adenocarcinoma cell proliferation. Proteomics, 11(10), 2115-2119.

[18] Yee, N. S. (2016). TRPM8 ion channels as potential cancer biomarker and target in pancreatic cancer. Advances in protein chemistry and structural biology, 104, 127-155.

[19] Liu, Z., Wu, H., Wei, Z., Wang, X., Shen, P., Wang, S. & Lu, Y. (2016). TRPM8: a potential target for cancer treatment. Journal of cancer research and clinical oncology, 142(9), 1871-1881.

[20] Balakrishnan, A. (2015). Therapeutic uses of peppermint-a review. Journal of pharmaceutical sciences and research, 7(7), 474.

[21] 台灣兒科醫學會. (2015) 薄荷醇與類似物質的兒童使用建議. 檢自https://www.pediatr.org.tw/people/edu_info.asp?id=20. Retrieved 19 March, 2021. 

[22] Fanali, G., Di Masi, A., Trezza, V., Marino, M., Fasano, M., & Ascenzi, P. (2012). Human serum albumin: from bench to bedside. Molecular Aspects of Medicine, 33(3), 209-290.

[23] Smith, G. S., G. L. Walter, and R. M. Walker. (2013). Chapter 18-Clinical Pathology in Non-Clinical Toxicology Testing. Haschek and Rousseaux's Handbook of Toxicologic Pathology (Third Edition), Boston: Academic Press, 565–594.

[24] Yang, F., Zhang, Y., & Liang, H. (2014). Interactive Association of Drugs Binding to Human Serum Albumin. International Journal of Molecular Sciences, 15(3), 3580-3595.

[25] Kratz, F., Müller-Driver, R., Hofmann, I., Drevs, J., & Unger, C. (2000). A Novel Macromolecular Prodrug Concept Exploiting Endogenous Serum Albumin as a Drug Carrier for Cancer Chemotherapy. Journal of Medicinal Chemistry, 43(7), 1253-1256.

[26] Yeggoni, D. P., Rachamallu, A., Dubey, S., Mitra, A., & Subramanyam, R. (2018). Probing the interaction mechanism of menthol with blood plasma proteins and its cytotoxicity activities. Journal of Biomolecular Structure and Dynamics, 36(2), 465-474.

[27] Morel, D. R., Schwieger, I., Hohn, L., Terrettaz, J., LLULL, J. B., CORNIOLEY, Y. A., & Schneider, M. (2000). Human pharmacokinetics and safety evaluation of SonoVue™, a new contrast agent for ultrasound imaging. Investigative Radiology, 35(1), 80.

[28] Goldberg, B. B., Liu, J. B., & Forsberg, F. (1994). Ultrasound contrast agents: a review. Ultrasound in Medicine & Biology, 20(4), 319-333.

[29] Quaia, E. (2007). Microbubble ultrasound contrast agents: an update. European Radiology, 17(8), 1995-2008.

[30] Zhao, Y. Z., Du, L. N., Lu, C. T., Jin, Y. G., & Ge, S. P. (2013). Potential and problems in ultrasound-responsive drug delivery systems. International Journal of Nanomedicine, 8, 1621.

[31] Tinkov, S., Bekeredjian, R., Winter, G., & Coester, C. (2009). Microbubbles as ultrasound triggered drug carriers. Journal of Pharmaceutical Sciences, 98(6), 1935–1961.

[32] New World Encyclopedia. Ultrasound, (n.d.), Retrieved from http://www.newworldencyclopedia.org/entry/Ultrasound. Retrieved 5 April, 2021

[33] Chan, V., & Perlas, A. (2011). Basics of ultrasound imaging. In Atlas of ultrasound-guided procedures in interventional pain management. Springer, New York, NY, 13-19.

[34] Dubinsky, T. J., Cuevas, C., Dighe, M. K., Kolokythas, O., & Hwang, J. H. (2008). High-intensity focused ultrasound: current potential and oncologic applications. American journal of roentgenology, 190(1), 191-199.

[35] Wang, T. Y., E Wilson, K., Machtaler, S., & K Willmann, J. (2013). Ultrasound and microbubble guided drug delivery: mechanistic understanding and clinical implications. Current pharmaceutical biotechnology, 14(8), 743-752.

[36] Kong, G., & Dewhirst, M. W. (1999). Review hyperthermia and liposomes. International Journal of Hyperthermia, 15(5), 345-370.

[37] Lefor, A. T., Makohon, S., & Ackerman, N. B. (1985). The effects of hyperthermia on vascular permeability in experimental liver metastasis. Journal of surgical oncology, 28(4), 297-300.

[38] Izadifar, Z., Babyn, P., & Chapman, D. (2019). Ultrasound cavitation/microbubble detection and medical applications. Journal of Medical and Biological Engineering, 39(3), 259-276.

[39] Leong, T., Ashokkumar, M., & Kentish, S. (2011). The fundamentals of power ultrasound-a review.

[40] Church, C. C., & Carstensen, E. L. (2001). “Stable” inertial cavitation. Ultrasound in medicine & biology, 27(10), 1435-1437.

[41] Misono, T. (2019). Dynamic Light Scattering (DLS). Measurement Techniques and Practices of Colloid and Interface Phenomena, 65-69.

[42] Xu, R. (2008). Progress in nanoparticles characterization: Sizing and zeta potential measurement. Particuology, 6(2), 112-115.

[43] Liao, Q. C. (2000). Principle and prospect to improve the resolution of field emission scanning electron microscope. JOURNAL-CHINESE ELECTRON MICROSCOPY SOCIETY, 19(5), 709-716.

[44] Kushwah, H., Hans, T., Chauhan, M., Mittal, G., & Sandal, N. (2020). Development and Validation of the Spectrophotometric Method for the Determination of Menthol. Journal of Applied Spectroscopy, 87(3), 563-567.

[45] The Privalsky Lab, U. Cell Counting with a Hemocytometer. n.d.; Retrieved from http://microbiology.ucdavis.edu/privalsky/hemocytometer. Retrieved 21 May, 2021.

[46] Byth, H. A., Mchunu, B. I., Dubery, I. A., & Bornman, L. (2001). Assessment of a simple, non‐toxic alamar blue cell survival assay to monitor tomato cell viability. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 12(5), 340-346.

[47] Rampersad, S. N. (2012). Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors, 12(9), 12347-12360.

無法下載圖示 全文公開日期 2026/08/11 (校內網路)
全文公開日期 2026/08/11 (校外網路)
全文公開日期 2026/08/11 (國家圖書館:臺灣博碩士論文系統)
QR CODE