簡易檢索 / 詳目顯示

研究生: Yihenew S Birhan
Yihenew Simegniew Birhan
論文名稱: 製備含雙硒之氧化還原應答型高分子微胞作為阿黴素抗癌藥物之輸送: 載體之安定性及藥物控制釋放之研究
Fabrication of Diselenide-Containing Redox-Responsive Polymeric Micelles for Doxorubicin Delivery: Stability of the Carrier and Controlled Release of Drug
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 楊禎明
Jen-Ming Yang
李榮和
Rong-Ho Lee
何明樺
Ming-Hua Ho
楊銘乾
Ming-Chien Yang
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 209
中文關鍵詞: 雙硒鍵氧化還原應應性核交聯核殼結構 高分子微胞
外文關鍵詞: Diselenide bond, redox-responsive, core crosslinked, shell-sheddable micelles
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,大量研究項目集中在高分子微胞(PMs)的製備上,但由於載體中藥物洩漏與材料毒性問題,只有很少的製劑進到臨床開發階段,因此,製備能夠在體內穩定的PMs是抗癌藥物傳遞研究的重點,也將引起了廣泛的關注。本文第一項研究成功地以DMAP和DCC的存在下,通過酯化反應,成功將雙團聯共聚物mPEG-PLGA鍵結上DSeDPA,此含二硒化物的Bi(mPEG-PLGA)-Se2共聚物 (CPs) 是對於氧化還原環境應答行為,此材料在水溶液中可自組裝成水利直徑 (Dh) 為123.9 ± 0.85 奈米的球形微胞。PMs包裹阿黴素 (DOX) 之藥物含量和藥物包覆效率分別為6.61 wt.%與54.9 wt.%。在pH 7.4和37℃的6 mM GSH (還原環境) 和0.1% H2O2 (氧化環境) 的水溶液中環境中下72小時,攜帶DOX的PMs分別釋放出74%(還原環境)和70% (氧化環境)。利用螢光顯微鏡和MTT檢測HeLa細胞觀察到明顯的內化作用,說明攜帶DOX的藥物載體能誘導癌細胞凋亡。接著,為了改善PMs的熱力學不穩定性,在本文第二項研究中藉由三嵌段共聚物mPEG-P(LA-DSeDEA)-PCL製備了更穩定的核交聯微胞 (CCMs),該微胞通過可見光引發的DSeDEA基團間的Se-Se鍵交換反應聚集並進行核交聯。CCMs粒徑大小為156.57 ± 4.42奈米,藥物包覆率為42.23%,藥物於載體之含量為7.31 wt.%。CCMs和DOX@CCMs在牛血清白蛋白(BSA)環境下時顯示出高的穩定性與設計的目標一致。此外,在模擬的癌細胞氧化還原環境中,DOX展現持續釋放行為:10 mM GSH使71.7%的DOX在72h內擴散。在DOX@CCMs共培養的HeLa細胞上進行的螢光顯微鏡和流式細胞術實驗均明確表明細胞內吞作用和胞質氧化還原池引起了DOX的釋放。mPEG-P(LA-DSeDEA)-PCL的生物相容性(濃度為600 μg/ mL)藉由MDCK、HaCaT和HeLa細胞共培養24小時後的代謝活性中得到≥82%;相反的,當DOX@CCMs在10 μg/mL的DOX濃度下,有49% HeLa細胞會有選擇性的誘導凋亡。我們進一步從含有星形的3s-PCL-SeSe-PEG-Biotin (s-PMs)的的離子酰胺中構建生物素功能化的可脫殼微胞,由於共聚物支鏈段的纏繞,使其血清穩定性增強,且DOX釋放效能接近完全。3s-PCL-SeSe-PEG-Biotin進行自導向聚集,形成水動力直徑76.27奈米均勻分佈的s-PMs,s-PMs負載阿黴素淨含量(DLC)和封裝效率(EE)分別為5.83 wt.%和71.02%。將s-PMs與DOX負載的s-PMs在FBS與100倍PBS培養7天後,依舊保持其結構完整性,可證明微胞的高穩定性。DOX@3s-PCL-SeSe-PEG-Biotin微胞在10 mM GSH和0.1% H2O2的模擬癌症氧化還原液中72小時分別釋放93%和79%的DOX。DOX@3s-PCL-SeSe-PEG-Biotin微胞在5 μg/mL時抑制77% HeLa癌細胞與62% MDA-MB-231癌細胞而同時只抑制12% HaCaT正常細胞。總體而言,二硒化物連接的3s-PCL-SeSe-PEG-Biotin生物素形成生理穩定、長循環、癌症特異性和智慧的s-PMs,值得進一步的體內研究。一般而言,不同結構的氧化還原反應Se-PMs具有理想的血清穩定性,同時氧化還原所誘導藥物載體中DOX於癌細胞釋放,從實驗中也觀察到很好的效果。


In recent years, an enormous number of research projects focused on the fabrication of polymeric micelles (PMs), yet only a few formulations reach the clinical development stage due to drug leakage and associated systemic toxicities. Thus, fabrication of in vivo stable PMs is of great priority in the anticancer drug delivery research and attracted significant attention in recent years. In our first project, we succeeded in synthesizing redox stimuli sensitive, diselenide-containing Bi(mPEG-PLGA)-Se2 copolymers (CPs) from DSeDPA and mPEG-PLGA through ester coupling “click” reaction in the presence of DMAP and DCC which spontaneously self-assembled into spherical micelles of desirable hydrodynamic diameter (Dh), 123.9 nm, in aqueous solution. The PMs experienced sensible DOX-loading capacity and EE, 6.61 wt.% 54.9%, respectively. Upon incubation with 6 mM GSH and 0.1% H2O2, the DOX-loaded PMs released ⁓74% and ⁓70% of DOX, respectively, in 72 h at pH 7.4 and 37 ℃. The fluorescent microscope images and MTT assays on HeLa cells revealed the efficient cellular internalization and efficient apoptotic potential of DOX-loaded PMs. To ameliorate the thermodynamic instability of PMs, we also prepared a more stable core crosslinked micelles (CCMs) in our second project from the triblock copolymer, mPEG-P(LA-DSeDEA)-PCL, which would aggregate and undergo core crosslinking via visible light-triggered Se-Se bond exchange reactions among pendant DSeDEA groups. The CCMs with 156.57 nm in diameter were shown to encapsulate 42.23% of initial DOX with a net content of 7.31 wt.%. In line with our objective, CCMs and DOX@CCMs unveiled trustworthy stability when co-incubated with bovine serum albumin (BSA). Moreover, a therapeutically sufficient quantity of DOX was release persistently from DOX@CCMs in a simulated cancer cell redox pool; 10 mM GSH caused 71.7% of the loaded DOX to diffuse in 72 h. The fluorescent microscopy and flow cytometry experiments executed on HeLa cells co-cultured with DOX@CCMs asserted the endocytosis and cytosolic redox pool initiated DOX release. The biocompatibility of mPEG-P(LA-DSeDEA)-PCL was drawn from the metabolically active (≥ 82%) profiles of MDCK, HaCaT, and HeLa cells after 24 h at 600 µg/mL. In contrast, DOX@CCMs selectively induce an apoptotic effect in ⁓49% of HeLa at an equivalent DOX concentration of 10 µg/mL. We further extend an effort to engineer biotin-functionalized shell-sheddable micelles from diselenide containing star-shaped 3s-PCL-SeSe-PEG-Biotin (s-PMs) with enhanced serum stability due to the entanglement of the branched segments of the CP. 3s-PCL-SeSe-PEG-Biotin would undergo self-directed clustering to form uniformly distributed s-PMs with a hydrodynamic diameter (Dh) of 76.27 nm. The s-PMs experienced appreciable doxorubicin (DOX)-loading content (DLC) and EE, 5.83 wt.%, and 71.02%, respectively. The blank and DOX-loaded s-PMs (DOX@3s-PCL-SeSe-PEG-Biotin) micelles maintained their structural integrity under 50% FBS and 100-fold PBS confirming their colloidal stability. Moreover, DOX@3s-PCL-SeSe-PEG-Biotin micelles unveiled desirable DOX release in simulated cancer redox pool, ⁓93%, and ⁓79% in 10 mM GSH and 0.1% H2O2, respectively in 72 h. In contrast to blank micelles, DOX@3s-PCL-SeSe-PEG-Biotin selectively suppressed the proliferation of ⁓77% HeLa and ⁓62% MDA-MB-231 cells as compared to ⁓12% of HaCaT cells at 5 µg/mL. Overall, we succeeded in fabricating physiologically stable, long-circulating, cancer-specific, smart, and redox-responsive Se-PMs in the entire project, especially mPEG-P(LA-DSeDEA)-PCL CCMs and 3s-PCL-SeSe-PEG-Biotin s-PMs, that deserve further in vivo investigations in tumor-bearing mice models.

Declaration i Acknowledgment ii 摘要 iii Abstract v List of tables xvi List of schemes xvii List of Acronyms xviii CHAPTER ONE 1 1. Background 1 1.1. Anticancer drug delivery 1 1.2. Redox-responsive nanocarriers for anticancer drug delivery 2 1.3. Current trends in redox-responsive nanocarriers 2 CHAPTER TWO 4 2. Literature Review 4 2.1. Etiology and treatment of cancer 4 2.2. Nanomedicine and cancer treatment 6 2.3. Polymeric nanocarriers for drug delivery applications 7 2.4. Stimuli-responsive polymeric nanocarriers for drug delivery 8 2.5. Redox sensitive polymeric nanocarriers for anticancer drug delivery 9 2.6. Selenium-containing redox-responsive polymeric nanocarriers 10 2.7. Selenium-containing polymeric micelles as drug delivery vehicles 14 2.7.1. Noncleavable selenium-containing polymeric micelles 15 2.7.2. Monocleavable diselenide-containing polymeric micelles 17 2.7.3. Multicleavable selenium-containing polymeric micelles 19 2.7.4. Selenium-containing crosslinked polymeric micelles 21 2.8. Research gaps and motivation of the study 24 2.9. Objectives and outline of the study 26 CHAPTER THREE 28 3. Fabrication of Redox-Responsive Bi(mPEG-PLGA)-Se2 Micelles for Doxorubicin Delivery 28 3.1. Introduction 28 3.2. Materials and Methods 30 3.2.1. Materials 30 3.2.2. Methods 31 3.2.2.1. Synthesis of 3,3'-diselanediyldipropanoic acid (DSeDPA) 31 3.2.2.2. Synthesis of mPEG-PLGA diblock copolymer 31 3.2.2.3. Synthesis of Bi(mPEG-PLGA)-Se2 conjugate 32 3.2.2.4. Characterization 33 3.2.2.5. Bi(mPEG-PLGA)-Se2 micelle formation and drug loading 33 3.2.2.6. Determination of critical micelle concentration (CMC) 35 3.2.2.7. Redox-responsive drug release study 36 3.2.2.8. Cellular uptake study 37 3.2.2.9. In vitro cytotoxicity and cell viability study 37 3.3. Results and Discussion 38 3.3.1. Synthesis of DSeDPA, mPEG-PLGA, and Bi(mPEG-PLGA)-Se2 38 3.3.2. Preparation and characterization of Bi(mPEG-PLGA)-Se2 micelles 43 3.3.3. Critical micelle concentration (CMC) of the copolymer 45 3.3.4. Stability and redox-responsiveness of micelles 47 3.3.5. Drug loading behavior of Bi(mPEG-PLGA)-Se2 micelles 48 3.3.6. Drug releasing trends of DOX-loaded Bi(mPEG-PLGA)-Se2 micelles 49 3.3.7. In vitro cytotoxicity study of Bi(mPEG-PLGA)-Se2 micelles 51 3.3.8. Cellular uptake of DOX-loaded Bi(mPEG-PLGA)-Se2 micelles 52 3.3.9. In vitro cell viability of DOX-loaded micelles 56 3.4. Conclusion 58 CHAPTER FOUR 60 4. Fabrication of Core Crosslinked Polymeric Micelles as Nanocarriers for Doxorubicin Delivery: Self-Assembly, In Situ Diselenide Metathesis and Redox-Responsive Drug Release 60 4.1. Introduction 60 4.2. Materials and methods 63 4.2.1. Materials 63 4.2.2. Methods 63 4.2.2.1. Synthesis of BLA-NCA 63 4.2.2.2. Synthesis of mPEG-PBLA 65 4.2.2.3. Synthesis of mPEG-PBLA-PCL 66 4.2.2.4. Synthesis of mPEG-PLA-PCL 66 4.2.2.5. Synthesis of mPEG-P(LA-DSeDEA)-PCL 67 4.2.2.6. Characterization 67 4.2.2.7. Preparation of mPEG-P(LA-DSeDEA)-PCL micelles 68 4.2.2.8. Determination of critical micelle concentration (CMC) 69 4.2.2.9. Preparation of DOX-loaded mPEG-P(LA-DSeDEA)-PCL micelles 69 4.2.2.10. Redox-responsiveness DOX releasing behavior of micelles 71 4.2.2.11. Cellular uptake study 72 4.2.2.12. Flow cytometry analysis 73 4.2.2.13. In vitro cytotoxicity study 73 4.3. Results and Discussion 74 4.3.1. Synthesis and characterization of copolymers 74 4.3.2. Self-assembly and preparation of core cross-linked polymeric micelles 79 4.3.3. Determination of critical micelle concentration (CMC) 81 4.3.4. Colloidal stability of blank and DOX-loaded micelles 83 4.3.5. Redox sensitivity of mPEG-P(LA-DSeDEA)-PCL micelles 84 4.3.6. Drug loading behavior of mPEG-P(LA-DSeDEA)-PCL micelles 86 4.3.7. Drug releasing trends of mPEG-P(LA-DSeDEA)-PCL of micelles 88 4.3.8. Cellular uptake and localization study 90 4.3.9. In vitro cytotoxicity of blank mPEG-P(LA-DSeDEA)-PCL micelles 96 4.3.10. In vitro cell viability of DOX-loaded micelles 97 CHAPTER FIVE 101 5. Biotin-Decorated Redox-Responsive Micelles from Diselenide-Linked Star-Shaped Copolymers for The Targeted Delivery and Controlled Release of Doxorubicin in Cancer Cells 101 5.1. Introduction 101 5.2. Materials and Methods 104 5.2.1. Materials 104 5.2.2. Methods 105 5.2.2.1. Synthesis of star-shaped PCL (3s-PCL) 105 5.2.2.2. Synthesis of 3,3'-diselanediyldipropanoic acid (DSeDPA) 105 5.2.2.3. Synthesis of diselenide functionalized 3s-PCL-SeSe 107 5.2.2.4. Synthesis of diselenide-linked 3s-PCL-SeSe-PEG 107 5.2.2.5. Synthesis of diselenide-linked 3s-PCL-SeSe-PEG-Biotin 108 5.2.2.6. Characterization 108 5.2.2.7. Preparation of blank and DOX-loaded 3s-PCL-SeSe-PEG-Biotin 109 5.2.2.8. Determination of critical micelle concentration of 3s-PCL-SeSe-PEG-Biotin 111 5.2.2.9. Colloidal stability of blank and DOX@3s-PCL-SeSe-PEG-Biotin micelles 112 5.2.2.10. Redox-responsiveness and DOX releasing studies 112 5.2.2.11. Cellular uptake study 113 5.2.2.12. In vitro cytotoxicity study 114 5.3. Results and Discussion 115 5.3.1. Characterization of 3s-PCL-SeSe-PEG-Biotin conjugate 115 5.3.2. Self-assembly of blank and DOX-loaded 3s-PCL-SeSe-PEG-Biotin micelles 119 5.3.3. Determination of CMC of 3s-PCL-SeSe-PEG-Biotin 122 5.3.4. Colloidal stability of blank and DOX@3s-PCL-SeSe-PEG-Biotin micelles 123 5.3.5. Redox-sensitivity of 3s-PCL-SeSe-PEG-Biotin micelles 126 5.3.6. Redox-responsive DOX releasing trend of DOX@3s-PCL-SeSe-PEG-Biotin 128 5.3.7. Cellular uptake of DOX@3s-PCL-SeSe-PEG-Biotin micelles 130 5.3.8. In vitro cytotoxicity and anticancer effects 136 5.4. Conclusion 138 CHAPTER SIX 140 6. General summary and future perspectives 140 6.1. Summary 140 6.2. Future perspectives and recommendations 142 References: 144 APPENDIX: A 175 APPENDIX: B 182 APPENDIX: C 185

1. Atallah, J.; Khachfe, H.H.; Berro, J.; Assi, H.I. The use of heparin and heparin-like molecules in cancer treatment: a review. Cancer Treatment and Research Communications 2020, 24, 100192, doi:https://doi.org/10.1016/j.ctarc.2020.100192.
2. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA: A Cancer Journal for Clinicians 2020, 70, 7-30, doi:10.3322/caac.21590.
3. Krzyszczyk, P.; Acevedo, A.; Davidoff, E.J.; Timmins, L.M.; Marrero-Berrios, I.; Patel, M.; White, C.; Lowe, C.; Sherba, J.J.; Hartmanshenn, C., et al. The growing role of precision and personalized medicine for cancer treatment. Technology (Singap World Sci) 2018, 6, 79-100, doi:10.1142/S2339547818300020.
4. Hu, Y.; Wu, S.; He, Y.; Deng, L. A redox prodrug micelle co-delivering camptothecin and curcumin for synergetic B16 melanoma cells inhibition. Chemical Engineering Journal 2019, 362, 877-886, doi:https://doi.org/10.1016/j.cej.2019.01.074.
5. Zhou, W.; Wang, L.; Li, F.; Zhang, W.; Huang, W.; Huo, F.; Xu, H. Selenium-Containing Polymer@Metal-Organic Frameworks Nanocomposites as an Efficient Multiresponsive Drug Delivery System. Advanced Functional Materials 2017, 27, 1605465, doi:doi:10.1002/adfm.201605465.
6. Zhuang, W.; Xu, Y.; Li, G.; Hu, J.; Ma, B.; Yu, T.; Su, X.; Wang, Y. Redox and pH Dual-Responsive Polymeric Micelles with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy. ACS Applied Materials & Interfaces 2018, 10, 18489-18498, doi:10.1021/acsami.8b02890.
7. Ma, Y.-C.; Wang, J.-X.; Tao, W.; Sun, C.-Y.; Wang, Y.-C.; Li, D.-D.; Fan, F.; Qian, H.-S.; Yang, X.-Z. Redox-Responsive Polyphosphoester-Based Micellar Nanomedicines for Overriding Chemoresistance in Breast Cancer Cells. ACS Applied Materials & Interfaces 2015, 7, 26315-26325, doi:10.1021/acsami.5b09195.
8. Yang, Y.; Xu, L.; Zhu, W.; Feng, L.; Liu, J.; Chen, Q.; Dong, Z.; Zhao, J.; Liu, Z.; Chen, M. One-pot synthesis of pH-responsive charge-switchable PEGylated nanoscale coordination polymers for improved cancer therapy. Biomaterials 2018, 156, 121-133, doi:https://doi.org/10.1016/j.biomaterials.2017.11.038.
9. Lee, H.Y.; Park, S.H.; Kim, J.H.; Kim, M.S. Temperature-responsive hydrogels via the electrostatic interaction of amphiphilic diblock copolymers with pendant-ion groups. Polymer Chemistry 2017, 8, 6606-6616, doi:10.1039/C7PY01460K.
10. Wang, Y.; Deng, Y.; Luo, H.; Zhu, A.; Ke, H.; Yang, H.; Chen, H. Light-responsive nanoparticles for highly efficient cytoplasmic delivery of anticancer agents. ACS nano 2017, 11, 12134-12144.
11. Li, D.; Jiang, J.; Huang, Q.; Wang, G.; Zhang, M.; Du, J. Light-triggered “on–off” switching of fluorescence based on a naphthopyran-containing compound polymer micelle. Polymer Chemistry 2016, 7, 3444-3450, doi:10.1039/C6PY00490C.
12. Deepagan, V.G.; Kwon, S.; You, D.G.; Nguyen, V.Q.; Um, W.; Ko, H.; Lee, H.; Jo, D.-G.; Kang, Y.M.; Park, J.H. In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery. Biomaterials 2016, 103, 56-66, doi:https://doi.org/10.1016/j.biomaterials.2016.06.044.
13. Deng, Z.; Qian, Y.; Yu, Y.; Liu, G.; Hu, J.; Zhang, G.; Liu, S. Engineering Intracellular Delivery Nanocarriers and Nanoreactors from Oxidation-Responsive Polymersomes via Synchronized Bilayer Cross-Linking and Permeabilizing Inside Live Cells. Journal of the American Chemical Society 2016, 138, 10452-10466, doi:10.1021/jacs.6b04115.
14. Chen, M.; Gao, C.; Lü, S.; Chen, Y.; Liu, M. Dual redox-triggered shell-sheddable micelles self-assembled from mPEGylated starch conjugates for rapid drug release. RSC Advances 2016, 6, 9164-9174, doi:10.1039/C5RA23618E.
15. Peng, H.; Huang, X.; Melle, A.; Karperien, M.; Pich, A. Redox-responsive degradable prodrug nanogels for intracellular drug delivery by crosslinking of amine-functionalized poly(N-vinylpyrrolidone) copolymers. Journal of Colloid and Interface Science 2019, 540, 612-622, doi:https://doi.org/10.1016/j.jcis.2019.01.049.
16. Pandey, B.; Patil, N.G.; Bhosle, G.S.; Ambade, A.V.; Gupta, S.S. Amphiphilic Glycopolypeptide Star Copolymer-Based Cross-Linked Nanocarriers for Targeted and Dual-Stimuli-Responsive Drug Delivery. Bioconjugate Chemistry 2019, 30, 633-646, doi:10.1021/acs.bioconjchem.8b00831.
17. Zhao, S.-Q.; Hu, G.; Xu, X.-H.; Kang, S.-M.; Liu, N.; Wu, Z.-Q. Synthesis of Redox-Responsive Core Cross-Linked Micelles Carrying Optically Active Helical Poly(phenyl isocyanide) Arms and Their Applications in Drug Delivery. ACS Macro Letters 2018, 7, 1073-1079, doi:10.1021/acsmacrolett.8b00610.
18. Zhang, Y.; Wu, K.; Sun, H.; Zhang, J.; Yuan, J.; Zhong, Z. Hyaluronic Acid-Shelled Disulfide-Cross-Linked Nanopolymersomes for Ultrahigh-Efficiency Reactive Encapsulation and CD44-Targeted Delivery of Mertansine Toxin. ACS Applied Materials & Interfaces 2018, 10, 1597-1604, doi:10.1021/acsami.7b17718.
19. Maiti, C.; Parida, S.; Kayal, S.; Maiti, S.; Mandal, M.; Dhara, D. Redox-Responsive Core-Cross-Linked Block Copolymer Micelles for Overcoming Multidrug Resistance in Cancer Cells. ACS Applied Materials & Interfaces 2018, 10, 5318-5330, doi:10.1021/acsami.7b18245.
20. Wei, C.; Zhang, Y.; Song, Z.; Xia, Y.; Xu, H.; Lang, M. Enhanced bioreduction-responsive biodegradable diselenide-containing poly(ester urethane) nanocarriers. Biomaterials Science 2017, 5, 669-677, doi:10.1039/C6BM00960C.
21. Hailemeskel, B.Z.; Addisu, K.D.; Prasannan, A.; Mekuria, S.L.; Kao, C.-Y.; Tsai, H.-C. Synthesis and characterization of diselenide linked poly(ethylene glycol) nanogel as multi-responsive drug carrier. Applied Surface Science 2018, 449, 15-22, doi:https://doi.org/10.1016/j.apsusc.2017.12.058.
22. Zhai, S.; Hu, X.; Hu, Y.; Wu, B.; Xing, D. Visible light-induced crosslinking and physiological stabilization of diselenide-rich nanoparticles for redox-responsive drug release and combination chemotherapy. Biomaterials 2017, 121, 41-54, doi:https://doi.org/10.1016/j.biomaterials.2017.01.002.
23. Sun, C.; Ji, S.; Li, F.; Xu, H. Diselenide-Containing Hyperbranched Polymer with Light-Induced Cytotoxicity. ACS Applied Materials & Interfaces 2017, 9, 12924-12929, doi:10.1021/acsami.7b02367.
24. Sun, T.; Zhu, C.; Xu, J. Multiple stimuli-responsive selenium-functionalized biodegradable starch-based hydrogels. Soft Matter 2018, 14, 921-926, doi:10.1039/C7SM02137B.
25. Zeng, X.; Zhou, X.; Li, M.; Wang, C.; Xu, J.; Ma, D.; Xue, W. Redox poly(ethylene glycol)-b-poly(l-lactide) micelles containing diselenide bonds for effective drug delivery. Journal of Materials Science: Materials in Medicine 2015, 26, 234, doi:10.1007/s10856-015-5573-5.
26. Du, A.W.; Lu, H.; Stenzel, M.H. Core-Cross-Linking Accelerates Antitumor Activities of Paclitaxel–Conjugate Micelles to Prostate Multicellular Tumor Spheroids: A Comparison of 2D and 3D Models. Biomacromolecules 2015, 16, 1470-1479, doi:10.1021/acs.biomac.5b00282.
27. Shang, Y.; Zheng, N.; Wang, Z. Tetraphenylsilane-Cored Star-Shaped Polymer Micelles with pH/Redox Dual Response and Active Targeting Function for Drug-Controlled Release. Biomacromolecules 2019, 20, 4602-4610, doi:10.1021/acs.biomac.9b01472.
28. Park, J.; Choi, Y.; Chang, H.; Um, W.; Ryu, J.H.; Kwon, I.C. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment. Theranostics 2019, 9, 8073-8090, doi:10.7150/thno.37198.
29. Cao, Y.; He, J.; Liu, J.; Zhang, M.; Ni, P. Folate-Conjugated Polyphosphoester with Reversible Cross-Linkage and Reduction Sensitivity for Drug Delivery. ACS Applied Materials & Interfaces 2018, 10, 7811-7820, doi:10.1021/acsami.7b18887.
30. Siboro, S.A.; Salma, S.A.; Kim, H.-R.; Jeong, Y.T.; Gal, Y.-S.; Lim, K.T. Diselenide Core Cross-Linked Micelles of Poly (Ethylene Oxide)-b-Poly (Glycidyl Methacrylate) Prepared through Alkyne-Azide Click Chemistry as a Near-Infrared Controlled Drug Delivery System. Materials 2020, 13, 2846.
31. Li, Q.; Hou, W.; Li, M.; Ye, H.; Li, H.; Wang, Z. Ultrasound Combined with Core Cross-Linked Nanosystem for Enhancing Penetration of Doxorubicin Prodrug/Beta-Lapachone into Tumors. International Journal of Nanomedicine 2020, 15, 4825-4845.
32. Chen, S.; Zhao, X.; Chen, J.; Chen, J.; Kuznetsova, L.; Wong, S.S.; Ojima, I. Mechanism-Based Tumor-Targeting Drug Delivery System. Validation of Efficient Vitamin Receptor-Mediated Endocytosis and Drug Release. Bioconjugate Chemistry 2010, 21, 979-987, doi:10.1021/bc9005656.
33. Wang, D.; Liang, N.; Kawashima, Y.; Cui, F.; Yan, P.; Sun, S. Biotin-modified bovine serum albumin nanoparticles as a potential drug delivery system for paclitaxel. Journal of Materials Science 2019, 54, 8613-8626, doi:10.1007/s10853-019-03486-9.
34. Maiti, S.; Paira, P. Biotin conjugated organic molecules and proteins for cancer therapy: A review. European Journal of Medicinal Chemistry 2018, 145, 206-223, doi:https://doi.org/10.1016/j.ejmech.2018.01.001.
35. Bus, T.; Traeger, A.; Schubert, U.S. The great escape: how cationic polyplexes overcome the endosomal barrier. Journal of Materials Chemistry B 2018, 6, 6904-6918, doi:10.1039/C8TB00967H.
36. Richter, F.; Martin, L.; Leer, K.; Moek, E.; Hausig, F.; Brendel, J.C.; Traeger, A. Tuning of endosomal escape and gene expression by functional groups, molecular weight and transfection medium: a structure–activity relationship study. Journal of Materials Chemistry B 2020, 8, 5026-5041, doi:10.1039/D0TB00340A.
37. Hill, B.T. Etiology of Cancer. In Clinical Ophthalmic Oncology: Basic Principles, Singh, A.D., Damato, B.E., Eds. Springer International Publishing: Cham, 2019; 10.1007/978-3-030-04489-3_2pp. 11-17.
38. Hanahan, D.; Weinberg, Robert A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646-674, doi:https://doi.org/10.1016/j.cell.2011.02.013.
39. Jiang, W.G.; Sanders, A.J.; Katoh, M.; Ungefroren, H.; Gieseler, F.; Prince, M.; Thompson, S.K.; Zollo, M.; Spano, D.; Dhawan, P., et al. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Seminars in Cancer Biology 2015, 35, S244-S275, doi:https://doi.org/10.1016/j.semcancer.2015.03.008.
40. Moses, C.; Garcia-Bloj, B.; Harvey, A.R.; Blancafort, P. Hallmarks of cancer: The CRISPR generation. European Journal of Cancer 2018, 93, 10-18, doi:https://doi.org/10.1016/j.ejca.2018.01.002.
41. Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.M.C.S., et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Seminars in Cancer Biology 2015, 35, S185-S198, doi:https://doi.org/10.1016/j.semcancer.2015.03.004.
42. Wang, J.; Li, S.; Han, Y.; Guan, J.; Chung, S.; Wang, C.; Li, D. Poly(Ethylene Glycol)-Polylactide Micelles for Cancer Therapy. Frontiers in pharmacology 2018, 9, 202-202, doi:10.3389/fphar.2018.00202.
43. Hailemeskel, B.Z.; Hsu, W.-H.; Addisu, K.D.; Andrgie, A.T.; Chou, H.-Y.; Lai, J.-Y.; Tsai, H.-C. Diselenide linkage containing triblock copolymer nanoparticles based on Bi(methoxyl poly(ethylene glycol))-poly(ε-carprolactone): Selective intracellular drug delivery in cancer cells. Materials Science and Engineering: C 2019, 109803, doi:https://doi.org/10.1016/j.msec.2019.109803.
44. Zhang, J.; Fang, X.; Li, Z.; Chan, H.F.; Lin, Z.; Wang, Y.; Chen, M. Redox-sensitive micelles composed of disulfide-linked Pluronic-linoleic acid for enhanced anticancer efficiency of brusatol. International journal of nanomedicine 2018, 13, 939.
45. Tran, S.; DeGiovanni, P.-J.; Piel, B.; Rai, P. Cancer nanomedicine: a review of recent success in drug delivery. Clinical and translational medicine 2017, 6, 44-44, doi:10.1186/s40169-017-0175-0.
46. Ambekar, R.S.; Kandasubramanian, B. A polydopamine-based platform for anti-cancer drug delivery. Biomaterials Science 2019, 7, 1776-1793, doi:10.1039/C8BM01642A.
47. Du, J.; Lane, L.A.; Nie, S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. Journal of Controlled Release 2015, 219, 205-214, doi:https://doi.org/10.1016/j.jconrel.2015.08.050.
48. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nature Materials 2013, 12, 991, doi:10.1038/nmat3776.
49. Wang, S.; Huang, P.; Chen, X. Stimuli-Responsive Programmed Specific Targeting in Nanomedicine. ACS Nano 2016, 10, 2991-2994, doi:10.1021/acsnano.6b00870.
50. Almiron Bonnin, D.A.; Havrda, M.C.; Israel, M.A. Glioma Cell Secretion: A Driver of Tumor Progression and a Potential Therapeutic Target. Cancer Research 2018, 78, 6031-6039, doi:10.1158/0008-5472.can-18-0345.
51. Kreyling, W.G.; Semmler-Behnke, M.; Chaudhry, Q. A complementary definition of nanomaterial. Nano Today 2010, 5, 165-168, doi:https://doi.org/10.1016/j.nantod.2010.03.004.
52. Zhang, L.; Zhu, H.; Gu, Y.; Wang, X.; Wu, P. Dual drug-loaded PLA nanoparticles bypassing drug resistance for improved leukemia therapy. Journal of Nanoparticle Research 2019, 21, 83, doi:10.1007/s11051-018-4430-0.
53. Pan, J.; Lei, S.; Chang, L.; Wan, D. Smart pH-responsive nanoparticles in a model tumor microenvironment for enhanced cellular uptake. Journal of Materials Science 2019, 54, 1692-1702, doi:10.1007/s10853-018-2931-y.
54. Chinen, A.B.; Guan, C.M.; Ferrer, J.R.; Barnaby, S.N.; Merkel, T.J.; Mirkin, C.A. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chemical Reviews 2015, 115, 10530-10574, doi:10.1021/acs.chemrev.5b00321.
55. Hofmann, C.L.; O'Sullivan, M.C.; Detappe, A.; Yu, Y.; Yang, X.; Qi, W.; Landon, C.D.; Therien, M.J.; Dewhirst, M.W.; Ghoroghchian, P.P., et al. NIR-emissive PEG-b-TCL micelles for breast tumor imaging and minimally invasive pharmacokinetic analysis. Nanoscale 2017, 9, 13465-13476, doi:10.1039/C7NR02363D.
56. Niu, Y.-q.; He, T.; Song, J.; Chen, S.-p.; Liu, X.-y.; Chen, Z.-g.; Yu, Y.-j.; Chen, S.-g. A new AIE multi-block polyurethane copolymer material for subcellular microfilament imaging in living cells. Chemical Communications 2017, 53, 7541-7544, doi:10.1039/C7CC02555F.
57. Tao, Z.; Dang, X.; Huang, X.; Muzumdar, M.D.; Xu, E.S.; Bardhan, N.M.; Song, H.; Qi, R.; Yu, Y.; Li, T., et al. Early tumor detection afforded by in vivo imaging of near-infrared II fluorescence. Biomaterials 2017, 134, 202-215, doi:https://doi.org/10.1016/j.biomaterials.2017.04.046.
58. Wang, Y.; Wang, X.; Deng, F.; Zheng, N.; Liang, Y.; Zhang, H.; He, B.; Dai, W.; Wang, X.; Zhang, Q. The effect of linkers on the self-assembling and anti-tumor efficacy of disulfide-linked doxorubicin drug-drug conjugate nanoparticles. Journal of Controlled Release 2018, 279, 136-146, doi:https://doi.org/10.1016/j.jconrel.2018.04.019.
59. Ma, G.; Liu, J.; He, J.; Zhang, M.; Ni, P. Dual-Responsive Polyphosphoester-Doxorubicin Prodrug Containing a Diselenide Bond: Synthesis, Characterization, and Drug Delivery. ACS Biomaterials Science & Engineering 2018, 4, 2443-2452, doi:10.1021/acsbiomaterials.8b00429.
60. Chen, L.; Watson, C.; Morsch, M.; Cole, N.J.; Chung, R.S.; Saunders, D.N.; Yerbury, J.J.; Vine, K.L. Improving the Delivery of SOD1 Antisense Oligonucleotides to Motor Neurons Using Calcium Phosphate-Lipid Nanoparticles. Frontiers in Neuroscience 2017, 11, doi:10.3389/fnins.2017.00476.
61. Repenko, T.; Rix, A.; Ludwanowski, S.; Go, D.; Kiessling, F.; Lederle, W.; Kuehne, A.J.C. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications. Nature Communications 2017, 8, 470, doi:10.1038/s41467-017-00545-0.
62. Meng, F.; Wang, J.; Ping, Q.; Yeo, Y. Quantitative Assessment of Nanoparticle Biodistribution by Fluorescence Imaging, Revisited. ACS nano 2018, 12, 6458-6468, doi:10.1021/acsnano.8b02881.
63. Leena, M.; Doaa, R.; Hassan, G. Bioactivity of Hybrid Polymeric Magnetic Nanoparticles and Their Applications in Drug Delivery. Current Pharmaceutical Design 2016, 22, 3332-3352, doi:http://dx.doi.org/10.2174/1381612822666160208143237.
64. Li, B.; Li, Q.; Mo, J.; Dai, H. Drug-Loaded Polymeric Nanoparticles for Cancer Stem Cell Targeting. Frontiers in Pharmacology 2017, 8, doi:10.3389/fphar.2017.00051.
65. Muhamad, N.; Plengsuriyakarn, T.; Na-Bangchang, K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. International journal of nanomedicine 2018, 13, 3921-3935, doi:10.2147/IJN.S165210.
66. Singh, A.P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduction and Targeted Therapy 2019, 4, 33, doi:10.1038/s41392-019-0068-3.
67. Hu, J.; Zhuang, W.; Ma, B.; Su, X.; Yu, T.; Li, G.; Hu, Y.; Wang, Y. Redox-Responsive Biomimetic Polymeric Micelle for Simultaneous Anticancer Drug Delivery and Aggregation-Induced Emission Active Imaging. Bioconjugate chemistry 2018, 29, 1897-1910.
68. Addisu, K.D.; Hailemeskel, B.Z.; Mekuria, S.L.; Andrgie, A.T.; Lin, Y.-C.; Tsai, H.-C. Bioinspired, Manganese-Chelated Alginate–Polydopamine Nanomaterials for Efficient in Vivo T1-Weighted Magnetic Resonance Imaging. ACS Applied Materials & Interfaces 2018, 10, 5147-5160, doi:10.1021/acsami.7b13396.
69. Hu, S.; Zhang, Y. Endostar-loaded PEG-PLGA nanoparticles: in vitro and in vivo evaluation. International journal of nanomedicine 2010, 5, 1039-1048, doi:10.2147/IJN.S14753.
70. Wang, H.; Zhao, Y.; Wu, Y.; Hu, Y.-l.; Nan, K.; Nie, G.; Chen, H. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 2011, 32, 8281-8290.
71. Song, Z.; Feng, R.; Sun, M.; Guo, C.; Gao, Y.; Li, L.; Zhai, G. Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo. Journal of Colloid and Interface Science 2011, 354, 116-123, doi:https://doi.org/10.1016/j.jcis.2010.10.024.
72. Cheng, X.; Jin, Y.; Qi, R.; Fan, W.; Li, H.; Sun, X.; Lai, S. Dual pH and oxidation-responsive nanogels crosslinked by diselenide bonds for controlled drug delivery. Polymer 2016, 101, 370-378, doi:https://doi.org/10.1016/j.polymer.2016.08.087.
73. Chu, B.; Zhang, L.; Qu, Y.; Chen, X.; Peng, J.; Huang, Y.; Qian, Z. Synthesis, characterization and drug loading property of Monomethoxy-Poly(ethylene glycol)-Poly(ε-caprolactone)-Poly(D,L-lactide) (MPEG-PCLA) copolymers. Scientific Reports 2016, 6, 34069, doi:10.1038/srep34069.
74. Yi, X.; Dai, J.; Han, Y.; Xu, M.; Zhang, X.; Zhen, S.; Zhao, Z.; Lou, X.; Xia, F. A high therapeutic efficacy of polymeric prodrug nano-assembly for a combination of photodynamic therapy and chemotherapy. Communications Biology 2018, 1, 202, doi:10.1038/s42003-018-0204-6.
75. Chu, B.; Zhang, L.; Qu, Y.; Chen, X.; Peng, J.; Huang, Y.; Qian, Z. Synthesis, characterization and drug loading property of Monomethoxy-Poly(ethylene glycol)-Poly(ε-caprolactone)-Poly(D,L-lactide) (MPEG-PCLA) copolymers. Scientific Reports 2016, 6, 34069, doi:10.1038/srep34069.
76. Grancharov, G.; Atanasova, M.-D.; Aluani, D.; Yoncheva, K.; Tzankova, V.; Trusheva, B.; Forys, A.; Trzebicka, B.; Petrov, P.D. Functional block copolymers bearing pendant cinnamyl groups for enhanced solubilization of caffeic acid phenethyl ester. Polymer Journal 2020, 52, 435-447, doi:10.1038/s41428-019-0297-x.
77. Huang, Q.; Xu, Z.; Cai, C.; Lin, J. Micelles with a Loose Core Self-Assembled from Coil-g-Rod Graft Copolymers Displaying High Drug Loading Capacity. Macromolecular Chemistry and Physics 2020, 221, 2000121, doi:10.1002/macp.202000121.
78. Xu, W.; Siddiqui, I.A.; Nihal, M.; Pilla, S.; Rosenthal, K.; Mukhtar, H.; Gong, S. Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials 2013, 34, 5244-5253, doi:https://doi.org/10.1016/j.biomaterials.2013.03.006.
79. Pei, X.; Luo, F.; Zhang, J.; Chen, W.; Jiang, C.; Liu, J. Dehydroascorbic Acids-modified Polymer Micelles Target Cancer Cells to Enhance Anti-tumor Efficacy of Paclitaxel. Scientific Reports 2017, 7, 975, doi:10.1038/s41598-017-01168-7.
80. Porsch, C.; Zhang, Y.; Montañez, M.I.; Malho, J.-M.; Kostiainen, M.A.; Nyström, A.M.; Malmström, E. Disulfide-Functionalized Unimolecular Micelles as Selective Redox-Responsive Nanocarriers. Biomacromolecules 2015, 16, 2872-2883, doi:10.1021/acs.biomac.5b00809.
81. Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polymer Chemistry 2017, 8, 144-176, doi:10.1039/C6PY01872F.
82. Zhang, X.; Han, L.; Liu, M.; Wang, K.; Tao, L.; Wan, Q.; Wei, Y. Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. Materials Chemistry Frontiers 2017, 1, 807-822, doi:10.1039/C6QM00135A.
83. Son, S.; Shin, E.; Kim, B.-S. Light-Responsive Micelles of Spiropyran Initiated Hyperbranched Polyglycerol for Smart Drug Delivery. Biomacromolecules 2014, 15, 628-634, doi:10.1021/bm401670t.
84. Chen, W.-H.; Luo, G.-F.; Lei, Q.; Jia, H.-Z.; Hong, S.; Wang, Q.-R.; Zhuo, R.-X.; Zhang, X.-Z. MMP-2 responsive polymeric micelles for cancer-targeted intracellular drug delivery. Chemical Communications 2015, 51, 465-468, doi:10.1039/C4CC07563C.
85. Wei, H.; Cheng, S.-X.; Zhang, X.-Z.; Zhuo, R.-X. Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Progress in Polymer Science 2009, 34, 893-910, doi:https://doi.org/10.1016/j.progpolymsci.2009.05.002.
86. Zhou, Q.; Zhang, L.; Yang, T.; Wu, H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. International journal of nanomedicine 2018, 13, 2921-2942, doi:10.2147/IJN.S158696.
87. Tian, Q.; Fei, C.; Yin, H.; Feng, Y. Stimuli-responsive polymer wormlike micelles. Progress in Polymer Science 2019, 89, 108-132, doi:https://doi.org/10.1016/j.progpolymsci.2018.10.001.
88. Dai, Y.; Chen, X.; Zhang, X. Recent advances in stimuli-responsive polymeric micelles via click chemistry. Polymer Chemistry 2019, 10, 34-44, doi:10.1039/C8PY01174E.
89. Gohy, J.-F.; Lohmeijer, B.G.G.; Varshney, S.K.; Décamps, B.; Leroy, E.; Boileau, S.; Schubert, U.S. Stimuli-Responsive Aqueous Micelles from an ABC Metallo-Supramolecular Triblock Copolymer. Macromolecules 2002, 35, 9748-9755, doi:10.1021/ma021175r.
90. Shen, X.; Cao, S.; Zhang, Q.; Zhang, J.; Wang, J.; Ye, Z. Amphiphilic TEMPO-Functionalized Block Copolymers: Synthesis, Self-Assembly and Redox-Responsive Disassembly Behavior, and Potential Application in Triggered Drug Delivery. ACS Applied Polymer Materials 2019, 1, 2282-2290, doi:10.1021/acsapm.9b00293.
91. Gebeyehu, B.T.; Lee, A.-W.; Huang, S.-Y.; Muhabie, A.A.; Lai, J.-Y.; Lee, D.-J.; Cheng, C.-C. Highly stable photosensitive supramolecular micelles for tunable, efficient controlled drug release. European Polymer Journal 2019, 110, 403-412, doi:https://doi.org/10.1016/j.eurpolymj.2018.12.005.
92. Lin, W.; Xue, Z.; Wen, L.; Li, Y.; Liang, Z.; Xu, J.; Yang, C.; Gu, Y.; Zhang, J.; Zu, X., et al. Mesoscopic simulations of drug-loaded diselenide crosslinked micelles: Stability, drug loading and release properties. Colloids and Surfaces B: Biointerfaces 2019, 182, 110313, doi:https://doi.org/10.1016/j.colsurfb.2019.06.043.
93. Mu, J.; Lin, J.; Huang, P.; Chen, X. Development of endogenous enzyme-responsive nanomaterials for theranostics. Chemical Society Reviews 2018, 47, 5554-5573, doi:10.1039/C7CS00663B.
94. Yang, J.; Pan, S.; Gao, S.; Dai, Y.; Xu, H. Anti-recurrence/metastasis and chemosensitization therapy with thioredoxin reductase-interfering drug delivery system. Biomaterials 2020, 249, 120054, doi:https://doi.org/10.1016/j.biomaterials.2020.120054.
95. Debele, T.A.; Mekuria, S.L.; Tsai, H.-C. Synthesis and characterization of redox-sensitive heparin-β-sitosterol micelles: Their application as carriers for the pharmaceutical agent, doxorubicin, and investigation of their antimetastatic activities in vitro. Materials Science and Engineering: C 2017, 75, 1326-1338, doi:https://doi.org/10.1016/j.msec.2017.03.052.
96. Meng, F.; Cheng, R.; Deng, C.; Zhong, Z. Intracellular drug release nanosystems. Materials Today 2012, 15, 436-442, doi:https://doi.org/10.1016/S1369-7021(12)70195-5.
97. Chibh, S.; Kour, A.; Yadav, N.; Kumar, P.; Yadav, P.; Chauhan, V.S.; Panda, J.J. Redox-Responsive Dipeptide Nanostructures toward Targeted Cancer Therapy. ACS Omega 2020, 5, 3365-3375, doi:10.1021/acsomega.9b03547.
98. Xiong, D.; Wen, L.; Peng, S.; Xu, J.; Zhang, L. Reversible Cross-Linked Mixed Micelles for pH Triggered Swelling and Redox Triggered Degradation for Enhanced and Controlled Drug Release. Pharmaceutics 2020, 12, 258.
99. Quinn, J.F.; Whittaker, M.R.; Davis, T.P. Glutathione responsive polymers and their application in drug delivery systems. Polymer Chemistry 2017, 8, 97-126, doi:10.1039/C6PY01365A.
100. Chang, S.; Wang, Y.; Zhang, T.; Pu, X.; Zong, L.; Zhu, H.; Zhao, L.; Feng, B. Redox-Responsive Disulfide Bond-Bridged mPEG-PBLA Prodrug Micelles for Enhanced Paclitaxel Biosafety and Antitumor Efficacy. Frontiers in Oncology 2019, 9, doi:10.3389/fonc.2019.00823.
101. Liu, J.; Pang, Y.; Chen, J.; Huang, P.; Huang, W.; Zhu, X.; Yan, D. Hyperbranched polydiselenide as a self assembling broad spectrum anticancer agent. Biomaterials 2012, 33, 7765-7774, doi:https://doi.org/10.1016/j.biomaterials.2012.07.003.
102. Li, R.; Peng, F.; Cai, J.; Yang, D.; Zhang, P. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian Journal of Pharmaceutical Sciences 2020, 15, 311-325, doi:https://doi.org/10.1016/j.ajps.2019.06.003.
103. Wan, D.; Li, C.; Pan, J. Polymeric Micelles with Reduction-Responsive Function for Targeted Cancer Chemotherapy. ACS Applied Bio Materials 2020, 3, 1139-1146, doi:10.1021/acsabm.9b01070.
104. Maruya-Li, K.; Shetty, C.; Moini Jazani, A.; Arezi, N.; Oh, J.K. Dual Reduction/Acid-Responsive Disassembly and Thermoresponsive Tunability of Degradable Double Hydrophilic Block Copolymer. ACS Omega 2020, 5, 3734-3742, doi:10.1021/acsomega.9b04430.
105. Huang, Y.; Yan, J.; Peng, S.; Tang, Z.; Tan, C.; Ling, J.; Lin, W.; Lin, X.; Zu, X.; Yi, G. pH/Reduction Dual-Stimuli-Responsive Cross-Linked Micelles Based on Multi-Functional Amphiphilic Star Copolymer: Synthesis and Controlled Anti-Cancer Drug Release. Polymers 2020, 12, 82.
106. Chen, X.; Teng, W.; Jin, Q.; Ji, J. One-step preparation of reduction-responsive cross-linked gemcitabine prodrug micelles for intracellular drug delivery. Colloids and Surfaces B: Biointerfaces 2019, 181, 94-101, doi:https://doi.org/10.1016/j.colsurfb.2019.05.038.
107. Pham, S.H.; Choi, Y.; Choi, J. Stimuli-Responsive Nanomaterials for Application in Antitumor Therapy and Drug Delivery. Pharmaceutics 2020, 12, 630.
108. Haratake, M.; Tachibana, Y.; Emaya, Y.; Yoshida, S.; Fuchigami, T.; Nakayama, M. Synthesis of Nanovesicular Glutathione Peroxidase Mimics with a Selenenylsulfide-Bearing Lipid. ACS Omega 2016, 1, 58-65, doi:10.1021/acsomega.6b00046.
109. Fu, S.; Li, F.; Zang, M.; Zhang, Z.; Ji, Y.; Yu, X.; Luo, Q.; Guan, S.; Xu, J.; Liu, J. Diselenium-containing ultrathin polymer nanocapsules for highly efficient targeted drug delivery and combined anticancer effect. Journal of Materials Chemistry B 2019, 7, 4927-4932, doi:10.1039/C9TB01200A.
110. Sentkowska, A.; Pyrzyńska, K. Investigation of antioxidant activity of selenium compounds and their mixtures with tea polyphenols. Molecular Biology Reports 2019, 10.1007/s11033-019-04738-2, doi:10.1007/s11033-019-04738-2.
111. Liu, F.; Liu, H.; Liu, R.; Xiao, C.; Duan, X.; McClements, D.J.; Liu, X. Delivery of Sesamol Using Polyethylene-Glycol-Functionalized Selenium Nanoparticles in Human Liver Cells in Culture. Journal of Agricultural and Food Chemistry 2019, 67, 2991-2998, doi:10.1021/acs.jafc.8b06924.
112. Cao, W.; Xu, H. Selenium-containing supra-amphiphiles. Materials Chemistry Frontiers 2019, 3, 2010-2017, doi:10.1039/C9QM00419J.
113. Fan, W.; Jin, Y.; Shi, L. Mechanically robust and tough waterborne polyurethane films based on diselenide bonds and dual H-bonding interactions with fast visible-light-triggered room-temperature self-healability. Polymer Chemistry 2020, 10.1039/D0PY00897D, doi:10.1039/D0PY00897D.
114. Cao, W.; Gu, Y.; Meineck, M.; Xu, H. The Combination of Chemotherapy and Radiotherapy towards More Efficient Drug Delivery. Chemistry – An Asian Journal 2014, 9, 48-57, doi:doi:10.1002/asia.201301294.
115. Zhang, Y.; Xu, Y.; Wei, C.; Zhang, Y.; Yang, L.; Song, Z.; Lang, M. Diselenide-containing poly(ε-caprolactone)-based thermo-responsive hydrogels with oxidation and reduction-triggered degradation. Materials Today Chemistry 2017, 4, 172-179, doi:https://doi.org/10.1016/j.mtchem.2017.03.004.
116. Fan, C.; Ding, C.; Pan, X.; Zhang, Z.; Zhu, J.; Zhu, X. A Straightforward Method for Preparing Well-Defined Responsive Diselenide-Containing Polymers Based on ATRP. Macromolecular Rapid Communications 2015, 36, 903-908, doi:10.1002/marc.201500034.
117. Lee, E.; Park, H.-c.; Lee, D.; Park, S.J.; Kim, Y.-H.; Kim, C.-H. Synthesis and cellular affinity of a water-soluble sulfated diselenide compound as a H2O2-responsive ionic cross-linker. Journal of Industrial and Engineering Chemistry 2020, 83, 181-188, doi:https://doi.org/10.1016/j.jiec.2019.11.026.
118. Ma, N.; Li, Y.; Xu, H.; Wang, Z.; Zhang, X. Dual Redox Responsive Assemblies Formed from Diselenide Block Copolymers. Journal of the American Chemical Society 2010, 132, 442-443, doi:10.1021/ja908124g.
119. Ma, N.; Xu, H.; An, L.; Li, J.; Sun, Z.; Zhang, X. Radiation-Sensitive Diselenide Block Co-polymer Micellar Aggregates: Toward the Combination of Radiotherapy and Chemotherapy. Langmuir 2011, 27, 5874-5878, doi:10.1021/la2009682.
120. Cai, Z.; Lu, W.; Gao, F.; Pan, X.; Zhu, J.; Zhang, Z.; Zhu, X. Diselenide-Labeled Cyclic Polystyrene with Multiple Responses: Facile Synthesis, Tunable Size, and Topology. Macromolecular rapid communications 2016, 37, 865-871, doi:10.1002/marc.201600082.
121. Pan, X.; Driessen, F.; Zhu, X.; Du Prez, F.E. Selenolactone as a Building Block toward Dynamic Diselenide-Containing Polymer Architectures with Controllable Topology. ACS Macro Letters 2017, 6, 89-92, doi:10.1021/acsmacrolett.6b00944.
122. Wang, C.; An, X.; Pang, M.; Zhang, Z.; Zhu, X.; Zhu, J.; Du Prez, F.E.; Pan, X. Dynamic diselenide-containing polyesters from alcoholysis/oxidation of γ-butyroselenolactone. Polymer Chemistry 2018, 9, 4044-4051, doi:10.1039/C8PY00736E.
123. Cheng, G.; He, Y.; Xie, L.; Nie, Y.; He, B.; Zhang, Z.; Gu, Z. Development of a reduction-sensitive diselenide-conjugated oligoethylenimine nanoparticulate system as a gene carrier. International journal of nanomedicine 2012, 7, 3991-4006, doi:10.2147/IJN.S32961.
124. Yue, D.; Cheng, G.; He, Y.; Nie, Y.; Jiang, Q.; Cai, X.; Gu, Z. Influence of reduction-sensitive diselenide bonds and disulfide bonds on oligoethylenimine conjugates for gene delivery. Journal of Materials Chemistry B 2014, 2, 7210-7221, doi:10.1039/C4TB00757C.
125. Sun, T.; Jin, Y.; Qi, R.; Peng, S.; Fan, B. Oxidation responsive mono-cleavable amphiphilic di-block polymer micelles labeled with a single diselenide. Polymer Chemistry 2013, 4, 4017-4023, doi:10.1039/C3PY00406F.
126. Li, C.; Huang, W.; Zhou, L.; Huang, P.; Pang, Y.; Zhu, X.; Yan, D. PEGylated poly(diselenide-phosphate) nanogel as efficient self-delivery nanomedicine for cancer therapy. Polymer Chemistry 2015, 6, 6498-6508, doi:10.1039/C5PY00995B.
127. Salma, S.A.; Patil, M.P.; Kim, D.W.; Le, C.M.Q.; Ahn, B.-H.; Kim, G.-D.; Lim, K.T. Near-infrared light-responsive, diselenide containing core-cross-linked micelles prepared by the Diels–Alder click reaction for photocontrollable drug release application. Polymer Chemistry 2018, 9, 4813-4823, doi:10.1039/C8PY00961A.
128. Zhang, L.; Liu, Y.; Zhang, K.; Chen, Y.; Luo, X. Redox-responsive comparison of diselenide micelles with disulfide micelles. Colloid and Polymer Science 2019, 297, 225-238, doi:10.1007/s00396-018-4457-x.
129. Hailemeskel, B.Z.; Hsu, W.-H.; Addisu, K.D.; Andrgie, A.T.; Chou, H.-Y.; Lai, J.-Y.; Tsai, H.-C. Diselenide linkage containing triblock copolymer nanoparticles based on Bi(methoxyl poly(ethylene glycol))-poly(ε-carprolactone): Selective intracellular drug delivery in cancer cells. Materials Science and Engineering: C 2019, 103, 109803, doi:https://doi.org/10.1016/j.msec.2019.109803.
130. Birhan, Y.S.; Hailemeskel, B.Z.; Mekonnen, T.W.; Hanurry, E.Y.; Darge, H.F.; Andrgie, A.T.; Chou, H.-Y.; Lai, J.-Y.; Hsiue, G.-H.; Tsai, H.-C. Fabrication of redox-responsive Bi(mPEG-PLGA)-Se2 micelles for doxorubicin delivery. International Journal of Pharmaceutics 2019, 567, 118486, doi:https://doi.org/10.1016/j.ijpharm.2019.118486.
131. Zhang, K.; Liu, J.; Ma, X.; Lei, L.; Li, Y.; Yang, H.; Lei, Z. Temperature, pH, and reduction triple-stimuli-responsive inner-layer crosslinked micelles as nanocarriers for controlled release. Journal of Applied Polymer Science 2018, 135, 46714, doi:10.1002/app.46714.
132. Xiong, D.; Zhang, R.; Luo, W.; Gu, H.; Peng, S.; Zhang, L. Hydrazone cross-linked micelles based on redox degradable block copolymer for enhanced stability and controlled drug release. Reactive and Functional Polymers 2017, 119, 64-74, doi:https://doi.org/10.1016/j.reactfunctpolym.2017.08.003.
133. Xia, Y.; He, H.; Liu, X.; Hu, D.; Yin, L.; Lu, Y.; Xu, W. Redox-responsive, core-crosslinked degradable micelles for controlled drug release. Polymer Chemistry 2016, 7, 6330-6339, doi:10.1039/C6PY01423B.
134. Ma, N.; Li, Y.; Ren, H.; Xu, H.; Li, Z.; Zhang, X. Selenium-containing block copolymers and their oxidation-responsive aggregates. Polymer Chemistry 2010, 1, 1609-1614, doi:10.1039/C0PY00144A.
135. Han, P.; Li, S.; Cao, W.; Li, Y.; Sun, Z.; Wang, Z.; Xu, H. Red light responsive diselenide-containing block copolymer micelles. Journal of Materials Chemistry B 2013, 1, 740-743, doi:10.1039/C2TB00186A.
136. Tian, Y.; Zheng, J.; Tang, X.; Ren, Q.; Wang, Y.; Yang, W. Near-Infrared Light-Responsive Nanogels with Diselenide-Cross-Linkers for On-Demand Degradation and Triggered Drug Release. Particle & Particle Systems Characterization 2015, 32, 547-551, doi:10.1002/ppsc.201400244.
137. Luan, J.; Shen, W.; Chen, C.; Lei, K.; Yu, L.; Ding, J. Selenium-containing thermogel for controlled drug delivery by coordination competition. RSC Advances 2015, 5, 97975-97981, doi:10.1039/C5RA22307E.
138. Yang, X.-L.; Xing, X.; Li, J.; Liu, Y.-H.; Wang, N.; Yu, X.-Q. Enzymatic synthesis of selenium-containing amphiphilic aliphatic polycarbonate as an oxidation-responsive drug delivery vehicle. RSC Advances 2019, 9, 6003-6010, doi:10.1039/C8RA10282A.
139. Ren, H.; Wu, Y.; Ma, N.; Xu, H.; Zhang, X. Side-chain selenium-containing amphiphilic block copolymers: redox-controlled self-assembly and disassembly. Soft Matter 2012, 8, 1460-1466, doi:10.1039/C1SM06673K.
140. Yu, L.; Yang, Y.; Du, F.-S.; Li, Z.-C. ROS-Responsive Chalcogen-Containing Polycarbonates for Photodynamic Therapy. Biomacromolecules 2018, 19, 2182-2193, doi:10.1021/acs.biomac.8b00271.
141. Yu, L.; Ke, H.-L.; Du, F.-S.; Li, Z.-C. Redox-Responsive Fluorescent Polycarbonates Based on Selenide for Chemotherapy of Triple-Negative Breast Cancer. Biomacromolecules 2019, 20, 2809-2820, doi:10.1021/acs.biomac.9b00583.
142. Zhang, Y.; Xu, Y.; Wei, C.; Sun, C.; Yan, B.; Hu, J.; Lu, W. One-shot synthesis and solution properties of ROS/pH responsive methoxy poly(ethylene glycol)-b-polycarbonate. Polymer Chemistry 2019, 10, 2143-2151, doi:10.1039/C9PY00060G.
143. Shi, L.; Jin, Y.; Du, W.; Lai, S.; Shen, Y.; Zhou, R. Diselenide-containing nonionic gemini polymeric micelles as a smart redox-responsive carrier for potential programmable drug release. Polymer 2020, 198, 122551, doi:https://doi.org/10.1016/j.polymer.2020.122551.
144. Wei, C.; Zhang, Y.; Xu, H.; Xu, Y.; Xu, Y.; Lang, M. Well-defined labile diselenide-centered poly(ε-caprolactone)-based micelles for activated intracellular drug release. Journal of Materials Chemistry B 2016, 4, 5059-5067, doi:10.1039/C6TB01040G.
145. Wang, L.; Cao, W.; Yi, Y.; Xu, H. Dual Redox Responsive Coassemblies of Diselenide-Containing Block Copolymers and Polymer Lipids. Langmuir 2014, 30, 5628-5636, doi:10.1021/la501054z.
146. Zhang, L.; Zhang, S.; Xu, J.; Li, Y.; He, J.; Yang, Y.; Huynh, T.; Ni, P.; Duan, G.; Yang, Z., et al. Low-Dose X-ray-Responsive Diselenide Nanocarriers for Effective Delivery of Anticancer Agents. ACS Applied Materials & Interfaces 2020, 10.1021/acsami.0c11627, doi:10.1021/acsami.0c11627.
147. Gao, S.; Li, T.; Guo, Y.; Sun, C.; Xianyu, B.; Xu, H. Selenium-Containing Nanoparticles Combine the NK Cells Mediated Immunotherapy with Radiotherapy and Chemotherapy. Advanced Materials 2020, 32, 1907568, doi:10.1002/adma.201907568.
148. Wang, J.; Sun, C.; Hu, J.; Huang, Y.; Lu, Y.; Zhang, Y. Ring opening copolymerization of ε-caprolactone and diselenic macrolide carbonate for well-defined poly(ester-co-carbonate): kinetic evaluation and ROS/GSH responsiveness. Polymer Chemistry 2020, 11, 1597-1605, doi:10.1039/C9PY01788G.
149. Sun, C.; Wang, J.; Hu, J.; Lu, W.; Song, Z.; Zhang, Y. Facile synthesis of a well-defined heteroatom-containing main chain polycarbonate for activated intracellular drug release. Materials Chemistry Frontiers 2020, 10.1039/C9QM00778D, doi:10.1039/C9QM00778D.
150. Wang, L.; Zhu, K.; Cao, W.; Sun, C.; Lu, C.; Xu, H. ROS-triggered degradation of selenide-containing polymers based on selenoxide elimination. Polymer Chemistry 2019, 10, 2039-2046, doi:10.1039/C9PY00171A.
151. Yu, L.; Zhang, M.; Du, F.-S.; Li, Z.-C. ROS-responsive poly(ε-caprolactone) with pendent thioether and selenide motifs. Polymer Chemistry 2018, 9, 3762-3773, doi:10.1039/C8PY00620B.
152. Sun, C.; Wang, L.; Xianyu, B.; Li, T.; Gao, S.; Xu, H. Selenoxide elimination manipulate the oxidative stress to improve the antitumor efficacy. Biomaterials 2019, 225, 119514.
153. Hu, J.; He, J.; Cao, D.; Zhang, M.; Ni, P. Core cross-linked polyphosphoester micelles with folate-targeted and acid-cleavable features for pH-triggered drug delivery. Polymer Chemistry 2015, 6, 3205-3216, doi:10.1039/C5PY00023H.
154. He, J.; Xia, Y.; Niu, Y.; Hu, D.; Xia, X.; Lu, Y.; Xu, W. pH-responsive core crosslinked polycarbonate micelles via thiol-acrylate Michael addition reaction. Journal of Applied Polymer Science 2017, 134, doi:10.1002/app.44421.
155. Biswas, D.; An, S.Y.; Li, Y.; Wang, X.; Oh, J.K. Intracellular Delivery of Colloidally Stable Core-Cross-Linked Triblock Copolymer Micelles with Glutathione-Responsive Enhanced Drug Release for Cancer Therapy. Molecular Pharmaceutics 2017, 14, 2518-2528, doi:10.1021/acs.molpharmaceut.6b01146.
156. Zhou, Y.; Yu, J.; Feng, X.; Li, W.; Wang, Y.; Jin, H.; Huang, H.; Liu, Y.; Fan, D. Reduction-responsive core-crosslinked micelles based on a glycol chitosan–lipoic acid conjugate for triggered release of doxorubicin. RSC Advances 2016, 6, 31391-31400, doi:10.1039/C6RA05501J.
157. Monaco, A.; Beyer, V.P.; Napier, R.; Becer, C.R. Multi-Arm Star-Shaped Glycopolymers with Precisely Controlled Core Size and Arm Length. Biomacromolecules 2020, 21, 3736-3744, doi:10.1021/acs.biomac.0c00838.
158. Chan, N.; An, S.Y.; Oh, J.K. Dual location disulfide degradable interlayer-crosslinked micelles with extended sheddable coronas exhibiting enhanced colloidal stability and rapid release. Polymer Chemistry 2014, 5, 1637-1649, doi:10.1039/C3PY00852E.
159. Najafi, M.; Kordalivand, N.; Moradi, M.-A.; van den Dikkenberg, J.; Fokkink, R.; Friedrich, H.; Sommerdijk, N.A.J.M.; Hembury, M.; Vermonden, T. Native Chemical Ligation for Cross-Linking of Flower-Like Micelles. Biomacromolecules 2018, 19, 3766-3775, doi:10.1021/acs.biomac.8b00908.
160. Xia, J.; Zhao, P.; Pan, S.; Xu, H. Diselenide-Containing Polymeric Vesicles with Osmotic Pressure Response. ACS Macro Letters 2019, 8, 629-633, doi:10.1021/acsmacrolett.9b00250.
161. Siboro, S.A.P.; Anugrah, D.S.B.; Jeong, Y.T.; Yoo, S.I.; Lim, K.T. Systematic investigation to the effects of near-infrared light exposure on polymeric micelles of poly(ethylene glycol)-block-poly(styrene-alt-maleic anhydride) loaded with indocyanine green. Polymer Degradation and Stability 2019, 167, 241-249, doi:https://doi.org/10.1016/j.polymdegradstab.2019.07.009.
162. Kim, Y.; Pourgholami, M.H.; Morris, D.L.; Stenzel, M.H. Triggering the fast release of drugs from crosslinked micelles in an acidic environment. Journal of Materials Chemistry 2011, 21, 12777-12783, doi:10.1039/C1JM11062D.
163. Shi, C.; Guo, X.; Qu, Q.; Tang, Z.; Wang, Y.; Zhou, S. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles. Biomaterials 2014, 35, 8711-8722, doi:https://doi.org/10.1016/j.biomaterials.2014.06.036.
164. Lu, Y.; Zhang, E.; Yang, J.; Cao, Z. Strategies to improve micelle stability for drug delivery. Nano research 2018, 11, 4985-4998, doi:10.1007/s12274-018-2152-3.
165. Behroozi, F.; Abdkhodaie, M.-J.; Abandansari, H.S.; Satarian, L.; Molazem, M.; Al-Jamal, K.T.; Baharvand, H. Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo. Acta Biomaterialia 2018, 76, 239-256, doi:https://doi.org/10.1016/j.actbio.2018.05.031.
166. Li, M.; Li, Q.; Hou, W.; Zhang, J.; Ye, H.; Li, H.; Zeng, D.; Bai, J. A redox-sensitive core-crosslinked nanosystem combined with ultrasound for enhanced deep penetration of nanodiamonds into tumors. RSC Advances 2020, 10, 15252-15263, doi:10.1039/D0RA01776K.
167. Wilkosz, N.; Łazarski, G.; Kovacik, L.; Gargas, P.; Nowakowska, M.; Jamróz, D.; Kepczynski, M. Molecular Insight into Drug-Loading Capacity of PEG–PLGA Nanoparticles for Itraconazole. The Journal of Physical Chemistry B 2018, 122, 7080-7090, doi:10.1021/acs.jpcb.8b03742.
168. Zhang, K.; Tang, X.; Zhang, J.; Lu, W.; Lin, X.; Zhang, Y.; Tian, B.; Yang, H.; He, H. PEG–PLGA copolymers: Their structure and structure-influenced drug delivery applications. Journal of Controlled release 2014, 183, 77-86.
169. Yoo, H.S.; Park, T.G. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer. Journal of Controlled Release 2001, 70, 63-70, doi:https://doi.org/10.1016/S0168-3659(00)00340-0.
170. Avgoustakis, K.; Beletsi, A.; Panagi, Z.; Klepetsanis, P.; Karydas, A.G.; Ithakissios, D.S. PLGA–mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. Journal of Controlled Release 2002, 79, 123-135, doi:https://doi.org/10.1016/S0168-3659(01)00530-2.
171. Liu, Q.; Zhu, H.; Qin, J.; Dong, H.; Du, J. Theranostic Vesicles Based on Bovine Serum Albumin and Poly(ethylene glycol)-block-poly(l-lactic-co-glycolic acid) for Magnetic Resonance Imaging and Anticancer Drug Delivery. Biomacromolecules 2014, 15, 1586-1592, doi:10.1021/bm500438x.
172. Golombek, S.K.; May, J.-N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Advanced drug delivery reviews 2018, 130, 17-38, doi:10.1016/j.addr.2018.07.007.
173. Cao, W.; Li, F.; Chen, R.; Xu, H. Tellurium-containing nanoparticles for controlled delivery of cisplatin based on coordination interaction. RSC Advances 2016, 6, 94033-94037, doi:10.1039/C6RA19768J.
174. Fan, F.; Gao, S.; Ji, S.; Fu, Y.; Zhang, P.; Xu, H. Gamma radiation-responsive side-chain tellurium-containing polymer for cancer therapy. Materials Chemistry Frontiers 2018, 2, 2109-2115, doi:10.1039/C8QM00321A.
175. Xue, Y.; Xia, X.; Yu, B.; Tao, L.; Wang, Q.; Huang, S.-W.; Yu, F. Selenylsulfide Bond-Launched Reduction-Responsive Superparamagnetic Nanogel Combined of Acid-Responsiveness for Achievement of Efficient Therapy with Low Side Effect. ACS Applied Materials & Interfaces 2017, 9, 30253-30257, doi:10.1021/acsami.7b06818.
176. Wang, L.; Wang, W.; Cao, W.; Xu, H. Multi-hierarchical responsive polymers: stepwise oxidation of a selenium- and tellurium-containing block copolymer with sensitivity to both chemical and electrochemical stimuli. Polymer Chemistry 2017, 8, 4520-4527, doi:10.1039/C7PY00971B.
177. Chen, X.; Chen, J.; Li, B.; Yang, X.; Zeng, R.; Liu, Y.; Li, T.; Ho, R.J.Y.; Shao, J. PLGA-PEG-PLGA triblock copolymeric micelles as oral drug delivery system: In vitro drug release and in vivo pharmacokinetics assessment. Journal of Colloid and Interface Science 2017, 490, 542-552, doi:https://doi.org/10.1016/j.jcis.2016.11.089.
178. Avgoustakis, K.; Beletsi, A.; Panagi, Z.; Klepetsanis, P.; Livaniou, E.; Evangelatos, G.; Ithakissios, D. Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA–mPEG nanoparticles. International journal of pharmaceutics 2003, 259, 115-127.
179. Gohy, J.-F. Block Copolymer Micelles. In Block Copolymers II, Abetz, V., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2005; 10.1007/12_048pp. 65-136.
180. Xu, Q.; Ensign, L.M.; Boylan, N.J.; Schön, A.; Gong, X.; Yang, J.-C.; Lamb, N.W.; Cai, S.; Yu, T.; Freire, E., et al. Impact of Surface Polyethylene Glycol (PEG) Density on Biodegradable Nanoparticle Transport in Mucus ex Vivo and Distribution in Vivo. ACS Nano 2015, 9, 9217-9227, doi:10.1021/acsnano.5b03876.
181. Chen, C.; Chen, L.; Cao, L.; Shen, W.; Yu, L.; Ding, J. Effects of l-lactide and d,l-lactide in poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide) on the bulk states of triblock copolymers, and their thermogellation and biodegradation in water. RSC Advances 2014, 4, 8789-8798, doi:10.1039/C3RA47494A.
182. Mekuria, S.L.; Addisu, K.D.; Chou, H.-Y.; Hailemeskel, B.Z.; Tsai, H.-C. Potential fluorescence and magnetic resonance imaging modality using mixed lanthanide oxide nanoparticles. Colloids and Surfaces B: Biointerfaces 2018, 167, 54-62, doi:https://doi.org/10.1016/j.colsurfb.2018.03.033.
183. Andrgie, A.T.; Mekuria, S.L.; Addisu, K.D.; Hailemeskel, B.Z.; Hsu, W.-H.; Tsai, H.-C.; Lai, J.-Y. Non-Anticoagulant Heparin Prodrug Loaded Biodegradable and Injectable Thermoresponsive Hydrogels for Enhanced Anti-Metastasis Therapy. Macromolecular Bioscience 2019, 0, 1800409, doi:10.1002/mabi.201800409.
184. Martínez-Jothar, L.; Beztsinna, N.; van Nostrum, C.F.; Hennink, W.E.; Oliveira, S. Selective Cytotoxicity to HER2 Positive Breast Cancer Cells by Saporin-Loaded Nanobody-Targeted Polymeric Nanoparticles in Combination with Photochemical Internalization. Molecular Pharmaceutics 2019, 10.1021/acs.molpharmaceut.8b01318, doi:10.1021/acs.molpharmaceut.8b01318.
185. Nagheh, Z.; Irani, S.; Mirfakhraie, R.; Dinarvand, R. SN38-PEG-PLGA-verapamil nanoparticles inhibit proliferation and downregulate drug transporter ABCG2 gene expression in colorectal cancer cells. Progress in Biomaterials 2017, 6, 137-145, doi:10.1007/s40204-017-0073-y.
186. Chakraborty, T.; Chakraborty, I.; Ghosh, S. The methods of determination of critical micellar concentrations of the amphiphilic systems in aqueous medium. Arabian Journal of Chemistry 2011, 4, 265-270, doi:https://doi.org/10.1016/j.arabjc.2010.06.045.
187. Piñeiro, L.; Novo, M.; Al-Soufi, W. Fluorescence emission of pyrene in surfactant solutions. Advances in Colloid and Interface Science 2015, 215, 1-12, doi:https://doi.org/10.1016/j.cis.2014.10.010.
188. Chaudhuri, A.; Haldar, S.; Chattopadhyay, A. Organization and dynamics in micellar structural transition monitored by pyrene fluorescence. Biochemical and Biophysical Research Communications 2009, 390, 728-732, doi:https://doi.org/10.1016/j.bbrc.2009.10.037.
189. Debele, T.A.; Mekuria, S.L.; Tsai, H.-C. A pH-sensitive micelle composed of heparin, phospholipids, and histidine as the carrier of photosensitizers: Application to enhance photodynamic therapy of cancer. International Journal of Biological Macromolecules 2017, 98, 125-138, doi:https://doi.org/10.1016/j.ijbiomac.2017.01.103.
190. Dutta, P.; Shrivastava, S.; Dey, J. Amphiphilic polymer nanoparticles: characterization and assessment as new drug carriers. Macromolecular bioscience 2009, 9, 1116-1126.
191. Klippstein, R.; Wang, J.T.W.; El‐Gogary, R.I.; Bai, J.; Mustafa, F.; Rubio, N.; Bansal, S.; Al‐Jamal, W.T.; Al‐Jamal, K.T. Passively Targeted Curcumin‐Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo. small 2015, 11, 4704-4722.
192. Yang, Q.; He, C.; Zhang, Z.; Tan, L.; Liu, B.; Zhu, Z.; Shao, Z.; Gong, B.; Shen, Y.-M. Redox-responsive flower-like micelles of poly (L-lactic acid)-b-poly (ethylene glycol)-b-poly (L-lactic acid) for intracellular drug delivery. Polymer 2016, 90, 351-362.
193. Zhang, X.; Zeng, X.; Liang, X.; Yang, Y.; Li, X.; Chen, H.; Huang, L.; Mei, L.; Feng, S.-S. The chemotherapeutic potential of PEG-b-PLGA copolymer micelles that combine chloroquine as autophagy inhibitor and docetaxel as an anti-cancer drug. Biomaterials 2014, 35, 9144-9154.
194. Gholizadeh, S.; Kamps, J.A.A.M.; Hennink, W.E.; Kok, R.J. PLGA-PEG nanoparticles for targeted delivery of the mTOR/PI3kinase inhibitor dactolisib to inflamed endothelium. International Journal of Pharmaceutics 2018, 548, 747-758, doi:https://doi.org/10.1016/j.ijpharm.2017.10.032.
195. Ostacolo, L.; Marra, M.; Ungaro, F.; Zappavigna, S.; Maglio, G.; Quaglia, F.; Abbruzzese, A.; Caraglia, M. In vitro anticancer activity of docetaxel-loaded micelles based on poly(ethylene oxide)-poly(epsilon-caprolactone) block copolymers: Do nanocarrier properties have a role? Journal of Controlled Release 2010, 148, 255-263, doi:https://doi.org/10.1016/j.jconrel.2010.08.006.
196. Hoffman, A.S. The origins and evolution of “controlled” drug delivery systems. Journal of Controlled Release 2008, 132, 153-163, doi:https://doi.org/10.1016/j.jconrel.2008.08.012.
197. Koopaei, M.N.; Khoshayand, M.R.; Mostafavi, S.H.; Amini, M.; Khorramizadeh, M.R.; Tehrani, M.J.; Atyabi, F.; Dinarvand, R. Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in-vitro cytotoxicity and in-vivo antitumor effect. Iranian journal of pharmaceutical research: IJPR 2014, 13, 819.
198. Xu, H.; Cao, W.; Zhang, X. Selenium-Containing Polymers: Promising Biomaterials for Controlled Release and Enzyme Mimics. Accounts of Chemical Research 2013, 46, 1647-1658, doi:10.1021/ar4000339.
199. Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. Journal of Pharmacy and Pharmacology 2013, 65, 157-170, doi:10.1111/j.2042-7158.2012.01567.x.
200. Maiyo, F.; Singh, M. Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine 2017, 12, 1075-1089, doi:10.2217/nnm-2017-0024.
201. Dai, Y.; Wang, H.; Zhang, X. Reduction-responsive interlayer-crosslinked micelles prepared from star-shaped copolymer via click chemistry for drug controlled release. Journal of Nanoparticle Research 2017, 19, 383, doi:10.1007/s11051-017-4082-5.
202. Fan, W.; Wang, Y.; Dai, X.; Shi, L.; McKinley, D.; Tan, C. Reduction-responsive Crosslinked Micellar Nanoassemblies for Tumor-targeted Drug Delivery. Pharmaceutical Research 2015, 32, 1325-1340, doi:10.1007/s11095-014-1537-6.
203. Han, Y.; Li, J.; Zan, M.; Luo, S.; Ge, Z.; Liu, S. Redox-responsive core cross-linked micelles based on cypate and cisplatin prodrugs-conjugated block copolymers for synergistic photothermal–chemotherapy of cancer. Polymer Chemistry 2014, 5, 3707-3718, doi:10.1039/C4PY00064A.
204. Cao, X.T.; Kim, Y.H.; Park, J.M.; Lim, K.T. One-pot syntheses of dual-responsive core cross-linked polymeric micelles and covalently entrapped drug by click chemistry. European Polymer Journal 2016, 78, 264-273, doi:https://doi.org/10.1016/j.eurpolymj.2016.03.039.
205. Chan, N.; Yee, N.; An, S.Y.; Oh, J.K. Tuning amphiphilicity/temperature-induced self-assembly and in-situ disulfide crosslinking of reduction-responsive block copolymers. Journal of Polymer Science Part A: Polymer Chemistry 2014, 52, 2057-2067, doi:10.1002/pola.27216.
206. Zhang, Z.; Yin, L.; Tu, C.; Song, Z.; Zhang, Y.; Xu, Y.; Tong, R.; Zhou, Q.; Ren, J.; Cheng, J. Redox-Responsive, Core Cross-Linked Polyester Micelles. ACS Macro Letters 2013, 2, 40-44, doi:10.1021/mz300522n.
207. Kim, J.H.; Oh, Y.T.; Lee, K.S.; Yun, J.M.; Park, B.T.; Oh, K.T. Development of a pH-sensitive polymer using poly(aspartic acid-graft-imidazole)-block-poly(ethylene glycol) for acidic pH targeting systems. Macromolecular Research 2011, 19, 453-460, doi:10.1007/s13233-011-0502-z.
208. Buwalda, S.; Nottelet, B.; Bethry, A.; Kok, R.J.; Sijbrandi, N.; Coudane, J. Reversibly core-crosslinked PEG-P(HPMA) micelles: Platinum coordination chemistry for competitive-ligand-regulated drug delivery. Journal of Colloid and Interface Science 2019, 535, 505-515, doi:https://doi.org/10.1016/j.jcis.2018.10.001.
209. Lv, S.; Li, M.; Tang, Z.; Song, W.; Sun, H.; Liu, H.; Chen, X. Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomaterialia 2013, 9, 9330-9342, doi:https://doi.org/10.1016/j.actbio.2013.08.015.
210. Waliczek, M.; Pehlivan, Ö.; Stefanowicz, P. Light-Driven Diselenide Metathesis in Peptides. ChemistryOpen 2019, 8, 1199-1203, doi:10.1002/open.201900224.
211. Ponta, A.; Bae, Y. PEG-poly(amino acid) Block Copolymer Micelles for Tunable Drug Release. Pharmaceutical Research 2010, 27, 2330-2342, doi:10.1007/s11095-010-0120-z.
212. Veeren, A.; Bhaw‐Luximon, A. Polymer‐Drug Encapsulation using Various PEG‐and Polypeptide‐Based Block Copolymer Micelles. In Proceedings of Macromolecular Symposia; pp. 59-68.
213. Yang, L.; Hu, X.; Wang, W.; Liu, S.; Sun, T.; Huang, Y.; Jing, X.; Xie, Z. Y-shaped block copolymer (methoxy-poly(ethylene glycol))2-b-poly(l-glutamic acid): preparation, self-assembly, and use as drug carriers. RSC Advances 2014, 4, 41588-41596, doi:10.1039/C4RA07890J.
214. Hanurry, E.Y.; Hsu, W.-H.; Darge, H.F.; Birhan, Y.S.; Mekonnen, T.W.; Andrgie, A.T.; Chou, H.-Y.; Cheng, C.-C.; Lai, J.-Y.; Tsai, H.-C. In vitro siRNA delivery via diethylenetriamine- and tetraethylenepentamine-modified carboxyl group-terminated Poly(amido)amine generation 4.5 dendrimers. Materials Science and Engineering: C 2020, 106, 110245, doi:https://doi.org/10.1016/j.msec.2019.110245.
215. Ji, S.; Cao, W.; Yu, Y.; Xu, H. Dynamic Diselenide Bonds: Exchange Reaction Induced by Visible Light without Catalysis. Angewandte Chemie International Edition 2014, 53, 6781-6785, doi:10.1002/anie.201403442.
216. Sill, K.N.; Sullivan, B.; Carie, A.; Semple, J.E. Synthesis and Characterization of Micelle-Forming PEG-Poly(Amino Acid) Copolymers with Iron-Hydroxamate Cross-Linkable Blocks for Encapsulation and Release of Hydrophobic Drugs. Biomacromolecules 2017, 18, 1874-1884, doi:10.1021/acs.biomac.7b00317.
217. Hanurry, E.Y.; Mekonnen, T.W.; Andrgie, A.T.; Darge, H.F.; Birhan, Y.S.; Hsu, W.-H.; Chou, H.-Y.; Cheng, C.-C.; Lai, J.-Y.; Tsai, H.-C. Biotin-Decorated PAMAM G4.5 Dendrimer Nanoparticles to Enhance the Delivery, Anti-Proliferative, and Apoptotic Effects of Chemotherapeutic Drug in Cancer Cells. Pharmaceutics 2020, 12, 443.
218. Andrgie, A.T.; Birhan, Y.S.; Mekonnen, T.W.; Hanurry, E.Y.; Darge, H.F.; Lee, R.-H.; Chou, H.-Y.; Tsai, H.-C. Redox-Responsive Heparin–Chlorambucil Conjugate Polymeric Prodrug for Improved Anti-Tumor Activity. Polymers 2020, 12, 43.
219. Gradišar, Š.; Žagar, E.; Pahovnik, D. Ring-Opening Polymerization of N-Carboxyanhydrides Initiated by a Hydroxyl Group. ACS Macro Letters 2017, 6, 637-640, doi:10.1021/acsmacrolett.7b00379.
220. Chan, B.A.; Xuan, S.; Horton, M.; Zhang, D. 1,1,3,3-Tetramethylguanidine-Promoted Ring-Opening Polymerization of N-Butyl N-Carboxyanhydride Using Alcohol Initiators. Macromolecules 2016, 49, 2002-2012, doi:10.1021/acs.macromol.5b02520.
221. Li, L.; Li, D.; Zhang, M.; He, J.; Liu, J.; Ni, P. One-Pot Synthesis of pH/Redox Responsive Polymeric Prodrug and Fabrication of Shell Cross-Linked Prodrug Micelles for Antitumor Drug Transportation. Bioconjugate Chemistry 2018, 29, 2806-2817, doi:10.1021/acs.bioconjchem.8b00421.
222. Laskar, P.; Saha, B.; Ghosh, S.K.; Dey, J. PEG based random copolymer micelles as drug carriers: the effect of hydrophobe content on drug solubilization and cytotoxicity. RSC Advances 2015, 5, 16265-16276, doi:10.1039/C4RA11479E.
223. Fluksman, A.; Benny, O. A robust method for critical micelle concentration determination using coumarin-6 as a fluorescent probe. Analytical Methods 2019, 11, 3810-3818, doi:10.1039/C9AY00577C.
224. He, Y.; Guo, S.; Wu, L.; Chen, P.; Wang, L.; Liu, Y.; Ju, H. Near-infrared boosted ROS responsive siRNA delivery and cancer therapy with sequentially peeled upconversion nano-onions. Biomaterials 2019, 225, 119501, doi:https://doi.org/10.1016/j.biomaterials.2019.119501.
225. Deng, H.; Zhang, Y.; Wang, X.; Jianhuazhang; Cao, Y.; Liu, J.; Liu, J.; Deng, L.; Dong, A. Balancing the stability and drug release of polymer micelles by the coordination of dual-sensitive cleavable bonds in cross-linked core. Acta Biomaterialia 2015, 11, 126-136, doi:https://doi.org/10.1016/j.actbio.2014.09.047.
226. Ji, S.; Xia, J.; Xu, H. Dynamic Chemistry of Selenium: Se–N and Se–Se Dynamic Covalent Bonds in Polymeric Systems. ACS Macro Letters 2016, 5, 78-82, doi:10.1021/acsmacrolett.5b00849.
227. Liu, C.; Xia, J.; Ji, S.; Fan, Z.; Xu, H. Visible-light-induced metathesis reaction between diselenide and ditelluride. Chemical Communications 2019, 55, 2813-2816, doi:10.1039/C9CC00252A.
228. Zhao, P.; Xia, J.; Cao, M.; Xu, H. Wavelength-Controlled Light-Responsive Polymer Vesicle Based on Se–S Dynamic Chemistry. ACS Macro Letters 2020, 10.1021/acsmacrolett.9b00983, 163-168, doi:10.1021/acsmacrolett.9b00983.
229. Xiong, D.; Yao, N.; Gu, H.; Wang, J.; Zhang, L. Stimuli-responsive shell cross-linked micelles from amphiphilic four-arm star copolymers as potential nanocarriers for “pH/redox-triggered” anticancer drug release. Polymer 2017, 114, 161-172, doi:https://doi.org/10.1016/j.polymer.2017.03.002.
230. Kim, Y.; Pourgholami, M.H.; Morris, D.L.; Lu, H.; Stenzel, M.H. Effect of shell-crosslinking of micelles on endocytosis and exocytosis: acceleration of exocytosis by crosslinking. Biomaterials Science 2013, 1, 265-275, doi:10.1039/C2BM00096B.
231. Wang, C.; Qi, P.; Lu, Y.; Liu, L.; Zhang, Y.; Sheng, Q.; Wang, T.; Zhang, M.; Wang, R.; Song, S. Bicomponent polymeric micelles for pH-controlled delivery of doxorubicin. Drug Delivery 2020, 27, 344-357, doi:10.1080/10717544.2020.1726526.
232. Wang, J.; Mao, W.; Lock, L.L.; Tang, J.; Sui, M.; Sun, W.; Cui, H.; Xu, D.; Shen, Y. The Role of Micelle Size in Tumor Accumulation, Penetration, and Treatment. ACS Nano 2015, 9, 7195-7206, doi:10.1021/acsnano.5b02017.
233. Yang, C.; Ebrahim Attia, A.B.; Tan, J.P.K.; Ke, X.; Gao, S.; Hedrick, J.L.; Yang, Y.-Y. The role of non-covalent interactions in anticancer drug loading and kinetic stability of polymeric micelles. Biomaterials 2012, 33, 2971-2979, doi:https://doi.org/10.1016/j.biomaterials.2011.11.035.
234. Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy 2018, 3, 7, doi:10.1038/s41392-017-0004-3.
235. Tang, Z.; Zhang, L.; Wang, Y.; Li, D.; Zhong, Z.; Zhou, S. Redox-responsive star-shaped magnetic micelles with active-targeted and magnetic-guided functions for cancer therapy. Acta Biomaterialia 2016, 42, 232-246, doi:https://doi.org/10.1016/j.actbio.2016.06.038.
236. Gao, X.; Wang, B.; Wei, X.; Rao, W.; Ai, F.; Zhao, F.; Men, K.; Yang, B.; Liu, X.; Huang, M., et al. Preparation, characterization and application of star-shaped PCL/PEG micelles for the delivery of doxorubicin in the treatment of colon cancer. International journal of nanomedicine 2013, 8, 971-982, doi:10.2147/IJN.S39532.
237. Borys, P.; Odrobińska, J.; Neugebauer, D. Modeling the internal structure of micelles in a delivery system based on 4-arm star shaped polymers. Physica A: Statistical Mechanics and its Applications 2019, 531, 121793, doi:https://doi.org/10.1016/j.physa.2019.121793.
238. Li, L.; Lu, B.; Wu, J.; Fan, Q.; Guo, X.; Liu, Z. Synthesis and self-assembly behavior of thermo-responsive star-shaped POSS–(PCL–P(MEO2MA-co-PEGMA))16 inorganic/organic hybrid block copolymers with tunable lower critical solution temperature. New Journal of Chemistry 2016, 40, 4761-4768, doi:10.1039/C6NJ00279J.
239. Lin, W.; Nie, S.; Xiong, D.; Guo, X.; Wang, J.; Zhang, L. pH-responsive micelles based on (PCL)2(PDEA-b-PPEGMA)2 miktoarm polymer: controlled synthesis, characterization, and application as anticancer drug carrier. Nanoscale Research Letters 2014, 9, 243, doi:10.1186/1556-276X-9-243.
240. Zhang, Y.; Chen, M.; Luo, X.; Zhang, H.; Liu, C.; Li, H.; Li, X. Tuning multiple arms for camptothecin and folate conjugations on star-shaped copolymers to enhance glutathione-mediated intracellular drug delivery. Polymer Chemistry 2015, 6, 2192-2203, doi:10.1039/C4PY01607F.
241. Deshayes, S.; Cabral, H.; Ishii, T.; Miura, Y.; Kobayashi, S.; Yamashita, T.; Matsumoto, A.; Miyahara, Y.; Nishiyama, N.; Kataoka, K. Phenylboronic Acid-Installed Polymeric Micelles for Targeting Sialylated Epitopes in Solid Tumors. Journal of the American Chemical Society 2013, 135, 15501-15507, doi:10.1021/ja406406h.
242. Li, L.; Zhang, Y.; Wang, J. Effects of ligand distribution on receptor-diffusion-mediated cellular uptake of nanoparticles. R Soc Open Sci 2017, 4, 170063-170063, doi:10.1098/rsos.170063.
243. Fam, K.T.; Collot, M.; Klymchenko, A.S. Probing biotin receptors in cancer cells with rationally designed fluorogenic squaraine dimers. Chemical Science 2020, 11, 8240-8248, doi:10.1039/D0SC01973A.
244. Ren, W.X.; Han, J.; Uhm, S.; Jang, Y.J.; Kang, C.; Kim, J.-H.; Kim, J.S. Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chemical Communications 2015, 51, 10403-10418, doi:10.1039/C5CC03075G.
245. Wang, Y.; van Steenbergen, M.J.; Beztsinna, N.; Shi, Y.; Lammers, T.; van Nostrum, C.F.; Hennink, W.E. Biotin-decorated all-HPMA polymeric micelles for paclitaxel delivery. Journal of Controlled Release 2020, https://doi.org/10.1016/j.jconrel.2020.09.013, doi:https://doi.org/10.1016/j.jconrel.2020.09.013.
246. Moreno, A.; Jiménez-Alesanco, A.; Ronda, J.C.; Cádiz, V.; Galià, M.; Percec, V.; Abian, O.; Lligadas, G. Dual Biochemically Breakable Drug Carriers from Programmed Telechelic Homopolymers. Biomacromolecules 2020, 21, 4313-4325, doi:10.1021/acs.biomac.0c01113.
247. Li, J.; Hu, Z.-E.; Yang, X.-L.; Zhang, M.-Q.; Liu, Y.-H.; Wang, N.; Yu, X.-Q. Hierarchical Targeted Delivery of Lonidamine and Camptothecin Based on the Ultra-Rapid pH/GSH Response Nanoparticles for Synergistic Chemotherapy. ACS Applied Bio Materials 2020, 10.1021/acsabm.0c01207, doi:10.1021/acsabm.0c01207.
248. Xia, J.; Li, T.; Lu, C.; Xu, H. Selenium-Containing Polymers: Perspectives toward Diverse Applications in Both Adaptive and Biomedical Materials. Macromolecules 2018, 51, 7435-7455, doi:10.1021/acs.macromol.8b01597.
249. Wang, Y.; Zhu, L.; Wang, Y.; Li, L.; Lu, Y.; Shen, L.; Zhang, L.W. Ultrasensitive GSH-Responsive Ditelluride-Containing Poly(ether-urethane) Nanoparticles for Controlled Drug Release. ACS Applied Materials & Interfaces 2016, 8, 35106-35113, doi:10.1021/acsami.6b14639.
250. Li, D.; Wang, F.; Di, H.; Liu, X.; Zhang, P.; Zhou, W.; Liu, D. Cross-Linked Poly(ethylene glycol) Shells for Nanoparticles: Enhanced Stealth Effect and Colloidal Stability. Langmuir 2019, 35, 8799-8805, doi:10.1021/acs.langmuir.9b01325.
251. Zhang, W.; Lin, W.; Zheng, X.; He, S.; Xie, Z. Comparing Effects of Redox Sensitivity of Organic Nanoparticles to Photodynamic Activity. Chemistry of Materials 2017, 29, 1856-1863, doi:10.1021/acs.chemmater.7b00207.
252. Sun, B.; Luo, C.; Zhang, X.; Guo, M.; Sun, M.; Yu, H.; Chen, Q.; Yang, W.; Wang, M.; Zuo, S., et al. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nature Communications 2019, 10, 3211, doi:10.1038/s41467-019-11193-x.
253. Birhan, Y.S.; Darge, H.F.; Hanurry, E.Y.; Andrgie, A.T.; Mekonnen, T.W.; Chou, H.-Y.; Lai, J.-Y.; Tsai, H.-C. Fabrication of Core Crosslinked Polymeric Micelles as Nanocarriers for Doxorubicin Delivery: Self-Assembly, In Situ Diselenide Metathesis and Redox-Responsive Drug Release. Pharmaceutics 2020, 12, 580.
254. Lu, Y.; Yue, Z.; Xie, J.; Wang, W.; Zhu, H.; Zhang, E.; Cao, Z. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nature Biomedical Engineering 2018, 2, 318-325, doi:10.1038/s41551-018-0234-x.
255. Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery 2010, 9, 615-627, doi:10.1038/nrd2591.
256. Fan, X.; Wang, X.; Cao, M.; Wang, C.; Hu, Z.; Wu, Y.-L.; Li, Z.; Loh, X.J. “Y”-shape armed amphiphilic star-like copolymers: design, synthesis and dual-responsive unimolecular micelle formation for controlled drug delivery. Polymer Chemistry 2017, 8, 5611-5620, doi:10.1039/C7PY00999B.
257. Bhayo, A.M.; Abdul-Karim, R.; Musharraf, S.G.; Malik, M.I. Synthesis and characterization of 4-arm star-shaped amphiphilic block copolymers consisting of poly(ethylene oxide) and poly(ε-caprolactone). RSC Advances 2018, 8, 28569-28580, doi:10.1039/C8RA05000G.
258. Kotula, A.P.; Snyder, C.R.; Migler, K.B. Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer 2017, 117, 1-10.
259. Lotocki, V.; Kakkar, A. Miktoarm Star Polymers: Branched Architectures in Drug Delivery. Pharmaceutics 2020, 12, 827.
260. Yu, G.; Ning, Q.; Mo, Z.; Tang, S. Intelligent polymeric micelles for multidrug co-delivery and cancer therapy. Artificial Cells, Nanomedicine, and Biotechnology 2019, 47, 1476-1487, doi:10.1080/21691401.2019.1601104.
261. Duan, J.; Liu, C.; Liang, X.; Li, X.; Chen, Y.; Chen, Z.; Wang, X.; Kong, D.; Li, Y.; Yang, J. Protein delivery nanosystem of six-arm copolymer poly(ε-caprolactone)-poly(ethylene glycol) for long-term sustained release. International journal of nanomedicine 2018, 13, 2743-2754, doi:10.2147/IJN.S161006.
262. He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31, 3657-3666, doi:https://doi.org/10.1016/j.biomaterials.2010.01.065.
263. Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials 2009, 8, 543-557, doi:10.1038/nmat2442.
264. Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angewandte Chemie International Edition 2010, 49, 6288-6308, doi:10.1002/anie.200902672.
265. Cabral, H.; Miyata, K.; Osada, K.; Kataoka, K. Block Copolymer Micelles in Nanomedicine Applications. Chemical Reviews 2018, 118, 6844-6892, doi:10.1021/acs.chemrev.8b00199.
266. Hsu, H.-j.; Han, Y.; Cheong, M.; Král, P.; Hong, S. Dendritic PEG outer shells enhance serum stability of polymeric micelles. Nanomedicine: Nanotechnology, Biology and Medicine 2018, 14, 1879-1889, doi:https://doi.org/10.1016/j.nano.2018.05.010.
267. Lu, J.; Owen, S.C.; Shoichet, M.S. Stability of Self-Assembled Polymeric Micelles in Serum. Macromolecules 2011, 44, 6002-6008, doi:10.1021/ma200675w.
268. Zhu, X.; Liu, C.; Duan, J.; Liang, X.; Li, X.; Sun, H.; Kong, D.; Yang, J. Synthesis of three-arm block copolymer poly(lactic-co-glycolic acid)-poly(ethylene glycol) with oxalyl chloride and its application in hydrophobic drug delivery. In International journal of nanomedicine, 2016; Vol. 11, pp 6065-6077.
269. Korde, J.M.; Kandasubramanian, B. Fundamentals and Effects of Biomimicking Stimuli-Responsive Polymers for Engineering Functions. Industrial & Engineering Chemistry Research 2019, 58, 9709-9757, doi:10.1021/acs.iecr.9b00683.
270. Zhu, Y.; Zhang, J.; Meng, F.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. Journal of Controlled Release 2016, 233, 29-38, doi:https://doi.org/10.1016/j.jconrel.2016.05.014.
271. Zhang, J.; Tang, H.; Shen, Y.; Yu, Q.; Gan, Z. Shell-Sheddable Poly(N-2-hydroxypropyl methacrylamide) Polymeric Micelles for Dual-Sensitive Release of Doxorubicin. Macromolecular Rapid Communications 2018, 39, 1800139, doi:https://doi.org/10.1002/marc.201800139.
272. Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nature Reviews Materials 2016, 1, 16014, doi:10.1038/natrevmats.2016.14.
273. Taresco, V.; Abelha, T.F.; Cavanagh, R.J.; Vasey, C.E.; Anane-Adjei, A.B.; Pearce, A.K.; Monteiro, P.F.; Spriggs, K.A.; Clarke, P.; Ritchie, A., et al. Functionalized Block Co-Polymer Pro-Drug Nanoparticles with Anti-Cancer Efficacy in 3D Spheroids and in an Orthotopic Triple Negative Breast Cancer Model. Advanced Therapeutics 2020, n/a, 2000103, doi:10.1002/adtp.202000103.
274. Bildstein, L.; Dubernet, C.; Couvreur, P. Prodrug-based intracellular delivery of anticancer agents. Advanced Drug Delivery Reviews 2011, 63, 3-23, doi:https://doi.org/10.1016/j.addr.2010.12.005.
275. Nguyen, H.N.; Hoang, T.M.N.; Mai, T.T.T.; Nguyen, T.Q.T.; Do, H.D.; Pham, T.H.; Nguyen, T.L.; Ha, P.T. Enhanced cellular uptake and cytotoxicity of folate decorated doxorubicin loaded PLA-TPGS nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology 2015, 6, 025005, doi:10.1088/2043-6262/6/2/025005.
276. Elmowafy, E.M.; Tiboni, M.; Soliman, M.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. Journal of Pharmaceutical Investigation 2019, 49, 347-380, doi:10.1007/s40005-019-00439-x.
277. Vinothini, K.; Rajendran, N.K.; Munusamy, M.A.; Alarfaj, A.A.; Rajan, M. Development of biotin molecule targeted cancer cell drug delivery of doxorubicin loaded κ-carrageenan grafted graphene oxide nanocarrier. Materials Science and Engineering: C 2019, 100, 676-687, doi:https://doi.org/10.1016/j.msec.2019.03.011.

無法下載圖示 全文公開日期 2026/01/06 (校內網路)
全文公開日期 2026/01/06 (校外網路)
全文公開日期 2026/01/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE