簡易檢索 / 詳目顯示

研究生: 嚴文祺
Wen-Chi - Yen
論文名稱: 軸流式風機的性能與噪音特性之整合研究
Integrated Study on Aerodynamic and Acoustic Characteristics of the Vaneaxial Fan
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
none
郭鴻森
none
顏鴻程
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 242
中文關鍵詞: 軸流式風機亥姆霍茲共振器氣動力性能噪音特性聲場數值模擬
外文關鍵詞: Vaneaxial Fan, Numerical Simulation, Aerodynamic Performance, Acoustic Characteristics, Helmholtz Resonator.
相關次數: 點閱:509下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的為在有限的馬達規格,以系統化的數值模擬工具改良葉輪、導流外罩、導流葉片及葉面紋路,來達到目標要求之最大流量與出口風速,接著加裝亥姆霍茲共振器以降低其特徵頻及整體運轉噪音,最後藉由實際量測與模擬相互比對以驗證改良成效,同時檢驗共振器應用於大型軸流風機之可行性。利用數值方法對基準風機進行評估,發現葉面的有效面積集中在第二到第三截面間,且流體撞擊導流外罩反彈形成無效區,加上不佳的導流葉片入口角度使流體分離產生渦流;因此確立改良項目為葉輪、導流外罩與導流葉片,並於葉面加裝紋路導正氣流出口方向,最後將四者結合找出最適化參數設計組合。最適化參數設計與原始風機相比流量由8,671提升至11,682 CFM(上升34.7%),而距離出口5、10與15米處之風速分別為9.0、4.8與3.7m/s(增幅30~50%),且整體噪音值與原始風機相近。在瞭解流場與噪音之連動關係後,將亥姆霍茲共振器裝於噪音源處進行降噪,模擬結果顯示第一與第二特徵頻皆明顯下降,其中第二特徵頻最高降低28dB,而整體噪音約降1~1.5dBA。
    為了確認性能改善與共振器降噪的效果,將改良設計作實體化製作並且組裝進行實驗量測,經由實驗結果得知,在氣動力性能方面,最佳化風機之出口風速比起原始風機增加35%,且實測值與模擬的趨勢相符。至於噪音部分,由於數值模擬只計算氣動噪音並未包括馬達振動噪音所導致,故測試噪音值比模擬計算值還要高,但其趨勢與模擬結果大致相同。經由實測發現加裝3個針對第一特徵頻設計之共振器,所呈現之減噪效果最好,於第二特徵頻可下降20dB,而整體噪音約降1.5dBA,此結果雖與模擬趨勢相符,但減噪量仍有所誤差。探討後發現原因應歸因於製作與組裝誤差,對於大型軸流風機而言,些微誤差即造成葉輪之翼端間隙的嚴重不均勻性,這讓共振器於第一特徵頻的降噪效果消失,同時容易使體積小且頸部直徑大的共振器增加風切噪音。綜合歸納上述結果,本文所設計的最佳化軸流風機在馬達最大負載下,成功地達到目標要求之出口風速,並驗證了共振器運用於大型軸流風機的可行性,以及分析改善共振器設計之重要參考。


    This research intends to enhance the performance of a vaneaxial fan under the limit of the motor specifications. With the aids of numerical simulation and experimental test, a systematic design scheme is established by considering the concerns on both of aerodynamic and acoustic aspects. Based on customer’s requirement, the goal of aerodynamic performances for this axial fan, with a 60cm-in-diameter impeller and operating under 1,425 rpm, is set to be capable to deliver at least 11,500 CFM with air speeds above 11, 8, and 5 m/s at 5, 10, and 15 meters from its outlet, respectively. Besides the concerns on flow rate and air speed, this work also plans to improve the acoustic characteristics of fan by using Helmholtz resonator to reduce the noise, especially on the harmonic frequencies. At first, a commercial fan with the same size is selected as the reference fan for executing the flow optimization. Also, CFD codes Fluent is used to simulate and calculate numerically on this reference fan for providing information of flow field and to estimate torque needed under the limit of motor specification to be 11 N-m. Later, a comprehensive parametric study is performed over impeller, housing, guiding van, and motor tail body in sequence along the flow path. As a result of this optimization procedure, the appropriate design fan, which consists of a impeller with NACA airfoil blade and proper setting angle, a streamlined housing, a well-designed guide vane, and an effective Helmholtz resonator, is attained successfully to deliver a satisfactory aerodynamic performance at 11,682 CFM (a 34.7% increase) and a minor 1~1.5 dBA decrease on the overall acoustic output with a significant 28 dB reduction on its second harmonic frequency. For validating this performance improvement and the numerical model used here, the mockups of appropriate fan and Helmholtz resonator are manufactured and assembled for testing its air speed and acoustic performances for confirming the actual noise-reduction effect. It is found that a rough 35% increase on air velocity at all the measuring locations is observed. Also, the acoustic measurements indicate that a similar noise reduction trend is attained while the deviation between numerical and test results is near 5 dBA, which is reasonable and expected due to the ignorance of motor operating and structure-induced noises in CFD prediction. Consequently, the design and analysis tool established here offers a rigorous and systematic scheme for a complete set of vaneaxial fan.

    摘要 Abstract 誌謝 目錄 圖索引 表索引 符號索引 第一章 緒論 1.1 前言 1.2 文獻回顧 1.2.1 軸流式風機 1.2.2 噪音研究 1.2.3 數值模擬 1.3 研究動機與方法 第二章 軸流式風機簡介 2.1 軸流式風機構造 2.2 軸流式風機設計 2.2.1 軸流式風機之形式 2.2.2 軸流式風機之葉輪設計 2.3 導流外罩與導流葉片設計 2.3.1 入出口外罩設計 2.3.2 出口導流葉片設計 2.4 風機之氣動噪音介紹 2.4.1 窄頻帶噪音 2.4.2 寬頻帶噪音 2.5 亥姆霍茲共振器設計 第三章 數值方法 3.1 流場統御方程式 3.2 數值計算理論 3.2.1 數值求解流程 3.2.2 離散化方程式 3.2.3 上風差分法 3.2.4 速度與壓力耦合 3.3 紊流模式理論 3.3.1 雷諾數平均數值模擬法 3.3.2 大尺度渦漩計算法 3.4 聲學模式理論 3.5 邊界條件與收斂判定原則 第四章 軸流式風機之葉輪設計與模擬分析 4.1 原始風機之模擬分析 4.1.1 模型建立與網格規劃 4.1.2 原始風機之性能模擬結果 4.1.3 原始風機之流場分析 4.2 葉輪設計 4.2.1 扇葉翼型與安裝角 4.2.2 扇葉扭轉角 4.2.3 扇葉葉片數與傾角 4.3 最佳化葉輪與原始風機之模擬結果分析 第五章 導流外罩及導流葉片設計與模擬分析 5.1 導流外罩設計 5.1.1 導流外罩入口圓弧半徑 5.1.2 導流外罩出口直徑 5.1.3 最佳化與原始導流外罩之性能模擬比較 5.2 導流葉片設計 5.2.1 原始導流葉片評估 5.2.2 葉輪出口導流葉片 5.2.3 外罩出口導流葉片 5.2.4 最佳化與原始導流葉片之性能模擬比較 5.3 最佳化與原始風機之模擬結果分析 第六章 葉面紋路設計與模擬分析 6.1 葉面紋路設計參數 6.1.1 葉面紋路位置 6.1.2 葉面紋路高度 6.1.3 葉面紋路剖面形狀 6.1.4 葉面紋路數量 6.2 最佳紋路結合最佳風機之模擬結果分析 第七章 亥姆霍茲共振器設計與模擬分析 7.1 共振器設計參數 7.1.1 數值模型網格建立 7.1.2 共振器尺寸與裝配位置 7.1.3 共振器裝配數量 7.2 裝配共振器之風機噪音模擬結果分析 第八章 風機性能的實驗與模擬之分析比較 8.1 風機性能與噪音量測方法及實驗設備介紹 8.1.1 風機性能量測方法及實驗儀器 8.1.2 軸流風機噪音量測方法及實驗儀器 8.2 實驗結果分析 8.2.1 原始與最佳化軸流風機之實驗結果分析 8.2.2 最佳化軸流風機加裝共振器之實驗結果分析 第九章 結論與建議 9.1 結論 9.1.1 葉輪之最佳設計 9.1.2 導流外罩之最佳設計 9.1.3 導流葉片與葉面紋路之最佳設計 9.1.4 共振器之最佳設計與實驗結果 9.2 建議 參考文獻

    [1]行政院環保署,“室內空氣品質的重要性”, http://iaq.epa.gov.tw/indoorair/page/6_1.aspx。
    [2]經濟部能源局,“能源短缺起因及美國應對之道”
    http://energymonthly.tier.org.tw/outdatecontent.asp?Reportlssue=200511&Page=14。
    [3]Eck, B., “Fans Design and Operation of Centrifugal, Axial Flow and Cross Flow Fan”, Pergramon Press, New York, 1973.
    [4]Wallis, R. A., “Axial Flow Fans and Duct”, John Willy & Sons, 1983.
    [5]押田良輝,吳英民,賴耿陽譯,“送風機技術讀本”,復漢出本社,1986年。
    [6]Shepherd, D. G., “Principles of Turbomachinery”, Macmillan Publishing Co., Inc. New York.
    [7]Moming, Su., Chuan-Gang, Gu. and Yong-Miao, Miao., “Study of Three-Dimensional Viscous Flow Field in Axial-Flow Fan”, American Society of Mechanical Engineers ASME, New York, NY, USA. 8pp 86-GT-420, 1996.
    [8]Kaneko, K., Setoguchi, T., Nakano, T. and Inoue, M., “Effect of Blade Surface Roughness on Performances of Axial Flow Fans with Different Blade Cambers”, Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan, Vol. 50, No. 459, pp. 2812-2817, 1984.
    [9]Fukano, T., Takamatsu, Y. and Kodama, Y., “The Effects of Tip Clearance on the Noise of Low Pressure Axial and Mixed Flow Fans”, Journal of Sound and Vibration, Vol. 105, No. 2, pp. 291-308, 1986.
    [10]Hideo, F. and Hiroyuki, T., “A Study on Configurations of Casing Treatment for Axial Flow Compressors”, Nippon Kikai Gakkai Ronbunshu, B Hen/Transaction of Japan, Vol. 49, No. 448, pp. 2945-2953, 1983.
    [11]Kim, T. H., Takao, M., Setoguchi, T., Kaneko, K. and Inoue, M., “Performance Comparison of Turbines for Wave Power Conversion”, International Journal of Thermal Science, Vol. 40, pp. 681-689, 2001.
    [12]Suzuki, M. and Arakawa, C., “Guide Vane Effect of Wells Turbine for Wave Power Generator”, International Journal of Offshore Polar Eng, Vol. 10, pp. 153-159, 2000.
    [13]Takao, M., Setoguchi, T., Kim, T. H., Kaneko, K. and Inoue, M., “Performance of the Wells Turbine with 3-D Guide Vanes”, Proc. Of the 10th International Offshore and Polar Engineering Conference, pp. 381-386, 2000.
    [14]Hughes, C. E., “Aerodynamic Performance of Scale-Model Turbofan Outlet Guide Vanes Designed for Low Noise”, Paper No. AIAA-2002-0374.
    [15]林顯群、林益輝、楊正華、賴豐泉,“吹風機性能及噪音之改善研究” 中華民國「航太學會/燃燒學會/民航學會」航太聯合會議,高雄,中華民國九十一年。
    [16]吳兌倩,“流線型鰭片散熱座數值與實驗之整合研究”,國立台灣科技大學機械工程研究所碩士論文,2004年。
    [17]Zeller, W. and Stang, H., “Predetermination of Axial-Flow Fans”, Heizung-Luftung-Haustchnik, Vol. 9, No. 12, pp. 345-357, 1957.
    [18]Zeller, W., “Conerning Mathematical Treatment of Noise Behaviour in Fans for Air Conditioning Plants”, VID-Berichte, No. 38, 1959.
    [19]Hüebner, G., “Noise Generated by Centrifugal Fans”, Siemens-Zeitschrift, Vol. 8, pp. 145-155, 1959.
    [20]Schlichting, H., “Application of the Boundary Layer Theory to Flow Problems of Turbo Machines”, Siemens-Zeitschrift, Vol. 33, No. 7, pp. 74-82, 1959.
    [21]Powell, A., “Theory of Vortex Sound”, The Journal of the Acoustical Society of America, Vol. 36, pp. 177-195, 1964.
    [22]Lueg, P., “Process of Silencing Sound Oscillations”, U.S. Patent 2043416, 1936.
    [23]Miyake, Y., Inaba, T. and Nishikawa, Y., “A Study on the Flow within the Flow Passage of an Axial Flow Equipped with Air-Separator”, Bulletin of JSME, Vol. 29, No. 256, Paper No. 256-23, pp. 3394-3401, Oct., 1986.
    [24]Quinlan, D. A., “Application of Active Control to Axial Flow Fans”, Noise Control Engineering Journal, Vol. 39 No. 3, pp. 95-101, 1992.
    [25]Kawaguchi, K. and Suzuki, M., “Noise Reduction of Automobile Cooling Fans”, Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan, Vol. 58, No. 554, pp. 3108-3114, 1992.
    [26]Akaike, S. and Kikuyama, K., “Study of Fan Noise Estimation”, Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan, Vol. 61, No. 589, pp. 3269-3275, 1995.
    [27]Kamaya, S. and Kanabayashi, S., “A Study on Noise Reduction for Small Axial Flow Fans”, Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan, Vol. 56, No. 531, pp. 3408-3412, 1990.
    [28]Kamaya, S. and Kanabayashi, S., “Improvement of the Characteristics of the Low-Flow-Rate Region for Axial Flow Fans”, Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan, Vol. 56, No. 532, pp.3769-3773, 1990.
    [29]Arnone, A., “Viscous Analysis of Three-Dimensional Rotor Flows Using a Multigrid Method”, NASA TM-106266, 1993.
    [30]Su, M. M., Gu, C. A. and Miao, Y. M., “Numerical Study of Viscous Flow Field in Mixed-Flow Fan”, Journal of Xi’an Jiaotong University, Vol. 30, No. 10, pp. 55-63, 1996.
    [31]Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
    [32]Amano, R. S. and Cheng, X. C., “Aerodynamic Blade Optimal Design of Turbomachinery”, Proceedings of the International Gas Turbine Congress 2003, Tokyo, November 2-7, 2003.
    [33]Kokturk, T., “Design and Performance Analysis of a Reversible Axial Flow Fan”, M.S. Thesis, Middle East Technical University, February 2005.
    [34]Lighthill, M. J., “On Sound Generation Aerodynamically-Ⅰ.General Theory”, Proc. Roy. Soc. London 211, pp. 564-587, 1952.
    [35]Lowson, M. V., “The Sound Field for Singularities in Motion”, Proc. Roy. Soc., London, pp. 559-572, 1965.
    [36]Lu, H. Z., Huang, L., So, R. M. C. and Wang, J., “A Computational Study of the Interaction Noise from a Small Axial-Flow Fan”, the Journal of the Acoustical Society of America, Vol. 122, No. 3, pp. 1404-1415, 2007.
    [37]蔡明倫,“風扇性能評估與設計方法之整合研究”,國立台灣科技大學機械工程技術研究所博士論文,2010年。
    [38]洪國泰,“小型軸流風扇之設計、模擬與實驗整合研究”,國立台灣科技大學機械工程系碩士論文,2007年。
    [39]斜流扇葉輪示意圖,http://image.slidesharecdn.com/3-140704220102-phpapp02/95/3-15-638.jpg?cb=1404511459
    [40]Bleier, Frank P., “Fan Handbook: Selection, Application, and Design”, McGraw Hill, 1997.
    [41]黃家烈、林顯群和許豐麟,“進風口面積在新式筆記型電腦冷卻扇之研究”,中華民國機械工程學會第十七屆全國學術研討會論文集,高雄,621-628頁,2000年。
    [42]沈頌強,“多孔質氣靜壓軸承靜動態特性之性能分析”,國立台灣科技大學機械工程系研究所碩士論文,2015年。
    [43]Launder, B. E. and Spalding, D. B., “Lectures in Mathematical Models of Turbulence”, Academic Press, London, England, 1972.
    [44]Smirnov, R., Shi, S. and Celik, I., “Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling”, Journal of Fluids Engineering, Vol. 123, pp. 359-371, 2001.
    [45]Uranga, A., Persson, P., Drela, M. and Peraire, J., “Implicit Large Eddy Simulation of Transitional Flows over Airfoils and Wings”, 19th AIAA Computational Fluid Dynamics Conference, San Antonio, Texas, 2009.
    [46]Hinze, J. O., “ Turbulence”, McGraw-Hill Publishing Co., 1975.
    [47]Ffowcs Williams, J. E. and Hawkings, D. L., “Sound Generation by Turbulence and Surface in Arbitrary Motion”, Philosophical Transactions of the Royal Society of London, Vol. 264, pp. 321-342, 1969.
    [48]ISO 3744:2010, “Determination of Sound Power Levels and Sound Energy Levels of Noise Sources Using Sound Pressure”, International Organization for Standardization, 2010.

    無法下載圖示 全文公開日期 2022/01/25 (校內網路)
    全文公開日期 2027/01/25 (校外網路)
    全文公開日期 2027/01/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE