簡易檢索 / 詳目顯示

研究生: 李昭宏
Chao-hung Lee
論文名稱: 缸內直噴機車引擎流場與引擎性能的計算模擬
CFD Simulation of In-Cylinder Flow and Performance of a GDI Motorcycle Engine
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 趙振綱
Ching-Kong Chao
陳明志
Ming-Jyh Chern
孫珍理
Chen-Li Sun
林怡均
Yi-Jiun Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 208
中文關鍵詞: 引擎計算流體力學
外文關鍵詞: engine, CFD
相關次數: 點閱:194下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

缸內燃油噴射(gasoline direct injection, GDI)技術Mitsubishi Motor 於1995發展出來之後廣泛使用於汽車及機車引擎,此技術擁有降低油耗、減少汙染物之排放量、增加燃燒效率,並且能提升引擎整體性能輸出。而缸內燃油直噴之技術需搭配缸內氣流之滾轉與旋轉之運動達到所需之空氣與燃料混合型態(homogeneous或 stratified charge),之後進入點火燃燒,本研究利用商業套裝計算流體動力學(Computational Fluid Dynamics, CFD)軟體STAR-CD搭配專業引擎網格生成軟體es-ice (Expert System for Internal Combustion Engines)
,針對一四行程單缸二閥機車引擎,計算引擎缸內氣流之滾轉運動與液滴霧化之交互作用的衍化,並加入缸內點火燃燒之計算,藉由此完整之缸內四行程之液滴霧化與燃燒計算後,探討氣流之滾轉運動與液滴霧化之衍化對之後缸內燃燒所造成之影響,並藉由循環渦度滾轉比及缸內平均壓力變化、溫度變化與壓力容積關係進一步了解引擎之性能,計算結果顯示出氣流之滾轉運動與液滴霧化之交互作用直接影響之後缸內之點火燃燒情形,因此往後在設計缸內直喷引擎時,可藉由先行計算缸內氣流之運動與液滴霧化之衍化,並以此結果做為一重要之參考指標後再加入燃燒之計算,並得知大概引擎之性能,藉此缸內氣流與燃燒模擬計算以減少初期設計缸內直噴引擎時所需之實驗之成本及時間。


The gasoline direct injection (GDI) has been engaged to internal combustion system of an automotive engine since 1995 by the Mitsubishi Motor. This technology has been widely used for car or motorcycle’s engine. It has been well recognized that the fuel consumption, exhaust emission, and engine performance can be drastically increased by application of the GDI technology. The GDI technology usually must be combined with the in cylinder flow tumble or swirl motion to regulate the charge mode the divide to homogeneous charge and stratify charge then engine stars the combustion process. The single cylinder, two valves four stokes, engine flows with fuel injection and combustion processes are calculated by a commercial software package of CFD code, the STAR-CD, combine with the es-ice (Expert System for Internal Combustion Engines) is a mesh generation tool. We know that the in-cylinder flow and atomization and sprays will affect combustion result and engine performance directly in this study. For engine CFD calculation, it should be calculate the in-cylinder flow motion and it’s affected for atomization and sprays first then add the combustion calculation. It can determine the engine P-V diagrams and performance then reduce time and money for the first stage to design the GDI engine.

目 錄 摘要………………………………………………………………I Abstract…………………………………………………………II 誌謝………………………………………………………………III錄…………………………………………………………………IV 符號索引…………………………………………………………VII 表圖索引…………………………………………………………IX 第一章 緒論……………………………………………………1 1.1研究動機…………………………………………………1 1.2文獻回顧…………………………………………………3 1.3研究目的…………………………………………………6 第二章 計算模擬模型…………………………………………7 2.1 計算流力軟體的簡介…………………………………7 2.2 計算模擬之模型………………………………………9 2.2.1 計算網格…………………………………………9 2.2.2 計算邊界條件與初始條件………………………10 2.2.3 取像相位與座標定義……………………………11 2.3 計算模擬之數值方法…………………………………11 2.3.1 統御方程式………………………………………11 2.3.2 數值方法…………………………………………18 2.3.3 物理參數定義……………………………………27 第三章 缸內流場的衍化過程…………………………………29 3.1 引擎轉速1800 RPM 之流場結構與衍化過程……………29 3.1.1 計算截面於對稱面上……………………………29 3.1.2 計算截面於對稱面位移 Z = -18.05 mm………………32 3.1.3 計算截面於正交面上……………………………34 3.1.4 計算截面於正交面位移Z = -18.05mm…………36 3.1.5 計算截面於正交面位移Z = 18.05 mm…………38 3.2 引擎轉速2000 RPM 之流場結構與衍化過程……………40 3.2.1 計算截面於對稱面上……………………………40 3.2.2 計算截面於對稱面位移 Z = -18.05 mm………42 3.2.3 計算截面於正交面上……………………………44 3.2.4 計算截面於正交面位移Z = -18.05 mm……….46 3.2.5 計算截面於正交面位移Z = 18.05 mm…………48 3.3 引擎轉速4000 RPM 之流場結構與衍化過程……………50 3.3.1 計算截面於對稱面上……………………………50 3.3.2 計算截面於對稱面位移 Z = -18.05 mm………53 3.3.3 計算截面於正交面上……………………………55 3.3.4 計算截面於正交面位移Z = -18.05mm…………57 3.3.5 計算截面於正交面位移Z = 18.05 mm…………59 3.4 量化分析………………………………………………60 3.5 計算結果討論…………………………………………62 第四章 噴霧在汽缸內的衍化過程……………………………63 4.1 引擎轉速1800 RPM之噴霧衍化……………………………63 4.2 引擎轉速2000 RPM之噴霧衍化……………………………63 4.3 引擎轉速4000 RPM之噴霧衍化……………………………64 4.4 計算結果討論………………………………………………64 第五章 缸內溫度分佈…………………………………………65 5.1 引擎轉速1800 RPM之溫度分佈……………………………65 5.2 引擎轉速2000 RPM之溫度分佈……………………………66 5.3 引擎轉速4000 RPM之溫度分佈……………………………68 5.4 計算結果討論………………………………………………69 第六章 引擎性能………………………………………………71 第七章 結論與建議……………………………………………73 7.1 結論…………………………………………………………73 7.2 建議…………………………………………………………74 參考文獻…………………………………………………………75

[1]Mayer, H., “Air Pollution in Cities,” Atmospheric Environment, Vol. 33 October 1999, pp. 4029-4036.
[2]Zhao, F., Lai, M. C., Harrington, D. L., “Automotive Spark-Ignited Direct-Injector Gasoline Engines,” Progress in Energy and Combustion Science, Vol. 25, 1999, pp. 437-562.
[3]Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.
[4]Heywood, J. B., “Fluid Motion within the Cylinder of Internal Combustion Engine-The 1986 Freeman Scholar Lecture.” Journal of Fluids Engineering, Transactions of the ASME, Vol. 109, No. 1, 1987, pp. 3-35.
[5]Coz, J. F. L., Henriot, S., and Pinchon P., “An Experimental and Computational Analysis of the Flow Field in a Four-Valve Spark Ignition Engine-Focus on Cycle-Resolved Turbulence,” Journal of Engine, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, pp. 294-321, SAE 900056.
[6]Han, Z., Reitz, R. D., “Effects of Injection Timing on Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 848-860, SAE 970625.
[7]Matsumura, E., Tomita, T., Takeda, K., Furuno, S., and Senda, J., “Analysis of Visualized Fuel Flow inside the Slit Nozzle of Direct Injection SI Gasoline Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 112, 2003, pp. 238-245, SAE 2003-01-0060.
[8]Tanaka, Y., Takano, T., Sami, H., Sakai, K., and Osumi, N., “Analysis on Behaviors of Swirl Nozzle Spray and Slit Nozzle Spray in Relation to DI Gasoline Combustion,” Journal of Engine, SAE Transactions-Section 3, Vol. 112, 2003, pp. 218-235, SAE 2003-01-0059.
[9]Papageorgakis, G., Assanid, D. N., “Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model,” Journal of Engine, SAE Transactions-Section 3, Vol. 107, 1998, pp. 82-107, SAE 980135.
[10]Tomoda, T., Sasaki, S., Sawada, D., Saito, A., and Sami, H. “Development of Direct Injection Gasoline Engine-Study of Stratified Mixture Formation,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 759-766, SAE 970539.
[11]Harada, J., Tomita, T., Mizuno, H., Mashiki, Z., and Ito, Y., “Development of Direct Injection Gasoline Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 767-776, SAE 970540.
[12]Ohsuga, M., Shiraishi, T. Nogi, T., Nakayama, Y., and Sukegawa, Y., “Mixture Preparation for Direct-Injection SI Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 794-801, SAE 970542.
[13]Rotondi, R., Bella G., ”Gasoline direct injection spray simulation,” International Journal of Thermal Sciences 45 (2006) 168-179
[14]Warsi, Z. U. A., “ Conservation Form of the Navier-Stokes Equations in General Nonesteady Coordinates,” AIAA Journal, Vol. 19, No 2, February 1981, pp. 240-242.
[15]Auriemma, M., Caputo, G., Corcione, F. E., and Valentino, G., “Fluid-Dynamic Analysis of the Intake System for a HDDI Diesel Engine by STAR-CD Code and LDA Technique,” Journal of Engines, SAE Transactions-Section 3, Vol. 112, 2003, pp. 21-28, SAE 2003-01-0002.
[16]Nonaka, Y., Horikawa, A., Nonaka, Y., Hirokawa, M., and Noda, T., “Gas Flow Simulation and Visualization in Cylinder of Motor-Cycle Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 113, 2004, pp. 1710-1714, SAE 2004-32-0004.
[17]Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Addison Wesley Longman Limited, New York, 1995.
[18]楊賀順, 平頂與凹面活塞四閥四行程引擎的缸內流場滾轉運動與紊流衍化:PIV量測技術的開發與應用, 國立台灣科技大學機械工程技術研究所碩士論文, 2004。
[19]林岱衛, 不同進氣道設計的四行程單缸引擎缸內流場與紊流特性的 PIV診測, 國立台灣科技大學機械工程技術研究所碩士論文, 2004。

QR CODE