簡易檢索 / 詳目顯示

研究生: 錢逸
Yi Chien
論文名稱: 平板式太陽能集熱器之動態模型建立與實體驗證
Dynamic Modeling and Physical Validation of Flat-plate Solar Collector
指導教授: 郭中豐
Chung-Feng Kuo
口試委員: 郭中豐
Chung-Feng Kuo
黃昌群
Chang-Chiun Huang
張大鵬
Ta-Peng Chang
趙新民
Shin-Min Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 105
中文關鍵詞: 平板式太陽能集熱器熱模型動態模型熱傳遞分析MATLAB
外文關鍵詞: Flat-plate solar collectors, thermal model, dynamic models, heat transfer, MATLAB
相關次數: 點閱:299下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

太陽能是一種綠色、可再生的能源,具有巨大的潛力成為未來能源供應的重要來源。隨著全球能源需求的不斷增長和對氣候變化的關注,太陽能技術的發展、應用和開發變得越來越重要。在眾多太陽能技術中,平板式太陽能集熱器作為一種重要的太陽能應用設備,其進步應用和發展刻不容緩,其簡單而有效的設計使其在不同應用場景中廣泛使用,包括家庭熱水供應、游泳池加熱、工業熱水供應等。
本研究建立一個太陽能熱水系統,利用平板式太陽能集熱器 (Flat plate solar collector, FPSC)、儲水桶、循環水泵、流量計和溫度控制器組成,因有添加馬達並設置溫差控制,所以將此系統視為強制循環式液態型的太陽能集熱器,並蒐集當時位置的環境參數和量測其出入口水溫,以便於後續對水溫和效率做驗證與探討。
本研究對平板式太陽能集熱器做熱傳遞分析,分析平板式太陽能集熱器內部各層結構之間及外部與環境間所產生的熱傳遞機制,以及各個熱傳遞機制的熱流方向,並根據能量守恆定律與集總容量法建立熱模型,接著將熱模型等效轉換為電流迴路,分析各個電路元件適用性,再透過求解電路的方式(克希荷夫電流定律),依序建立平板式太陽能集熱器各層結構的熱平衡方程式,再將所有方程以聯立方程方式寫入MATLAB,接著將所蒐集的環境參數 (日照量、溫度、風速) 輸入至模型,即可預測各層結構動態溫度,然而透過計算性能參數得知效率值。
最後通過實際的平板式太陽能集熱器實驗和動態模型的預測驗證,得出以下結果:在三天的實驗中,水溫的絕對誤差分別為2.07%、1.51%和2.6%。這些實驗的效率測試結果分別為54%、56%和57%,與動態模型預測結果的趨勢相符,且誤差率均在5%以內。同時,可觀察到使用矩形立管的效率稍高於圓形立管的情況。


Solar energy is a green and renewable energy which has great potential to become an important source of energy supply in the future. With the increasing global energy demand and concerns about climate change, the development and application of solar energy technology have become more and more important. Among numerous solar energy technologies, as an important solar energy application equipment, the flat-plate solar collector has an urgent demand for progress and development. It’s simple and effective design makes it widely used in different application scenarios, including home hot water supply, swimming pool heating, industrial hot water supply and so on.
This study constructs a solar water heating system, which consists of a flat-plate solar collector, a water storage tank, a circulating water pump, a flow meter and a temperature controller. With a motor and temperature difference control, this system is regarded as a forced circulation liquid type solar collector, and the environmental parameters of the location at that time are collected and the water temperatures at the inlet and outlet are measured, so as to verify and discuss the water temperature and efficiency later.
This study analyzes the heat transfer of the flat-plate solar collector, analyzes the heat transfer mechanisms between the internal layers of the flat-plate solar collector and between the exterior and the environment, as well as the heat flow direction of each heat transfer mechanism, and builds a thermal model according to the law of energy conservation and the lumped capacity method. Afterwards, the thermal model is equivalently converted into a current circuit to analyze the applicability of the circuit components, the heat balance equations of the structures on various layers of the flat-plate solar collector are established by solving the circuit (Kirchhoff's Circuit Laws), and then all the equations are written into MATLAB in the form of simultaneous equations, and the collected environmental parameters (insolation, temperature, wind speed) are imported into the model, so as to predict the dynamic temperature of the structure on each layer, and the efficiency value can be obtained by calculating the performance parameter.
Finally, the following results are obtained from the experiments on an actual flat-plate solar collector and the prediction verification of the dynamic model: In the 3-day experiment, the absolute errors of the water temperature were 2.07%, 1.51% and 2.6%. The efficiency test results of these experiments were 54%, 56% and 57%, which were consistent with the trend of the dynamic model prediction results, and the error rates were within 5%. Additionally, it can be observed that the efficiency of using rectangular vertical pipes is higher than that of using circular vertical pipes.

摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 ix 表目錄 xii 第1章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.3 研究動機與目的 10 1.4 論文架構 12 第2章 模組與軟體 14 2.1 太陽能光熱系統 14 2.2 太陽能熱水系統原理 15 2.3 太陽能熱水系統組成與種類 16 2.3.1 太陽能熱水系統組成 16 2.3.2 太陽能熱水系統種類 18 2.4 平板式太陽能集熱器介紹 20 2.4.1 集熱板 21 2.4.2 隔熱保溫材料 22 2.4.3 平板式太陽能集熱器性能參數介紹 22 2.5 軟體介紹 24 第3章 研究方法介紹 28 3.1 熱傳遞方式 28 3.1.1 熱傳導 29 3.1.2 熱對流 30 3.1.3 熱輻射 31 3.2 數學模型 31 3.2.1 模型的基本原則 32 3.2.2 集總電容法 33 3.3 熱模型和電路的等效轉換 35 第4章 實驗的規劃與步驟 38 4.1 實驗設備 38 4.2 實驗測試 42 4.2.1 測試前注意事項 42 4.2.2 測試流程 43 4.3 建立動態模型 45 4.3.1 熱傳遞分析 47 4.3.2 設立假設條件 48 4.3.3 熱模型建立 50 4.3.4 熱模型與電路之等效轉換 52 4.3.5 聯立方程式建立 66 第5章 結果與討論 69 5.1 實驗性能實測及分析 69 5.2 動態模型模擬與驗證 73 5.2.1. 組件溫度 73 5.2.2. 水溫與效率 76 5.3 效率比較 79 第6章 結論與未來展望 82 6.1 結論 82 6.2 未來展望 83 參考文獻 84

IEA Net Zero by 2050: A Roadmap for the Global Energy Sector; 2021.
Weiss W, Dür MS, Solar heatworldwide global market development and trends 2022 detailed market figures 2021; 2023.
Shariah AM, Rousan A, Rousan, Ahmad AA, Effect of thermal conductivity of absorber plate on the performance of a solar water heater. Appl Therm Eng 1999;19:733-741.
Zondag HA, De Vries DW, Van Helden WGJ, Van Zolingen RJC, Van Steenhoven AA, The thermal and electrical yield of a PV-thermal collector. Sol Energy 2002;72:113-128.
Hussein HMS, Theoretical and experimental investigation of wickless heat pipes flat plate solar collector with cross flow heat exchanger. Energy Convers Manag 2007;48:1266-1272.
Jesko Ž, Classification of solar collectors; 2008.
Farahat S, Sarhaddi F, Ajam H, Exergetic optimization of flat plate solar collectors. Renew Energy 2009;34:1169-1174.
Rodríguez-Hidalgo MC, Rodríguez-Aumente PA, Lecuona A, Gutiérrez-Urueta GL, Ventas R, Flat plate thermal solar collector efficiency: Transient behavior under working conditions. Part I: Model description and experimental validation. Appl Therm Eng 2011; 31:2394-2404.
Cruz-Peragon F, Palomar JM, Casanova PJ, Dorado MP, Manzano-Agugliaro F, Characterization of solar flat plate collectors. Renew Sust Energ Rev 2012;16:1709-1720.
Akhtar N, Mullick SC, Effect of absorption of solar radiation in glass-cover(s) on heat transfer coefficients in upward heat flow in single and double glazed flat-plate collectors. Int J Heat Mass Transf 2012;55:125-132.
Mansour MK, Thermal analysis of novel minichannel-based solar flat-plate collector. Energy 2013;60:333-343.
Ekramian E, Etemad S Gh, Haghshenasfard M, Numerical analysis of heat transfer performance of flat plate solar collectors. Journal of Fluid Flow, Heat and Mass Transfer (JFFHMT) 2014;1:38-42.
Bakari R, Minja RJA, Njau KN, Effect of glass thickness on performance of flat plate solar collectors for fruits drying. Energy 2014;2014:1-8.
Aste N, Del Pero C, Leonforte F, Water flat plate PV-thermal collectors: A review. Sol Energy 2014;102:98-115.
Brahim T, Dhaou MH, Jemni A, Theoretical and experimental investigation of plate screen mesh heat pipe solar collector. Energy Convers Manag 2014;87:428-438.
Kalogirou SA, Flat-plate collector construction and system configuration to optimize the thermosiphonic effect. Renew Energy 2014;67:202-206.
Michael JJ, Iniyan S, Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energy Convers Manag 2015;95:160-169.
Cerón JF, Pérez-García J, Solano JP, García A, Herrero-Martín R, A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms. Appl Energy 2015;140:275-287.
Zhang D, Tao H, Wang M, Sun Z, Jiang C, Numerical simulation investigation on thermal performance of heat pipe flat-plate solar collector. Appl Therm Eng 2017;118:113-126.
Genc AM, Ezan MA, Turgut A, Thermal performance of a nanofluid-based flat plate solar collector: A transient numerical study. Appl Therm Eng 2018;130:395-407.
Guarracino I, Frecman J, Ramos A, Kalogirou SA, Ekins-Daukes NJ, Markidcs CN, Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions. Appl Energy 2019;240:1014-1030.
Sakhaei SA, Valipour MS, Performance enhancement analysis of The flat plate collectors: A comprehensive review. Renew Sust Energ Rev 2019;102:186-204.
Yang M, Wang Z, Chen L, Tang W, Dynamic heat transfer model of flat plate solar water collectors with consideration of variable flow rate. Sol Energy 2020;212:34-47.
Fan M, Zheng W, You S, Zhang H, Jiang Y, Wu Z, Comparison of different dynamic thermal performance prediction models for the flat-plate solar collector with a new V-corrugated absorber. Sol Energy 2020;204:406-418.
Allouhi A, Amine MB, Heat pipe flat plate solar collectors operating with nanofluids. Sol Energy Mater Sol Cells 2020;219:110798.
Al-Tabbakh AA, Numerical transient modeling of a flat plate solar collector. Results Eng 2022;15:100580.
Koholé YW, Fohagui FCV, Tchuen G, Flat-plate solar collector thermal performance assessment via energy, exergy and irreversibility analysis. Energy Convers Manag 2022;15:100247.
經濟部能源局,2010年能源產業技術白皮書。
Kalogirou SA, Karellas S, Badescu V, Braimakis K, Exergy analysis on solar thermal systems: A better understanding of their sustainability. Renew Energy 2016;85:1328-1333.
Zhiqiang Y, Development of solar thermal systems in China. Sol Energy Mater Sol Cells 2005;86:427-442.
Xia T, Li Y, Sun Z, Wan X, Sun D, Wang L, Liu X, Li T, Performance study of an active solar water curtain heating system for Chinese solar greenhouse heating in high latitudes regions. Appl Energy 2023;332:120548.
Sharma HK, Kumar S, Verma SK, Performance investigation of flat plate solar collector with nanoparticle enhanced integrated thermal energy storage system. J Energy Storage 2022;55:105681.
Li B, Zhai X, Cheng X, Experimental and numerical investigation of a solar collector/storage system with composite phase change materials. Sol Energy 2018;164:65-76.
Bo R, Hu C, Fu W, Meng X, Mao W, Influence of nocturnal thermal insulation on thermal performance improvement of solar air collector with phase-change material. Case Stud Therm Eng 2023;47103092.
Müller S, Giovannetti F, Reineke-Koch R, Kastner O, Hafner B, Simulation study on the efficiency of thermochromic absorber coatings for solar thermal flat-plate collectors. Sol Energy 2019;188:865-874.
Giovannetti F, Föste S, Ehrmann N, Rockendorf G, Low emissivity glass covers for flat plate collectors: Applications and performance. Energy Procedia 2012;30:106-115.
Nadir N, Bouguettaia H, Boughali S, Bechki D, Use of a new agricultural product as thermal insulation for solar collector. Renew Energy 2019;134:569-578.
Tang R, Yang Y, Gao W, Comparative studies on thermal performance of water-in-glass evacuated tube solar water heaters with different collector tilt-angles. Sol Energy 2011;85:1381-1389.
Çomaklı K, Çakır U, Kaya M, Bakirci K, The relation of collector and storage tank size in solar heating systems. Energy Convers Manag 2012;63:112-117.
Zelzouli K, Guizani A, Kerkeni C, Numerical and experimental investigation of thermosyphon solar water heater. Energy Convers Manag 2014;78:913-922.
Sakellariou EI, Axaopoulos PJ, Bot BV, Kavadias KA, First law comparison of a forced-circulation solar water heating system with an identical thermosiphon. Energies 2023;16:431.
Buker MS, Riffat SB, Building integrated solar thermal collectors a review. Renew Sust Energ Rev 2015;51:327-346.
Sharma HK, Kumar S, Verma SK, Comparative performance analysis of flat plate solar collector having circular &trapezoidal corrugated absorber plate designs. Energy 2022;253:124137.
Lund KOF, General thermal analysis of serpentine-flow flat-plate solar collector absorbers. Sol Energy 1989;42:133-142.
CNS15165-1,中華民國國家標準。太陽能集熱器試驗法第一部:面蓋式液體加熱集熱器熱性能及其壓降,2008。
ISO 9806, International Standard. Test methods for solar collectors part 1: Thermal performance of glazed liquid heating collectors including pressure drop; 1994.
Kuo CKJ, Lee YW, Umar ML, Yang PC, Dynamic modeling, practical verification and energy benefit analysis of a photovoltaic and thermal composite module system. Energy Convers Manag 2017;154:470-481.
Meraje WC, Huang CC, Barman J, Huang CY, Kuo CFJ, Design and experimental study of a fresnel lens-based concentrated photovoltaic thermal system integrated with nanofluid spectral splitter. Energy Convers Manag 2022;258:115455.
Rodríguez-Hidalgo MC, Rodríguez-Aumente PA, Lecuona A, Gutiérrez-Urueta GL, Ventas R, Flat plate thermal solar collector efficiency: Transient behavior under working conditions. Part I: Model description and experimental validation. Appl Therm Eng 2011;31:2394-2404.
Kalogirou SA, Solar energy engineering: processes and systems; 2013.
Swinbank WC, Long-wave radiation from clear skies. Q J R Meteorol Soc 1963;81:339-348.
McAdams WH, Heat transmission. 3rd ed. New York: McGraw-Hill; 1954.
Hollands KGT, Unny TE, Raithby GD, Konicek L, Free convective heat transfer across inclined air layers. J Heat Transf 1976;98:189-193.
Cengel YA, Heat transfer: A practical approach. 2nd edition, McGraw-Hill, New York; 2002.
Hobbi A, Siddiqui K, Optimal design of a forced circulation solar water heating system for a residential unit in cold climate using Trnsys. Sol Energy 2009;833:700-714.
Mongre PK, Experiment study of solar water heater with circulating pump and using of Aluminum tube. Int J Eng Technol 2013;4:384-391.
Visconti P, Primiceri P, Costantini P, Colangelo G, Cavalera G, Measurement and control system for thermosolar plant and performance comparison between traditional and nanofluid solar thermal collectors. Int J Smart Sens Intell Syst 2016;9:1220-1242.
Vettrivel H, Mathiazhagan P, Comparison study of solar flat plate collector with single and double glazing systems. Int J Renew Energy Res 2017;7:266-274.
Verma SK, Sharma K, Gupta NK, Soni P, Upadhyay N, Performance comparison of innovative spiral shaped solar collector design with conventional flat plate solar collector,. Energy 2020;194:116853.
Gunnasegaran P, Mohammed HA, Shuaib NH, Saidur R, The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. Int Commun Heat Mass Transf 2010;37:1078-1086.
Karanth KV, Cornelio JA, CFD analysis of a flat plate solar collector for improvement in thermal performance with geometric treatment of absorber tube. Int J Appl Eng Res 2017;12:4415-4421.

無法下載圖示 全文公開日期 2025/08/30 (校內網路)
全文公開日期 2025/08/30 (校外網路)
全文公開日期 2025/08/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE