簡易檢索 / 詳目顯示

研究生: 林旭瑋
Hsu-Wei Lin
論文名稱: 四自由度機械手臂控制系統的研製
Design and Implementation of a Four-Degree-of-Freedom Robotic Arm Control System
指導教授: 劉添華
Tian-Hua Liu
口試委員: 李永勳
Yuang-Shung Lee
楊勝明
Sheng-Ming Yang
楊宗銘
Chung-Ming Young
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 119
中文關鍵詞: 嵌入式系統軌跡規劃運動學機械手臂
外文關鍵詞: embedded system, trajectory planning, kinematics, robotic arm
相關次數: 點閱:276下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討自行設計與製作的四自由度機械手臂控制系統,此系統包含機構、硬體電路以及軟體程式。首先,設計比例-積分控制器以便控制直流電動機,然後進一步控制機械手臂。其次,探討機械手臂的機構,建構機械手臂的運動學模型,推導適用於本系統的逆向運動學解法,以便分析機械手臂的動態行為。最後,實現兩種不同的軌跡規劃方法,產生機械手臂的運動軌跡。
    本文使用國家儀器公司的NI cRIO-9024嵌入式系統作為控制核心,執行位置迴路控制、軌跡規劃、及座標轉換計算等。實驗結果說明本文所提方法的可行性及正確性。


    This thesis investigates design and implementation of a four- degree-of-freedom robotic arm control system, including mechanical configuration, hardware circuits, and software programs. First, a proportional-integral controller is designed to control a DC motor and then to control the robotic arm. Next, the mechanical configuration and a kinematic model of the robotic arm is discussed. A geometric solution of inverse kinematics are proposed to analyze the dynamic behavior of the robotic arm system. After that, two different trajectory planning methods are implemented to generate the planning trajectories for the robotic arm.
    An embedded system, NI cRIO-9024, made by National Instrument Company, is used as the control center to excute the position control, trajectory planning of the motor, and coordinate conversion calculation of the robotic arm. Experimental results can validate the feasibility and correctness of the proposed method.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 XII 符號索引 XIII 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 3 1.3目的及貢獻 6 1.4論文大綱 7 第二章 直流電動機與控制器設計 8 2.1簡介 8 2.2結構及特性 9 2.3數學模式 11 2.4電動機驅動電路原理 16 2.5控制器設計 18 2.5.1轉速迴路控制器設計 19 2.5.2角度迴路控制器設計 22 第三章 機械手臂與運動學分析 29 3.1簡介 29 3.2手臂機構設計 30 3.3順向運動學 34 3.4逆向運動學 43 3.4.1解析解 44 3.4.2幾何解 47 第四章 路徑軌跡規劃 53 4.1簡介 53 4.2插值多項式控制法 53 4.2.1立方多項式法 54 4.2.2五次方多項式法 55 4.2.3拋物線與直線混合法 58 4.3設定點追蹤控制法 61 4.4插值多項式與設定點追蹤差異探討 62 第五章 系統研製 68 5.1簡介 68 5.2硬體電路 70 5.2.1電動機驅動電路 71 5.2.2嵌入式控制系統 73 5.2.3端效器設備 78 5.3軟體程式設計 81 5.3.1 HOST端程式的設計 81 5.3.2 RTOS端程式的設計 83 5.3.3 FPGA端程式的設計 86 第六章 實測結果 88 6.1簡介 88 6.2實測結果 88 第七章 結論與未來研究方向 110 7.1結論 110 7.2未來研究方向 111 參考文獻 112

    [1] G. Hirzinger, J. Bals, M. Otter, and J. Stelter, “The DLR-KUKA success story:robotics research improves industrial robots,” IEEE Robotics and Automation Magazine, vol. 12, no. 3, pp. 16-23, Sep. 2005.
    [2] M. S. Erden, and A. Billard, “Hand impedance measurements during interactive manual welding with a robot,” IEEE Transactions on Robotics, vol. 31, no. 1, pp. 168-179, Jan. 2015.
    [3] K. Y. Kim, H. S. Song, J. W. Suh, and J. J. Lee, “A novel surgical manipulator with workspace-conversion ability for telesurgery,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 1, pp. 200-211, Sep. 2011.
    [4] L. Wang, P. Fallavollita, R. Zou, X. Chen, S. Weidert, and N. Navab “Closed-form inverse kinematics for interventional C-Arm X-Ray imaging with six degrees of freedom modeling and application,” IEEE Transactions on Medical Imaging, vol. 31, no. 5, pp. 1086-1099, Jan. 2012.
    [5] J. Morimoto, G. Endo, J. Nakanishi, and G. Cheng, “A biologically inspired biped locomotion strategy for humanoid robots modulation of sinusoidal patterns by a coupled oscillator model,” IEEE Transactions on Robotics, vol. 24, no. 1, pp. 185-191, Feb. 2008.
    [6] O. E. Ramos, N. Mansard, O. Stasse, C. Benazeth, S. Hak, and L. Saab, “Dancing humanoid robots systematic use of OSID to compute dynamically consistent movements following a motion capture pattern,” IEEE Robotics and Automation Magazine, vol. 22, no. 4, pp. 16-26, Sep. 2015.
    [7] R. Stiefelhagen, H. K. Ekenel, C. Fugen, P. Gieselmann, H. Holzapfel, F. Kraft, K. Nickel, M. Voit, and A. Waibel, “Enabling multimodal human–robot interaction for the karlsruhe humanoid robot,” IEEE Transactions on Robotics, vol. 23, no. 5, pp. 840-851, Oct. 2007.
    [8] W. Suleiman, F. Kanehiro, E. Yoshida, J. P. Laumond, and A. Monin, “Time parameterization of humanoid-robot paths,” IEEE Transactions on Robotics, vol. 26, no. 3, pp. 458-468, Mar. 2010.
    [9] P. Richards, “Robotics - Learning from robots - The robot marks a step towards the future with regard to the automation of fuel cell production,” Computing and Control Engineering Journal, vol. 18, no. 1, pp. 16-18, Feb. 2007.
    [10] J. J. Fernandez, M. Prats, P. J. Sanz, J. C. Garcia, R. Marin, M. Robinson, D. Ribas, and P. Ridao, “Grasping for the seabed:Developing a new underwater robot arm for shallow-water intervention,” IEEE Robotics and Automation Magazine, vol. 20, no. 4, pp. 121-130, Oct. 2013.
    [11] P. Yadmellat, and M. R. Kermani, “Design and development of a single-motor, two-DOF, safe manipulator, ”IEEE/ASME Transactions on Mechatronics, vol. 19, no. 4, pp. 1384-1391, Sep. 2014.
    [12] H. S. Kim, J. K. Min, and J. B. Song, “Multiple-degree-of-freedom counterbalance robot arm based on slider-crank mechanism and bevel gear units,” IEEE Transactions on Robotics, vol. 32, no.1, pp. 230-235, Dec. 2016.
    [13] P. H. Chang, K. Park, S. H. Kang, H. I. Krebs, and N. Hogan, “Stochastic estimation of human arm impedance using robots with nonlinear frictions an experimental validation,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2, pp. 775-786, Dec. 2013.
    [14] D. Yulin, “The analysis and implement of PLC- based PI control for the permanent magnet DC motor,” IEEE ICCSNA 2010, pp. 448-451, June 2010.
    [15] J. J. Muñoz César, E. A. Merchán Cruz, L. H. Hernández Gómez, E. Guerrero Guadarrama, A. Jiménez Ledesma, and I. Jaidar Monter, “Speed control of a DC brush motor with conventional PID and fuzzy PI controllers,” IEEE CERMA 2008, pp. 344-349, Sep. 2008.
    [16] M. F. Moussa, M. Saad, and Y. G. Dessouky, “Adaptive control and one-line identification of sensorless permanent magnet DC motor,” IEEE SIBIRCON 2010, pp. 852-857, July 2010.
    [17] M. Koksal, and F. Yenici, “Position control of a permanent magnet DC motor by model reference adaptive control,” IEEE ISIE 2007, pp. 112-117, June 2007.
    [18] M. Muruganandam, and M. Madheswaran, “Modeling and simulation of modified fuzzy logic controller for various types of DC motor drives,” IEEE INCACEC 2009, pp. 1-6, June 2009.
    [19] M. Muruganandam, and M. Madheswaran, “Performance analysis of fuzzy logic controller based DC-DC converter fed DC series motor,” IEEE CCDC 2009, pp. 1635-1640, June 2009.
    [20] P. Thirusakthimurugan, and P. Dananjayan, “A robust auto tuning speed control of permanent magnet brushless DC motor,” IEEE ICINFA 2006, pp. 270-273, Dec. 2006.
    [21] J. Denavit, and R. S. Hartenberg, “A kinematics notation for Lower Pair Mechanisms Based on Matrices,” ASME, J. of Applied Mechanics, vol. 77, pp. 215-221, 1955
    [22] R P. Paul, and B Shimano, “Kinematic control equations for simple manipulators,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 11, no. 6, pp. 449-455, 1981.
    [23] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics Control, Sensing, Vision, and Intrlligence, McGraw-Hill Education, 1987.
    [24] J. M. Lee, B. S. Park, Y. S. Lee, J. S. Ahn, S. H. Lee, S. J. Lim, and C. S. Han, “The development of the robot manipulator for an intelligent service robot,” IEEE SICE ICASE 2006, pp. 282-287, Oct. 2006.
    [25] Y. Liu, S. Li, and M. Xie, “Design and implementation of a new single-motor driven arm manipulator,” IEEE ICMA 2007, pp. 3071-3076, Aug. 2007.
    [26] G. Grunwald, G. Schreiber, A. Albu-Schaffer, and G. Hirzinger, “Programming by touch the different way of human-robot interaction,” IEEE Transactions on Industrial Electronics, vol. 50, no. 4, pp. 659-666, Aug. 2003.
    [27] D. Matsui, T. Minato, K. F. MacDorman, and H. Ishiguro, “Generating natural motion in an android by mapping human motion,” IEEE/RSJ IROS 2005, pp. 3301-3308, Aug. 2005.
    [28] P. Henson, and S. Marais, “The utilization of duplex worm gears in robot manipulator arms a design, build and test approach,” IEEE ROBOMECH 2012, pp. 1-4, Nov. 2012.
    [29] N. Boules, “Design optimization of permanent magnet DC motors,” IEEE Transactions on Industry Applications, vol. 26, no. 4, pp. 786-792, July 1990.
    [30] W. Xu, H. W. Dommel, M. B. Hughes, G. W. K. Chang, and L. Tan, “Modeling of adjustable speed drives for power system harmonic analysis,” IEEE Transactions on Power Delivery, vol. 14, no. 2, pp. 595-601, Apr. 1999.
    [31] O. S. Lobosco, “Modeling and simulation of DC motors in dynamic conditions allowing for the armature reaction,” IEEE Transactions on Energy Conversion, vol. 14, no. 4, pp. 1288-1293, Dec. 1999.
    [32] R. M. Stephan, “A simple model for a thyristor-driven DC motor considering continuous and discontinuous current modes,” IEEE Transactions on Education, vol. 34, no. 4, pp. 330-335, Nov. 1991.
    [33] T. Castagnet, and J. Nicolai, “Digital control for brush DC motor,” IEEE Transactions on Industry Applications, vol. 30, no. 4, pp. 889-888, July 1994.
    [34] Y. Iwaji, and S. Fukuda, “A pulse frequency modulated PWM inverter for induction motor drives,” IEEE Transactions on Power Electronics, vol. 7, no. 2, pp. 404-410, Apr. 1992.
    [35] R. Kelly, and J. Moreno, “Learning PID structures in an introductory course of automatic control,” IEEE Transactions on Education, vol. 44, no. 4, pp. 373-376, Nov. 2001.
    [36] S. Sambandan, and A. Nathan, “Fuzzy current control using current mode WTA-LTA circuits in flexible organic displays,” IEEE MWSCAS 2005, pp. 1609-1612, Aug. 2005.
    [37] R. L. A. Ribeiro, C. B. Jacobina, A. D. Araujo, M. B. Santos, and A. C. Oliveira, “A non-standard robust adaptive stator current control strategy for induction motor drives,” IEEE PESC 2007, pp. 2113-2119, June 2007.
    [38] J. E. Agapakis, J. M. Katz, and D. L. Pieper, “Programming and control of multiple robotic devices in coordinated motion,” IEEE ICRA 1990, pp. 362-367, May 1990.
    [39] L. W. Tsai, “The kinematics of spatial robotic bevel-gear trains,” IEEE Journal on Robotics and Automation, vol. 4, no. 2, pp. 150-156, Apr. 1988.
    [40] R. Mansenr, and K. L. Doty, “A complete kinematic analysis of four-revolute-axis robot manipulators,” Mechanisms and Machine Theory, vol. 27, no. 5, pp. 575-586, Sep. 1992.
    [41] E. Y. Veslin, M. S. Dutra, O. Lengerke, E. A. Carreno, and M. J. M. Tavera, “A hybrid solution for the inverse kinematic on a seven DOF robotic manipulator,” IEEE Latin America Transactions, vol. 12, no. 2, pp. 212-218, Mar. 2014.
    [42] M. Shimizu, H. Kakuya, W. K. Yoon, K. Kitagaki, and K. Kosuge, “Analytical inverse kinematic computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1131-1142, Sep. 2008.
    [43] Y. Yang, G. Peng, Y. Wang, and H. Zhang, “A new solution for inverse kinematics of 7-DOF manipulator based on neural network,” IEEE ICAL 2007, pp. 1958-1962, Aug. 2007.
    [44] H. C. Huang, C. P. Chen, and P. R. Wang, “Particle swarm optimization for solving the inverse kinematics of 7-DOF robotic manipulators,” IEEE ICSMC 2012, pp. 3105-3110, Oct. 2012.
    [45] K. Hauser, and V. N. T. Hing, “Fast smoothing of manipulator trajectories using optimal bounded-acceleration shortcuts,” IEEE ICRA 2010, pp. 2493-2498, May 2010.
    [46] J. K. Rai, and R. Tewari, “Quintic polynomial trajectory of biped robot for human-like walking,” IEEE ISCCSP 2014, pp. 360-363, May 2014.
    [47] E. Hashemi, M. G. Jadidi, M. R. S. Mohammadi, and M. Karimi, “In-plane path planning for biped robots based on bezier curve,” IEEE/ASME AIM 2011, pp. 796-801, July 2011.
    [48] M. Kong, Z. Chen, C. Ji, W. You, and M. Liu, “Optimal point-to-point motion planning of heavy-duty industry robot with indirect method,” IEEE ROBIO 2013, pp. 768-773, Dec. 2013.
    [49] Y. Guan, K. Yokoi, O. Stasse, and A. Kheddar, “On robotic trajectory planning using polynomial interpolations,” IEEE ROBIO 2005, pp. 111-116, July 2005.
    [50] Q. Du, and X. Zhang, “Motion planning for the intervention therapy robot system,” IEEE ICACC 2010, pp. 606-610, Mar. 2010.
    [51] X. Kong, X. Duan, H. Zhao, and Y. Wang, “An active medical supporting manipulator and experiments for vascular interventional robot,” IEEE ICMA 2012, pp. 617-622, Aug. 2012.
    [52] S. Chapman, Electric Machinery Fundamentals, 5 Edition, McGraw-Hill Education, 2011.
    [53] J. K. Lee, S. G. Bae, J. K. Seok, D. C. Lee, and H. G. Kim, “Sensorless control of nonsalient permanent magnet synchronous motor drives using rotor position tracking PI controller,” IEEE ICEMS 2003, pp. 522-525, Nov. 2003.
    [54] D. Zhang, H. Li, and E. G. Collins, “Digital anti-windup PI controllers for variable-speed motor drives using FPGA and stochastic theory,” IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1496-1501, Sep. 2006.
    [55] L. W. Tsai, Robot Analysis:The Mechanics of Serial and Parallel Manipulators, Wiley-Interscience, 1999.
    [56] S. B. Niku, Introduction to Robotics:Analysis, Control, Applications, second edition, Wiley-Interscience, 2010.
    [57] A. Khan, C. Xiangming, Z. Xingxing, and W. L. Quan, “Closed form inverse kinematics solution for 6-DOF underwater manipulator,” IEEE FPM 2015, pp. 1171-1176, Aug. 2015.
    [58] C. H. Huang, C. S. Hsu, P. C. Tsai, R. J. Wang, and W. J. Wang, “Vision based 3-D position control for a robot arm,” IEEE ICSMC 2011, pp. 1699-1703, Oct. 2011.
    [59] AiKong Electronics, AQMD3630NS Motor Controller Hardware Reference, Feb. 2014.
    [60] National Instruments, CompactRIO cRIO-9024 Operating Instructions, Nov. 2014.
    [61] National Instruments, CompactRIO cRIO-9111/9112/9113/9114/9116/ 9118 Operating Instructions, Oct. 2015.
    [62] National Instruments, Digital Input Output Module NI-9403 Operating Instructions, June 2008.
    [63] National Instruments, Analog Voltage Output Module NI-9403 Operating Instructions, Aug. 2009.
    [64] SMC Corporation, LEHS20 Electric Actuator Hardware Reference, Feb. 2009.

    無法下載圖示 全文公開日期 2021/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE