簡易檢索 / 詳目顯示

研究生: 彭國元
Quoc-Nguyen Banh
論文名稱: Research on the Novel Small Ball-Burnishing Tool Embedded with a Load Cell
Research on the Novel Small Ball-Burnishing Tool Embedded with a Load Cell
指導教授: 修芳仲
Fang-Jung Shiou
口試委員: 廖運炫
Yunn-Shiuan Liao
許東亞
Dong-Yea Sheu
陳炤彰
Chao-Chang Chen
林原慶
Yuan-Ching Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 143
外文關鍵詞: small ball-burnishing, measurement system analysis, grey-based Taguchi, 3-axis machining, 5-axis machining, complex surfaces burnishing
相關次數: 點閱:274下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Surface finishing of the complex surfaces with large curvatures and slopes remains a challenging problem in manufacturing. In this research, a new double-spring-mechanism load cell embedded small ball-burnishing tool, clamping a ball with the diameter of 0.5 mm, has been designed and manufactured to solve this matter. In order to properly conduct the burnishing process, the effects of process parameters on the burnishing surface's properties were investigated using the numerical simulation and empirical methods. The burnishing process is stimulated through two steps, the indentation of the burnishing ball into workpiece's surface based on the elastic-plastic contact model, and the sliding movement of the burnishing tool. Utilizing this simulation, the surface roughness of the burnished workpieces under the different setting values of burnishing forces can be predicted. The small ball-burnishing condition for the optimum surface roughness of the Oxygen Free Copper, and Polmax materials were determined by conducting the two-round procedure designed using Taguchi's orthogonal array. For the optimization of both surface roughness and superficial hardness of STAVAX material, the hybrid grey-based Taguchi method with the weighting coefficients estimated by principal component analysis and grey entropy was employed. Several burnishing experiments under the optimal condition on the complex Polmax surfaces were conducted using the 3- and 5-axis machining centers.

    Abstract i LIST OF FIGURES viii LIST OF TABLES xiii NOMENCLATURE xv Chapter 1. Introduction 1 1.1 Research motivation 1 1.2 Literature review 2 1.3 Thesis objectives 7 1.4 Outline of the dissertation 8 Chapter 2. Basic principle of ball-burnishing process 9 2.1 Ball-burnishing process and its parameters 9 2.2 Effects of parameters on the surface integrity of workpiece 11 2.2.1 Burnishing force 11 2.2.2 Feed (Step-over) 12 2.2.3 Burnishing speed 12 2.2.4 Ball diameter 13 2.2.5 Ball material on surface roughness 14 2.2.6 Types of lubricants 14 2.3 Boundary of the small ball-burnishing force 15 Chapter 3. Development of a novel load cell embedded double-spring-mechanism ball burnishing tool 18 3.1 Problem of the vertical load cell embedded burnishing tool 18 3.2 Design of the small ball-burnishing tool 19 3.3 Burnishing force measurement system 20 3.3.1 Schematic of the force measurement system 20 3.3.2 Components of force measurement system 21 3.4 Linear stress analysis 24 3.4.1 Configuration of the test carrier 24 3.4.2 Restrain and load configuration 25 3.4.3 Analysis results 26 3.5 Kinetic analysis of the double spring mechanism 27 3.6 Force measurement system analysis 28 3.6.1 Setup of the force measurement system analysis 29 3.6.2 Measurement results 30 3.6.3 Data analysis 30 Chapter 4. Numerical simulation of the smoothing small ball-burnishing process 34 4.1 Simulation Progress 34 4.1.1 Simulation procedure 34 4.1.2 Surface generation 36 4.1.3 Indentation process 37 4.2 Experimental verification 44 4.2.1 Experimental materials 44 4.2.2 Process parameters 45 4.3 Results and discussions 45 Chapter 5. Determination of the optimal small ball-burnishing condition for surface roughness 49 5.1 Optimization procedure 49 5.2 Experimental works 50 5.2.1 Experimental specimens 50 5.2.2 Configuration of experimental design 51 5.2.3 Experimental setup 53 5.3 Experiment results of the first round experiments 54 5.4 Dominant factors analysis - secondary round experiment 59 5.5 Discussion 61 5.5.1 Surface roughness improvement 61 5.5.2 Effect of burnishing force on surface roughness 62 5.5.3 Effect of step-over on surface roughness 63 5.5.4 Effect of number of passes on surface roughness 64 Chapter 6. Simultaneous optimization using grey-based Taguchi method 66 6.1 Multi-response optimization procedure 66 6.2 Data analysis process 68 6.3 Experimental work 72 6.3.1 Specimen's preparation 72 6.3.2 Experimental factors and levels 73 6.4 Experimental results and data analysis 74 6.4.1 Results of L18 experiment 74 6.4.2 Parametric optimization of the small ball-burnishing process on STAVAX 75 6.4.3 Dominant factors analysis - second round experiment 78 6.4.4 Confirmation experiments 81 6.5 Discussions 83 6.5.1 The surface quality of the burnished STAVAX 83 6.5.2 Effects of the burnishing force 85 6.5.3 Effects of the step-over 86 6.5.4 Effects of the number of passes 87 Chapter 7. Small ball-burnishing process on complex surfaces 89 7.1 Cusps formation and normal forces inducing during burnishing process on free-form surfaces 89 7.2 Configurations of experimental specimens 91 7.3 Experiment results and discussions 93 7.3.1 Experiment results 93 7.3.2 Discussions 97 Chapter 8.Conclusions and future works 101 8.1 Conclusions 101 8.2 Future works 103 REFERENCES 105 APPENDIX A 110 APPENDIX B 111 APPENDIX C 112 APPENDIX D 121

    1. Travieso-Rodríguez, J.A., Dessein, G., González-Rojas, H.A.: Improving the Surface Finish of Concave and Convex Surfaces Using a Ball Burnishing Process. Materials and Manufacturing Processes 26(12), 1494-1502 (2011). doi:10.1080/10426914.2010.544819
    2. López de Lacalle, L.N., Rodríguez, A., Lamikiz, A., Celaya, A., Alberdi, R.: Five-Axis Machining and Burnishing of Complex Parts for the Improvement of Surface Roughness. Materials and Manufacturing Processes 26(8), 997-1003 (2011). doi:10.1080/10426914.2010.529589
    3. Chen, C.H., Shiou, F.J.: Determination of Optimal Ball-Burnishing Parameters for Plastic Injection Moulding Steel. Int. Journ. Adv. Manufac. Tech. 21(3), 177-185 (2003). doi:10.1007/s001700300019
    4. Shiou, F.J., Chuang, C.H.: Precision surface finish of the mold steel PDS5 using an innovative ball burnishing tool embedded with a load cell. Precision Engineering 34, 76-84 (2010).
    5. Korzynski, M.: A model of smoothing slide ball-burnishing and an analysis of the parameter interaction. Journal of Materials Processing Technology 209(1), 625-633 (2009). doi:DOI 10.1016/j.jmatprotec.2008.02.037
    6. Bougharriou, A., Sai, W.B., Sai, K.: Prediction of surface characteristics obtained by burnishing. International Journal of Advanced Manufacturing Technology 51(1-4), 205-215 (2010). doi:DOI 10.1007/s00170-010-2601-y
    7. Luo, H., Liu, J., Wang, L., Zhong, Q.: Investigation of the burnishing process with PCD tool on non-ferrous metals. Int. Journ. Adv. Manufac. Tech. 25(5-6), 454-459 (2005). doi:10.1007/s00170-003-1959-5
    8. Lin, Y.C., Wang, S.W., Lai, H.Y.: The relationship between surface roughness and burnishing factor in the burnishing process. International Journal of Advanced Manufacturing Technology 23(9-10), 666-671 (2004). doi:DOI 10.1007/s00170-002-1486-9
    9. Bouzid, W., Sai, K.: Finite element modelling of burnishing of AISI 1042 steel. Int. J. Adv. Manifact. Technol. 25, 460-465 (2005). doi:10.1007/s00170-003-1993-3
    10. Balland, P., Tabourot, L., Degre, F., Moreau, V.: An investigation of the mechanics of roller burnishing through finite element simulation and experiments. International Journal of Machine Tools & Manufacture 65, 29-36 (2013). doi:10.1016/j.ijmachtools.2012.09.002
    11. Lo, S.W., Yang, T.S.: A New Mechanism of Asperity Flattening in Sliding Contact---The Role of Tool Elastic Microwedge. J Tribol 125(4), 713-719 (2003). doi:10.1115/1.1574518
    12. Bhushan, B.: Principles and Applications to Tribology. John Willey & Sons Ltd United Kingdom (2013)
    13. Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35(1), 87-111 (1975). doi:http://dx.doi.org/10.1016/0043-1648(75)90145-3
    14. Greenwood, J.A., Tripp, J.H.: The Contact of Two Nominally Flat Rough Surfaces. Proceedings of the Institution of Mechanical Engineers 185(1), 625-633 (1970). doi:10.1243/pime_proc_1970_185_069_02
    15. Francis, H.A.: Application of spherical indentation mechanics to reversible and irreversible contact between rough surfaces. Wear 45(2), 221-269 (1977). doi:http://dx.doi.org/10.1016/0043-1648(77)90076-X
    16. Horng, J.H.: An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surfaces. Journal of Tribology 120(1), 82-88 (1998). doi:10.1115/1.2834194
    17. Zhao, Y.W., Maietta, D.M., Chang, L.A.: An Asperity Microcontact Model incorporationg the transition from elastic deformation to fully plastic flow. J Tribol 122(1), 86-93 (1999). doi:10.1115/1.555332
    18. Zhao, Y.W., Chang, L.A.: A Model of Asperity Interactions in Elastic-Plastic Contact of Rough Surfaces. J Tribol 124(4), 857-864 (2000). doi:10.1115/1.1338482
    19. Kogut, L., Etsion, I.: Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat. Journal of Applied Mechanics 69(5), 657-662 (2002). doi:citeulike-article-id:5418169
    20. Jeng, Y.R., Wang, P.Y.: An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation. Tribol Int 125(2), 232-240 (2003). doi:10.1115/1.1537744
    21. Jeng, Y.R.: Characterization of Surface Height Distributions. J. Chin. Soc. Mech. Eng. 19(4), 417-423 (1998).
    22. Hill, I.D.: Approximating the Distribution of Greenwood's Statistic with Johnson Distributions. Journal of the Royal Statistical Society. Series A (General) 142(3), 378-380 (1979). doi:10.2307/2982489
    23. Bakolas, V.: Numerical generation of arbitrarily oriented non-Gaussian three-dimensional rough surfaces. Wear 254(5–6), 546-554 (2003). doi:http://dx.doi.org/10.1016/S0043-1648(03)00133-9
    24. Sayles, R.S.: Basic principles of rough surface contact analysis using numerical methods. Tribology International 29(8), 639-650 (1996). doi:http://dx.doi.org/10.1016/0301-679X(96)00016-3
    25. Webster, M.N., Sayles, R.S.: A Numerical Model for the Elastic Frictionless Contact of Real Rough Surfaces. Journal of Tribology 108(3), 314-320 (1986). doi:10.1115/1.3261185
    26. Bhushan, B.: Contact mechanics of rough surfaces in tribology: multiple asperity contact. Tribology Letters 4(1), 1-35 (1998). doi:10.1023/A:1019186601445
    27. Chilamakuri, S.K., Bhushan, B.: Contact analysis of non-Gaussian random surfaces. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 212(1), 19-32 (1998). doi:10.1243/1350650981541868
    28. Chang, L., Gao, Y.: A Simple Numerical Method for Contact Analysis of Rough Surfaces. J Tribol 121(3), 425-432 (1999). doi:10.1115/1.2834085
    29. Peng, W., Bhushan, B.: Three-dimensional contact analysis of layered elastic/plastic solids with rough surfaces. Wear 249(9), 741-760 (2001). doi:http://dx.doi.org/10.1016/S0043-1648(01)00692-5
    30. Person, B.N.J.: contact mechanics for randomly rough surfaces. Surface Science Reports 61(4), 201-227 (2006). doi:10.1016/j.surfrep.2006.04.001
    31. Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: A new efficient numerical method for contact mechanics of rough surfaces. International Journal of Solids and Structures 49(2), 338-343 (2012). doi:http://dx.doi.org/10.1016/j.ijsolstr.2011.10.009
    32. Luo, H., Liu, J., Wang, L., Zhong, Q.: Study of the mechanism of the burnishing process with cylindrical polycrystalline diamond tools. Journal of Materials Processing Technology 180(1–3), 9-16 (2006). doi:http://dx.doi.org/10.1016/j.jmatprotec.2005.03.041
    33. Korzynski, M.: Modeling and experimental validation of the force–surface roughness relation for smoothing burnishing with a spherical tool. International Journal of Machine Tools and Manufacture 47(12–13), 1956-1964 (2007). doi:http://dx.doi.org/10.1016/j.ijmachtools.2007.03.002
    34. Li, F.L., Xia, W., Zhou, Z.Y., Zhao, J., Tang, Z.Q.: Analytical prediction and experimental verification of surface roughness during the burnishing process. International Journal of Machine Tools & Manufacture 62, 67-75 (2012). doi:DOI 10.1016/j.ijmachtools.2012.06.001
    35. Antoniadis, A., Savakis, C., Bilalis, N., Balouktsis, A.: Prediction of Surface Topomorphy and Roughness in Ball-End Milling. Int. Journ. Adv. Manufac. Tech. 21(12), 965-971 (2003). doi:10.1007/s00170-002-1418-8
    36. Quinsat, Y., Sabourin, L., Lartigue, C.: Surface topography in ball end milling process: Description of a 3D surface roughness parameter. Journal of Materials Processing Technology 195(1–3), 135-143 (2008). doi:http://dx.doi.org/10.1016/j.jmatprotec.2007.04.129
    37. Zhang, C., Guo, S., Zhang, H., Zhou, L.: Modeling and predicting for surface topography considering tool wear in milling process. Int. Journ. Adv. Manufac. Tech. 68(9-12), 2849-2860 (2013). doi:10.1007/s00170-013-4989-7
    38. Mukherjee, I., Ray, P.K.: A review of optimization techniques in metal cutting processes. Comput. Ind. Eng. 50(1), 15-34 (2006). doi:10.1016/j.cie.2005.10.001
    39. El-Axir, M.H.: An investigation into the ball burnishing of aluminium alloy 6061-T6. Journal of Engineering Manufacture, 1733-1742 (2007).
    40. El-Taweel, T.A., El-Axir, M.H.: Analysis and optimization of the ball burnishing process through the Taguchi technique. International Journal of Advanced Manufacturing Technology 41(3-4), 301-310 (2009). doi:DOI 10.1007/s00170-008-1485-6
    41. López de Lacalle, L.N., Lamikiz, A., Sánchez, J.A., Arana, J.L.: The effect of ball burnishing on heat-treated steel and Inconel 718 milled surfaces. Int. Journ. Adv. Manufac. Tech. 32(9-10), 958-968 (2007). doi:10.1007/s00170-005-0402-5
    42. Vukelic, D., Miljanic, D., Randjelovic, S., Budak, I., Dzunic, D., Eric, M., Pantic, M.: A Burnishing process Based on the Optimal Depth of workpiece Penetration. Materials and technology 47(1), 43-51 (2013).
    43. Gharbi, F., Sghaier, S., Al-Fadhalah, K.J., Benameur, T.: Effect of Ball Burnishing Process on the Surface Quality and Microstructure Properties of AISI 1010 Steel Plates. Journal of Materials Engineering and Performance 20(6), 903-910 (2011). doi:DOI 10.1007/s11665-010-9701-6
    44. Shiou, F.J., Chen, C.H.: Freeform surface finish of plastic injection mold by using ball-burnishing process. J. Mater. Process. Tech. 140, 248-254 (2003). doi:Doi 10.1016/S0924-0136(03)00750-7
    45. Loh, N.H., Tam, S.C.: Effects of ball burnishing parameters on surface finish—A literature survey and discussion. Precision Engineering 10(4), 215-220 (1988). doi:http://dx.doi.org/10.1016/0141-6359(88)90056-6
    46. Pignatiello, J.J.: Strategies for robust multiresponse quality engineering. IIE Transactions 25(3), 5-15 (1993). doi:10.1080/07408179308964286
    47. Phillip, J.R.: Taguchi Techniques for Quality Engineering, 2nd edition ed. Industrial Engineering Series. McGraw-Hill Publishing Co., Taipei (2008)
    48. Banh, Q.N., Shiou, F.J.: Development of an Innovative Small Ball-Burnishing Tool Embedded with a Load Cell. Paper presented at the International conference of Asian Society for Precision Engineering and Nanotechnology (ASPEN2013), Taipei, Taiwan,
    49. Sagbas, A., Kahraman, F.: Determination of Optimal Ball Burnishing Parameters for Surface Hardness. Materials and Tehnology 43(5), 271-274 (2009).
    50. Jeyapaul, R., Shahabudeen, P., Krishnaiah, K.: Quality management research by considering multi-response problems in the Taguchi method – a review. Int. Journ. Adv. Manufac. Tech. 26(11-12), 1331-1337 (2005). doi:10.1007/s00170-004-2102-y
    51. Deng, J.: Introduction to Grey System. Journal of Grey System 1(1), 24 (1989).
    52. Lin, J.L., Tarng, Y.S.: Optimization of the multi-response process by the Taguchi method with grey relational analysis. Journal of Grey System 4, 16 (1998).
    53. Esme, U.: Use of Grey Based Taguchi Method in Ball Burnishing Process for the Optimization of Surface Roughness and Microhardness of Aa 7075 Aluminum Alloy. Materials and Technology 44(3), 129-135 (2010).
    54. Datta, S., Bandyopadhyay, A., Pal, P.: Grey-based taguchi method for optimization of bead geometry in submerged arc bead-on-plate welding. Int. Journ. Adv. Manufac. Tech. 39(11-12), 1136-1143 (2008). doi:10.1007/s00170-007-1283-6
    55. Mehat, N.M., Kamaruddin, S., Othman, A.R.: Hybrid Integration of Taguchi Parametric Design, Grey Relational Analysis, and Principal Component Analysis Optimization for Plastic Gear Production. Chinese J. Eng. 2014, 11 (2014). doi:doi:10.1155/2014/351206
    56. Wen, K.L., Chang, T.C., You, M.L.: The Grey Entropy and Its Application in Weighting Analysis. In: IEEE Sys. Man. Cybern. 1998, pp. 1842-1844
    57. Chiang, Y.M., Hsieh, H.H.: The use of the Taguchi method with grey relational analysis to optimize the thin-film sputtering process with multiple quality characteristic in color filter manufacturing. Computer & Industrial Engineering 56(2), 648-661 (2009). doi:http://dx.doi.org/10.1016/j.cie.2007.12.020
    58. Lou, H.Y., Liu, J.Y., Wang, L.J., Zhong, Q.P.: The effect of burnishing parameters on burnishing force and surface hardness. Int. J. Adv. Manifact. Technol. 28, 707-713 (2006). doi:10.1007/s00170-004-2412-0
    59. https://measurementsensors.honeywell.com/Pages/Product.aspx?category=PRODUCTTYPES-LOAD-MINIATURESTAINLESSSTEEL&cat=Honeywell&pid=53&SortBy=&Asc=&rank=2.
    60. http://www.interfaceforce.com/index.php?SGA-Signal-Conditioner&mod=product&show=141.
    61. http://www.eagledaq.com/adpt-6868-scd-scsi-ii-f-centronics-dsub-to-69way-screw-terminal.
    62. http://www.eagledaq.com/pci-703-daq-card-400khz-16-32-64channel-14bit-ad-two-dacs-multi.
    63. Khan, R.M.: Measurement System Analysis. In: Problem Solving and Data Analysis using Minitab. pp. 209-260. John Wiley & Sons, Ltd, (2013)
    64. Aramaki, H., Cheng, H.S., Chung, Y.W.: The Contact Between Rough Surfaces With Longitudinal Texture—Part I: Average Contact Pressure and Real Contact Area. J Tribol 115(3), 419-424 (1993). doi:doi:10.1115/1.2921653
    65. Chang, W.R., Etsion, I., Bogy, D.B.: An Elastic-Plastic Model for the Contact of Rough Surfaces. Journal of Tribology 109, 257-263 (1987). doi:10.1115/1.3261348
    66. Abdo, J., Farhang, K.: Elastic–plastic contact model for rough surfaces based on plastic asperity concept. International Journal of Non-Linear Mechanics 40(4), 495-506 (2005). doi:http://dx.doi.org/10.1016/j.ijnonlinmec.2004.08.003
    67. Liu, C.-S., Zhang, K., Yang, R.: The FEM analysis and approximate model for cylindrical joints with clearances. Mechanism and Machine Theory 42(2), 183-197 (2007). doi:http://dx.doi.org/10.1016/j.mechmachtheory.2006.02.006
    68. Tabor, D.: The Hardness of Metals. OUP Oxford, (2000)
    69. Mahajan, D., Tajane, R.: A Review on Ball Burnishing Process. International Journal of Scientific and Research Publications 3(4), 1-8 (2013).
    70. Loh, N.H., Tam, S.C., Miyazawa, S.: Surface hardening by ball burnishing. Tribology International 23(6), 413-417 (1990). doi:http://dx.doi.org/10.1016/0301-679X(90)90057-V
    71. Hassan, A.M., Maqableh, A.M.: The effects of initial burnishing parameters on non-ferrous components. J Mater Process Tech 102(1-3), 115-121 (2000). doi:Doi 10.1016/S0924-0136(00)00464-7
    72. Below, V.A.: Burnishing surface with ball tools. Machine Tool 34, 23-36 (1963).
    73. Gray, P., Bedi, S., Ismail, F., Rao, N., Morphy, G.: Comparison of 5-Axis and 3-Axis Finish Machining of Hydroforming Die Inserts. Int. Journ. Adv. Manufac. Tech. 17(8), 562-569 (2001). doi:10.1007/s001700170139
    74. Baptista, R., Antune Simões, J.F.: Three and five axes milling of sculptured surfaces. Journal of Materials Processing Technology 103(3), 398-403 (2000). doi:http://dx.doi.org/10.1016/S0924-0136(99)00479-3

    無法下載圖示 全文公開日期 2020/08/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE